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Abstract

This paper presents a novel neuron learning machine (NLM)
which can extract hierarchical features from data. We focus
on the single-layer neural network architecture and propose
to model the network based on the Hebbian learning rule.
Hebbian learning rule describes how synaptic weight changes
with the activations of presynaptic and postsynaptic neurons.
We model the learning rule as the objective function by con-
sidering the simplicity of the network and stability of solu-
tions. We make a hypothesis and introduce a correlation based
constraint according to the hypothesis. We find that this bio-
logically inspired model has the ability of learning useful fea-
tures from the perspectives of retaining abstract information.
NLM can also be stacked to learn hierarchical features and re-
formulated into convolutional version to extract features from
2-dimensional data.

Introduction

The learning behaviours of neurons have been researched for
a long time for revealing the mechanism of human cognition.
One of the most famous theory is the Hebbian learning rule
(Hebb 1949) proposed by Donald Olding Hebb. Hebbian
learning rule can be summarised by the most cited sentence
in (Hebb 1949): “When an axon of cell A is near enough
to excite a cell B and repeatedly or persistently takes part
in firing it, some growth process or metabolic change takes
place in one or both cells such that A’s efficiency, as one
of the cells firing B, is increased.” By applying the Hebbian
rule in the study of artificial neural networks, we can ob-
tain powerful models of neural computation that might be
close to the function of structures found in neural systems of
many diverse species (Kuriscak et al. 2015). Recent works
on Hebbian learning are the series on “biologically plausible
backprop” (Scellier and Bengio 2016) by Bengio, et al. They
linked Hebbian and other biologically formulated rules to
back-propagation algorithm and used them to train the neu-
ral network. Hebbian rule gives the updating gradient of the
connecting weights. We establish the model with the single
layer network and attempt to model the updating gradient
as the objective function. We call the model neuron learning
machine (NLM). Hebbian rule itself is unsupervised and we
find that NLM has many similar properties to unsupervised
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feature learning models. From the analysis and experiments,
NLM is capable of learning useful features.

The Model

In the training of an artificial neural network, Hebbian rule
describes the updating gradient of each connecting weight
Wij = Wij +ΔWij . This can be simplified by the product
of the values of the units at the two ends of the connection,
i.e., ΔWij = αhivj , where α is the learning rate.

With the gradient, a model can be obtained by integrat-
ing over ΔW . However, it is of great difficulty to derive the
integral. The artificial neural networks are highly simplified
models inspired from real neural networks. Therefore when
the Hebbian learning rule is applied to the simplified net-
work, many considerations have to be considered, i.e., lo-
cality, cooperativity, weight boundedness, competition, long
term stability, and weight decrease and increase (Kuriscak
et al. 2015). For convenience, we assume that the connect-
ing weight has negligible influence on the connected hid-
den unit. Under this omitting assumption, h can be taken as
a set of constants wrt W and the integral is apparent, i.e.,
max

∑
ij

∫
Wij

hivj =
∑

ij Wijhivj = vTWh. Although
this term is derived under the hypothesis, optimizing this
term will increase the correlation between Wij and vjhi

which is consistent with the Hebbian rule.
In order to make the network approximate the assumption

and guarantee the long term stability of W and h, a corre-
lation based constraint is introduced. The assumption omits
the effect of W on the hidden units h. Therefore, both pos-
itive and negative correlations between W and h should be
minimized which can be represented by the cosine between
the two vectors cos2(h,W:j) where W:j is the j-th row of
the matrix W . Meanwhile, the length of W and h should
be limited in order to prevent the infinite increase or de-
crease of W . Then the correlation constraint can be formu-
lated as the square of inner product between the two vectors∑

j〈h,W:j〉2 =
∑

j ‖W:j‖22‖h‖22 cos2(h,W:j) = ‖Wh‖22.
Then we can obtain the objective function of NLM:

max J(W, b) = vTWh− λ‖Wh‖22 (1)

where λ is a user defined parameter that controls the impor-
tance of the two terms.

In convolutional neural networks (CNN), the feature maps
are obtained by Hi = s(I ∗Wi + bi) where Hi denotes the
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i-th feature map and Wi denotes the i-th convolution ker-
nel. The convolutional NLM (CNLM) can be obtained by
summing over all the pixels in feature maps. Then the first
term can be denoted by

∑
(x,y)

∑
i(I∗Wi)(x, y)Hi(x, y) =∑

i tr(I ∗ WiH
T
i ), where (x, y) denotes the pixel posi-

tion in H and tr() is the trace of a matrix. For the sec-
ond term, the convolutional version is also easy to de-
rive, i.e.,

∑
(x,y)

∑
(i,j)〈W (i, j),H(x, y)〉2, where (i, j)

denotes the position in convolution kernels. By combining
the two terms, the CNLM is formulated. NLM and CNLM
can be optimized by the widely used stochastic gradient de-
scent algorithm.

Analysis

As described in (Vincent et al. 2010), one natural criterion
that we may expect any good representation to meet, at least
to some degree, is to retain a significant amount of informa-
tion about the input. In NLM, maximizing Eq. (1) amounts
to increasing the cosine correlation coefficient between v

and Wh, i.e., cos(v,Wh) = vTWh
‖v‖2‖Wh‖2

. Then the condi-
tional probability p(v|Wh) is enlarged. With a distribution
of visible data q(v), Eq(v) [log p(v|Wh)] can be increased.
As discussed in (Vincent et al. 2010), this amounts to in-
creasing the lower bound on the mutual information between
v and h. Consequently, the representation h learned by NLM
can retain information of input data v.

Another criterion of a good representation is to eliminate
irrelevant variabilities of the input data, i.e., abstraction and
invariance (Bengio, Courville, and Vincent 2013). In NLM,
for each visible unit vj , the squared inner product between
h and W:j is minimized which breaks the relationship be-
tween h and vjW:j . Then minimizing the constraint term
amounts to minimizing the summed conditional probabil-
ity

∑
j p(h|vj ;W:j). Meanwhile, maximizing the first term

will increase the correlation between vTW and h which in-
creases the conditional probability p(h|v;W ). This means
that h responds to most relevant components which omitting
the relatively irrelevant components in v.

Experimental Study

In NLM, we claim that h responds to most relevant com-
ponents which omitting the relatively irrelevant components
in v. Then we select two images from the MNIST dataset
and CIFAR-10 dataset respectively, and plot cos2(h,W:j)
for each j as the response to each vj during the iterations.
Figure 1 shows such plots of the initialization, 10th iteration
(N=10), 50th iteration (N=50) and the last iteration (N=100),
respectively. Since v is 2 dimensional data, the plots are ex-
hibited in the 3 dimensional form with the heave represent-
ing the response to each pixel in v.

Then we apply NLM to learn hierarchical representations.
Two NLMs are stacked with the hidden units being 500
and 300 respectively. We set λ = 1 and the learning rate
to be 0.01. The compared models, i.e., autoencoder (AE),
restricted Boltzmann machine (RBM), SR-RBM, and MO-
SFL, are also stacked with the same architecture. SR-RBM
and MO-SFL are recently proposed sparse versions of RBM
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Figure 1: 3 dimension plots of cos2(h,W:j) on each pixel
of the input image. Two images from the MNIST dataset
and the CIFAR-10 dataset respectively are exhibited. With
the increase of iterations, i.e., N=0, 10, 50, and 100, the ir-
relevant pixels are restrained. With different λ, the response
intensity of each pixel is different.

Table 1: Classification results of deep networks including
stacked and convolutional version of different feature learn-
ing models. In the experiments on convolutional versions,
the CIFAR-10 dataset is also used.

stacked convolutional

models 10000 60000 version CIFAR-10

AE 3.02 1.63 0.76 21.8
RBM 3.06 1.68 0.83 25.2
SR-RBM 2.97 1.61 – –
MO-SFL 2.91 1.57 – –
NLM 2.89 1.53 0.67 21.1

and AE respectively. The models are trained by the 60000
training images in the MNIST dataset. The learned hierar-
chical features are fed into a linear classifier and we use
randomly sampled 10000 images and 60000 images to train
the classifier. The test error rates are listed in Table 1. For
efficiently learning features from images, we use the archi-
tecture of CNN and learn the features by CNLM. CNLM
is implemented on the MNIST and CIFAR-10 datasets. The
baselines are LeNet and CIFAR-10 Quick respectively. The
learned features are classified by SVM. We compare CNLM
with the convolutional versions of AE and RBM . The test
error rates are listed in Table 1.
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