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Abstract

An intriguing application of transfer learning emerges when
tasks arise with similar, but not identical, dynamics. Hid-
den Parameter Markov Decision Processes (HiP-MDP) em-
bed these tasks into a low-dimensional space; given the em-
bedding parameters one can identify the MDP for a particular
task. However, the original formulation of HiP-MDP had a
critical flaw: the embedding uncertainty was modeled inde-
pendently of the agent’s state uncertainty, requiring an ardu-
ous training procedure. In this work, we apply a Gaussian
Process latent variable model to jointly model the dynamics
and the embedding, leading to a more elegant formulation,
one that allows for better uncertainty quantification and thus
more robust transfer.

Motivation

With the prevalence of systems with similar, but not iden-
tical, processes (e.g. healthcare, sensing networks, robotics)
there is a compelling need to develop learning frameworks
that account for system variations in an efficient and robust
manner. These variations in both unobserved and observed
representations of the system can contribute to inefficien-
cies or, in some dramatic cases, failure of an agent’s abil-
ity to learn an optimal control policy. In order to develop
optimal control policies, it is undesirable and ineffectual to
start afresh each time a new instance is encountered. Ideally,
an agent will leverage the similarities across separate, but
related, instances. This paradigm of learning introduces an
intriguing use case for transfer learning.

The Hidden Parameter Markov Decision Process (HiP-
MDP) (Doshi-Velez and Konidaris 2013), was introduced as a
formalization of these domains with two primary features.
First, that a bounded number of latent parameters, w, for a
single task instance can fully specify the system dynamics
θ ∈ Θ, the set of all parameter variations with prior PΘ, if
learned. That is, the dynamics dictating the transition be-
tween states can be expressed as T (s′|s, a, θb) for instance
b. Second, that the system dynamics will not change during
a task and an agent would be capable of determining when
a change occurs. The HiP-MDP is described by the tuple:
{S,A,Θ, T, R, γ, PΘ}, where S and A are the sets of states
and actions respectively, R(s, a) is the function mapping the
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utility of taking action a in state s. Thereby, the HiP-MDP
describes a class of tasks; where particular instances of that
class are obtained by independently sampling some θb at the
initiation of each task instance b.

The original HiP-MDP had a transition model of the form:

(s′d − sd) ∼
K∑

k

zkadwkbfkad(s) + ε

ε ∼ N (0, σ2
nad)

which sought to learn weights wkb based on the kth la-
tent factor corresponding to task instance b, filter parame-
ters zkad ∈ {0, 1} denoting whether the kth latent parameter
is relevant in predicting dimension d when taking action a
as well as task specific basis functions fkad drawn from a
Gaussian Process (GP).

Doshi-Velez and Konidaris show that the HiP-MDP is able
to rapidly identify the dynamics T of a new task instance
and adapt to the variations therein. However, that formula-
tion had a critical flaw: the embedding uncertainty of the
latent parameter space was modeled independently from the
agent’s state uncertainty. This requires all tasks to have the
ability to visit every part of the state space, which is not
guaranteed to be feasible in most systems.

A HiP-MDP with Joint Uncertainty
We present an alternative formulation to the original HiP-
MDP that embeds the latent parametrization in the ob-
served data via a Gaussian Process latent variable model
(GPLVM) (Lawrence 2004).This approach creates a unified GP
model, with the augmented state s̃ =: [sᵀ, a, wb]

ᵀ as in-
put, for both inferring the transition dynamics (Wang, Fleet,
and Hertzmann 2005) within a task instance but also in the
transfer between task instances (Cao et al. 2010). The approx-
imated transition model then takes the form of:

s′d ∼ fd(s̃) + ε

fd ∼ GP (ψ)

wb ∼ N (μb,Σb)

ε ∼ N (0, σbd)

This approach enables the HiP-MDP to flexibly infer the dy-
namics T of a new instance by virtue of the statistical sim-
ilarities found in the learned covariance function between
observed states of the new instance and those from prior in-
stances. Another feature of formulating the HiP-MDP after
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this fashion is that we are able to leverage the marginal log
likelihood of the GP to optimize the weight distribution and
thereby quantify the uncertainty (Candela et al. 2003) of the
latent embedding of wb for θb. These two features of refor-
mulating the HiP-MDP as a GPLVM allows for more robust
and efficient transfer.

Parameter Learning and Updates We deploy the HiP-
MDP when the agent is provided batch observational data
from several task instances and asked to quickly learn op-
timal control policies for new instances in an online fash-
ion. With this observational data, the GP transition functions
fd are learned and the individual weighting distributions for
wb are periodically optimized. To streamline the approxima-
tion of T we choose a set of support points s∗ from S that
sparsely approximate the full GP, which are also periodically
updated as the latent weighting distribution is updated. Pro-
cedures exist to select these support points accurately (Snel-
son and Ghahramani 2005), we however heuristically select
these points to minimize the maximum reconstruction er-
ror within each batch using simulated annealing. The out-
come of this online learning method proves to be robust to
the choice of initial parametrization.

Control Policy A control policy is learned for each task
instance b following the procedure outlined in (Deisenroth and
Rasmussen 2011) where a set of tuples (s, a, s′, r) are ob-
served and the policy is periodically updated (as is the latent
embedding wb) in an online fashion, leveraging the approx-
imate dynamics of T via the f∗

d to create synthetic observa-
tions from the current instance. The policy is updated via a
Double Deep Q Network using prioritized experience replay
(van Hasselt, Guez, and Silver 2016), (Schaul et al. 2015).

Multiple episodes are run from each instance b to further
optimize the policy over the hidden parameter setting θb. Af-
ter doing so, the hyperparameters of the GP defining the fd
are updated before encountering another randomly manifest
task instance.

Demonstration We demonstrate an example (see Figure 1)
of a toy domain where an agent is able to learn separate poli-
cies according to a hidden latent parameter. Instances inhab-
iting a “blue” latent parametrization can only pass through
to the goal region over the blue boundary while those with a
“red” parametrization can only cross the red boundary. After
a few training instances, the HiP-MDP is able to separate the
two latent classes and develops individualized policies for
each. Due to the flexibility enabled by embedding the latent
parametrization into the system’s state, the GPLVM identi-
fies which class the current instance belongs to within the
first couple of training episodes. In total, this example took
approximately 30 minutes to develop optimal policies for
20 task instances. We place an unclassified survey point in
the top left quadrant to gather information about the policy
uncertainty given the two latent classes: we see that there
is larger uncertainty associated when the survey point is as-
sociated with the “red” parametrization in comparison with
the “blue” parametrization. This indicates the ability of the

Figure 1: Toy Problem: (a) Schematic outlining the domain,
(b) learned policy for “red” parametrization, (c) learned pol-
icy for “blue” parametrization, (d) uncertainty measure for
input point according to separate latent classes.

HiP-MDP to provide coherent inference across multiple la-
tent classes present in the observed task, affirming the moti-
vation for jointly modeling the dynamics and latent embed-
ding for the transfer between related task instances.
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