
Enhancing the Privacy of Predictors

Ke Xu,∗ Swair Shah,∗ Tongyi Cao,† Crystal Maung,∗ Haim Schweitzer∗
{ke.xu5,swair,hschweitzer}@utdallas.edu, tcao@umass.edu, Crystal.Maung@gmail.com

Abstract

The privacy challenge considered here is to prevent an ad-
versary from using available feature values to predict confi-
dential information. We propose an algorithm providing such
privacy for predictors that have a linear operator in the first
stage. Privacy is achieved by zeroing out feature components
in the approximate null space of the linear operator. We show
that this has little effect on predicting desired information.

The Problem Being Addressed. Consider a company that
develops technology for predicting desired information from
raw data. The privacy concern is the potential inappropriate
use of the client data to predict confidential information that
the client does not wish to expose. Let x be the feature vec-
tor, yd the desired labels, and yc the confidential labels. The
goal is to “clean” x so that the cleaned feature vector x̃ can
be used to accurately predict yd, but will typically fail if used
to predict yc. Let fd, fc denote predictors for yd, yc respec-
tively. We wish the following holds:

fd(x̃) = ỹd ≈ yd, eutility = |ỹd − yd|2
fc(x̃) = ỹc �≈ yc, eprivacy = |ỹc − yc|2

Our goal is to maximize eprivacy while minimizing eutility. We
show how to achieve this for predictors with a linear oper-
ator in the first stage. These include, among others, linear
regression, neural nets, and algorithms that use PCA.

Related Work. Adapting machine learning terminology
of learning/testing our goal is protecting the privacy of infor-
mation during testing. It is different from studies concerned
with the privacy of the training data, such as differential
privacy, e.g., (Dwork and Roth 2014; Sarwate and Chaud-
huri 2013), where noise is added to blur the distinction be-
tween individual items in the training data. Unlike work
on differential privacy we distinguish between desired and
confidential information. Recent studies (Enev et al. 2012;
Hamm 2015) propose similar models with different (or no)
assumptions about the predictors. By contrast, we assume
knowledge of these predictors, yielding different algorithms.

∗Department of Computer Science, Univ. of Texas at Dallas.
†CICS, UMass Amherst.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The Main Idea. We consider a predictor fd that starts with
a known linear operator Ad. Zeroing out feature components
in the approximate null space of AT

d will not change the pre-
diction of yd, and will typically increase the error of predict-
ing yc. Consider the following toy example:

(x1, x2) cleaned (x1, x2) yd yc
(3, 1) (1, -1) 2 5
(4, 2) (1, -1) 2 8
(5, 1) (2, -2) 4 7

Both yd and yc can be calculated exactly from x1, x2 by:
yd = x1−x2, yc = x1+2x2. Here AT

d = (1,−1), with the
vector (1, 1) in its null space. Thus, the vector (x1, x2) can
be cleaned by zeroing out projections on that direction.

After cleaning, the same linear model can still be used
to predict yd from the cleaned features. But it is impossible
to compute yc exactly from the cleaned features, since two
different values of yc must be inferred from two identical
cleaned feature vectors (lines 1, 2).

Cleaning. We have developed several algorithms that
clean feature vectors (Xu et al. 2017), making different as-
sumptions on fc. The simplest one cleans projections on the
exact null space as shown in the above example. We describe
in detail an algorithm that assumes fc to be linear, and esti-
mates it from training data. It is shown below.

Input: x (feature vector), Ad (from the known predictor),
ε (desired value of eutility), training data (xj , yj

c).
Output: the cleaned feature vector x̃.

1. Use training data to compute Ac so that yj
c ≈ AT

c x
j .

2. For Bd = AdA
T
d , Bc = AcA

T
c , solve the generalized

eigenvalue problem Bdv = γBcv.
3. Sort the generalized eigenvalues/eigenvectors in increasing

order of γ. The result is denoted by: (v1, γ1), . . . , (vn, γn).
4. ∀i: ai = vTi x, λd

i = vTi Bdvi, δi = λd
i a

2
i

5. Find the index t such that:
∑t

i=1 δi < ε,
∑t+1

i=1 δi ≥ ε

6. Set αi =

{
1 1 ≤ i ≤ t√

(ε−∑t
k=1 δk)/δt+1 i = t+ 1

7. Output x̃ = x−∑t+1
i=1 αiaivi.

Algorithm 1 for cleaning a feature vector x.

Theorem 1: Let x̃ be the result of cleaning the feature vector
x with a user defined parameter ε. Then eutility = ε.

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

5009

Proof: yd − ỹd = AT
d (x− x̃) = AT

d

∑t+1
i=1 αiaivi

eutility = |yd − ỹd|2 = (

t+1∑

i=1

αiaiv
T
i)Bd(

t+1∑

j=1

αjajvj)

=
t+1∑

i=1

λd
iα

2
i a

2
i =

t∑

i=1

λd
i a

2
i + λd

t+1a
2
t+1r

2 = ε �

We proceed to analyze the privacy properties of Algorithm 1.
The generalized eigenvalues γi satisfy:

γi = λd
i /λ

c
i , where λd

i = vTi Bdvi, λ
c
i = vTi Bcvi

Following the same derivation as in Theorem 1 we have:

eutility =
∑t+1

i=1 λ
d
iα

2
i a

2
i = ε, eprivacy =

∑t+1
i=1 λ

c
iα

2
i a

2
i

Therefore we should select generalized eigenvectors with
small λd values and large λc values. This suggests that the
selection order should be according to increasing values of
γj . The value of t is determined so that the eutility = ε. Thus,
the algorithm solves the following optimization problem:

min
αi

t+1∑

i=1

α2
i

λd
i a

2
i

λc
ia

2
i

=

t+1∑

i=1

α2
i

λd
i

λc
i

=

t+1∑

i=1

γiα
2
i

subject to: 0 < αi ≤ 1,

t+1∑

i=1

αiλ
d
i a

2
i = ε

Experimental Results. We evaluated the proposed algo-
rithm on datasets from the Mulan (Tsoumakas et al. 2011)
repository. Partial results for Algorithm 1 are shown here.
The “scene” dataset has 2407 instances, each described in
terms of 294 features and 6 labels. Similarly, the “wq”
dataset has 1060 instances, 16 features, and 14 labels.

The results are averaged over 10 runs. In each run 90%
of the dataset is chosen randomly to compute the model and
the rest is used as testing data. Nd and Nc denote the number
of desired and confidential labels respectively. The results
are shown in Fig 1. We observe that eutility is exactly ε, and
eprivacy is much bigger than eutility. To provide further insight
into the cleaning performance we count the test cases for
which the cleaning achieves “complete privacy”:

If the error of predicting yc using x̃ is greater than the
error of predicting yc from the mean feature vector,
then complete privacy has been achieved.

The Complete Privacy results in the tables (specified as
CP), give the percentage of test cases for which the cleaner
achieves complete privacy. As the results show, typically the
adversary would be no more advantageous using the cleaned
feature vector x̃ than using the mean feature vector.

Dataset Nd Nc eutility eprivacy CP

scene
1 5 0.01 0.796 81.8%
3 3 0.01 1.296 80.7%
5 1 0.01 3.659 82.3%

wq
1 13 0.01 2.654 52.6%
7 7 0.01 1.956 57.8%
13 1 0.01 1.403 45.5%

Figure 1: Results with no attack, ε = 0.01.

Dataset Nd Nc eutility eprivacy CP

scene
1 5 0.01 0.289 51.0%
3 3 0.01 0.233 44.5%
5 1 0.01 0.043 41.8%

wq
1 13 0.01 0.308 48.9%
7 7 0.01 0.164 38.7%

13 1 0.01 0.086 30.9%

Figure 2: Results with the proposed attack. ε = 0.01.

eutility
Laplace Mechanism Alg 1 with attack

eprivacy CP eprivacy CP
0.01 0.009 31.5% 0.289 51.0%
0.02 0.019 31.4% 0.289 50.3%
0.03 0.027 31.3% 0.289 51.1%

Figure 3: Comparison with the Laplace Mechanism on
dataset scene. Nd is 1, Nc is 5.

A Proposed Attack. In our model the adversary knows
the cleaning algorithm. Therefore, the adversary can clean
training data and learn to predict yc from the cleaned data.
Fig. 2 shows the results with this attack. Observe that eprivacy
is considerably higher than the eutility. If needed, a higher
privacy can be obtained by increasing ε.

Comparison with a Differential Privacy Mechanism. A
standard way to achieve differential privacy is the Laplace
mechanism (Dwork and Roth 2014). We adjust the Laplace
noise parameter to produce the same eutility as Algorithm 1.
The results are shown in Fig. 3. Observe that even with the
proposed attack, our approach achieves better complete pri-
vacy rate compared to the Laplace mechanism.

Concluding Remarks. We describe a mechanism for en-
hancing the privacy of predictors. Cleaning the data by zero-
ing out the null-space of the predictor will have a negligible
effect on the prediction accuracy but will increase the pri-
vacy. The trade-off between utility and privacy can be con-
trolled by adjusting the ε parameter. The proposed scheme
can be applied to models that start with a linear operator.

References
Dwork, C., and Roth, A. 2014. The algorithmic foundations of
differential privacy. FTTCS 9(3 & 4):211–407.
Enev, M., Jung, J., Bo, L., Ren, X., and Kohno, T. 2012. Sen-
sorSift: balancing sensor data privacy and utility in automated face
understanding. ACSAC, 149–158.
Hamm, J. 2015. Preserving Privacy of Continuous High-
dimensional Data with Minimax Filters. AISTATS, 324-332.
Sarwate, A., and Chaudhuri, K. 2013. Signal processing and
machine learning with differential privacy: theory, algorithms, and
challenges. IEEE Signal Processing Magazine 30(5):86–94.
Xu, K., Cao, T., Shah, S., Maung, C., and Schweitzer, H. 2017.
Cleaning the Null Space: A Privacy Mechanism for Predictors.
AAAI 17.
Tsoumakas, G., Xioufis, E.S., Vilcek, J., and Vlahavas, I. 2011.
Mulan: A Java Library for Multi-Label Learning. JMLR 12.

5010

