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Abstract

Belief Propagation (BP) is a widely used approximation for
exact probabilistic inference in graphical models, such as
Markov Random Fields (MRFs). In graphs with cycles, how-
ever, no exact convergence guarantees for BP are known, in
general. For the case when all edges in the MRF carry the
same symmetric, doubly stochastic potential, recent works
have proposed to approximate BP by linearizing the update
equations around default values, which was shown to work
well for the problem of node classification. The present paper
generalizes all prior work and derives an approach that ap-
proximates loopy BP on any pairwise MRF with the problem
of solving a linear equation system. This approach combines
exact convergence guarantees and a fast matrix implementa-
tion with the ability to model heterogenous networks. Experi-
ments on synthetic graphs with planted edge potentials show
that the linearization has comparable labeling accuracy as BP
for graphs with weak potentials, while speeding-up inference
by orders of magnitude.

1 Introduction

Belief Propagation (BP) is an iterative message-passing
algorithm for performing inference in graphical models
(GMs), such as Markov Random Fields (MRFs). BP cal-
culates the marginal distribution for each unobserved node,
conditional on any observed nodes (Pearl 1988). It achieves
this by propagating the information from a few observed
nodes throughout the network by iteratively passing infor-
mation between neighboring nodes. It is known that when
the graphical model has a tree structure, then BP converges
to the true marginals (according to exact probabilistic infer-
ence) after a finite number of iterations. In loopy graphs,
convergence to the correct marginals is not guaranteed; in
fact, it is not guaranteed at all, and using BP can lead to well-
documented convergence problems (Sen et al. 2008). While
there is a lot of research on convergence of BP (Elidan, Mc-
Graw, and Koller 2006; Ihler, Fisher III, and Willsky 2005;
Mooij and Kappen 2007), exact criteria for convergence are
not known (Murphy 2012), and most existing bounds for BP
on general pairwise MRFs give only sufficient convergence
criteria, or are for restricted cases, such as when the under-
lying distributions are Gaussians (Malioutov, Johnson, and
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Willsky 2006; Su and Wu 2015; Weiss and Freeman 2001).
Semi-supervised node classification. BP is also a ver-

satile formalism for semi-supervised learning; i.e., assign-
ing classes to unlabeled nodes while maximizing the num-
ber of correctly labeled nodes (Koller and Friedman 2009,
ch. 4). The goal is to predict the most probable class for
each node in a network independently, which corresponds
to the Maximum Marginal (MM) assignment (Domke 2013;
Weiss 2000). Let P be a probability distribution over a set
of random variables X∪Y. MM-inference (or “MM decod-
ing”) searches for the most probable assignment yi for each
unlabeled node Yi independently, given evidence X = x:

MM(y|x) = {argmax
yi

P(Yi=yi|X=x)|Yi ∈ Y}

Notice that this problem is simpler than finding the actual
marginal distribution. It is also different from finding the
Maximum A-Posteriori (MAP) assignment (the “most prob-
able configuration”), which is the mode or the most probable
joint classification of all non-evidence variables:1

MAP(y|x) = argmax
y

P(Y=y|X=x)

Convergent message-passing algorithms. There has
been much research on finding variations to the update equa-
tions of BP that guarantee convergence. These algorithms
are often similar in structure to the non-convergent algo-
rithms, yet it can be proven that the value of the variational
problem (or its dual) improves at each iteration (Hazan and
Shashua 2008; Heskes 2006; Meltzer, Globerson, and Weiss
2009). Another body of recent papers have suggested to
solve the convergence problems of MM-inference by lin-
earizing the update equations. Krzakala et al. study a form
of linearization for unsupervised classification called “spec-
tral redemption” in the stochastic block model. That model
is unsupervised and has no obvious way to include super-
vision in its setup (i.e., it is not clear how to leverage la-
beled nodes). Donoho, Maleki, and Montanari propose “ap-
proximate message-passing” (AMP) as an iterative thresh-

1See (Murphy 2012, ch. 5.2.1) for a detailed discussion on why
MAP has some undesirable properties and is not necessarily a “rep-
resentative” assignment. While in theory it is arguably preferable
to compute marginal probabilities, in practice researchers often use
MAP inference due to the availability of efficient discrete optimiza-
tion algorithms (Korč, Kolmogorov, and Lampert 2012).
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olding algorithm for compressed sensing that is largely in-
spired by BP. Koutra et al. linearize BP for the case of two
classes and proposed “Fast Belief Propagation” (FaBP) as
a method to propagate existing knowledge of homophily or
heterophily to unlabeled data. This framework allows one
to specify a homophily factor h (h > 0 for homophily or
h < 0 for heterophily) and to then use this algorithm with
exact convergence criteria for binary classification. Gatter-
bauer et al. derive a multivariate (“polytomous”) general-
ization of FaBP from binary to multiple labels called “Lin-
earized Belief Propagation” (LinBP). Both aforementioned
papers show considerable speed-ups for the application of
node classification and relational learning by transforming
the update equations of BP into an efficient matrix formula-
tion. However, those papers solve only special cases: FaBP
is restricted to two classes per node (de facto, one single
score). LinBP can handle multiple classes, but is restricted
to one single node type, one single edge type, and a potential
that is symmetric and doubly stochastic (see Fig. 1).2

Contributions. This paper derives a linearization of BP
for arbitrary pairwise MRFs, which transforms the param-
eters of an MRF into an equation system that replaces mul-
tiplication with addition. In contrast to standard BP, the
derived update equations (i) come with exact convergence
guarantees, (ii) allow a closed-form solution, (iii) keep the
derived beliefs normalized at each step, and (iv) can thus be
put into an efficient linear algebra framework. We also show
empirically that this approach – in addition to its compelling
computational advantages – performs comparably to Loopy
BP for a large part of the parameter space. In contrast to prior
work on linearizing BP, we remove any restriction on the po-
tentials and solve the most general case for pairwise MRFs
(see Fig. 1). Since it is known that any higher-order MRF
can be converted to a pairwise MRF (Wainwright and Jor-
dan 2008, Appendix E.3), the approach can be also be used
for higher-order potentials. Our formalism can thus model
arbitrary heterogeneous networks; i.e., such that have di-
rected edges or have different types of nodes.3 This gen-
eralization is not obvious and required us to solve several
new algebraic problems: (i) Non-symmetric potentials mod-
ulate messages differently across both directions of an edge;
each direction then requires different centering points (this
is particularly pronounced for non-quadratic potentials; i.e.,
when nodes adjacent to an edge have different numbers of
classes). (ii) Multiplying belief vectors with non-stochastic
potentials doesn’t leave them stochastic; an additional nor-
malization would then not allow a closed-form matrix for-
mulation as before; we instead derive a “bias term” that re-
mains constant in the update equations and thus depends

2A potential is “doubly stochastic” if all rows and columns sum
up to 1. As potentials can be scaled without changing the semantics
of BP, this definition also extends to any potential where the rows
and columns sum to the same value.

3Notice that an underlying directed network is still modeled
as an undirected Graphical Model (GM). For example, while the
“friendship” relation on Facebook is undirected, the “follower” re-
lation on Twitter is directed and has different implications on the
two nodes adjacent to a directed “links to”-edge. Yet, the resulting
GM is still undirected, but now has asymmetric potentials.

BP FaBP LinBP this work
# node types arbitrary 1 1 arbitrary
# node classes arbitrary 2 const k arbitrary
# edge types arbitrary 1 1 arbitrary
edge symmetry arbitrary required required arbitrary
edge potential arbitrary doubly stoch. doubly stoch. arbitrary
closed form no yes yes yes

Figure 1: The approach proposed in this paper combines the
full expressiveness and generality of Loopy Belief Propa-
gation (BP) on pairwise MRFs with the computational ad-
vantages of Fast BP (Koutra et al. 2011) and Linearized BP
(Gatterbauer et al. 2015).

only on the network structure and the potentials but not the
beliefs. (iii) Dealing with the full heterogenous case (mul-
tiple potentials, multiple node types, and different numbers
of classes among nodes) requires a considerably more gen-
eral formulation. The technical report on arXiv (Gatterbauer
2015) contains the full derivation of the results presented in
this paper. An efficient Python implementation is available
on Github (SSLH 2015).

2 BP for pairwise MRFs

A MRF is a factored representation of a joint distribution
over variables X. The distribution is defined using a set of
factors {φf | f ∈ F}, where each f is associated with the
variables Xf ⊂ X , and φf is a function from the set of
possible assignments of Xf to R

+. The joint distribution is
defined as: P(X = x) = 1

Z

∏
f∈F φf (xf ) where Z is a

normalization constant known as the partition function.
An important subclass of MRFs is that of pairwise MRFs,

representing distributions where all of the interactions be-
tween variables are limited to those between pairs. More
precisely, a pairwise MRF over a graph is associated with
a set of node potentials and a set of edge potentials (Koller
and Friedman 2009). The overall distribution is the normal-
ized product of all of the node and edge potentials.

We next focus on the mechanics of BP. Consider a net-
work of n nodes where each node s can be any of ks possi-
ble classes (or values). A node s maintains a ks-dimensional
belief vector where each element j represents a weight pro-
portional to the belief that this node belongs to class j. Let
xs be the vector of prior beliefs (also varyingly called local
evidence or node potential) and ys the vector of posterior (or
implicit or final) beliefs at node s, and require that xs and ys
are normalized to 1; i.e.,

∑
j∈[ks]

xs(j) =
∑

j∈[ks]
ys(j) =

1. For example, a labeled node s of class i is represented by
xs(j) = 1 for j = i and xs(j) = 0 for j �= i. Using mus

for the ks-dimensional message that node u sends to node
s, we can write the BP update equations (Murphy 2012;
Weiss 2000) for the belief vector of a node s as:

ys(j) ← 1

Zs
xs(j)

∏
u∈N(s)

mus(j) (1)

Here, we write Zs for a normalizer that makes the elements
of ys sum up to 1. Thus, the posterior belief ys(j) is com-
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puted by multiplying the prior belief xs(j) with the incom-
ing messages mus(j) from all neighbors u ∈ N(s), and then
normalizing so that the beliefs in all ks classes sum to 1. In
parallel, each node sends messages to each of its neighbors:

mst(i) ← 1

Zst

∑
j

ψst(j, i) xs(j)
∏

u∈N(s)\t
mus(j) (2)

Here, ψst(j, i) is a proportional “coupling weight” (or “com-
patibility,” “affinity,” “modulation”) that indicates the rela-
tive influence of class j of node s on class i of node t. Thus,
the message mst(i) is computed by multiplying together all
incoming messages at node s – except the one sent by the
recipient t – and then passing through the ψst edge po-
tential. Notice that we use Zst in Eq. (2) as a normalizer
that makes the elements of mst sum up to kt at each itera-
tion. As pointed out by Murphy, Weiss, and Jordan; Pearl,
normalizing the messages has no effect on the final beliefs;
however, this intermediate normalization of messages will
become crucial in our derivations. BP then repeatedly com-
putes the above update equations for each node until the
values (hopefully) converge. At iteration r of the algorithm,
ys(j) represents the posterior belief of j conditioned on the
evidence that is r steps away in the network.

3 Linearizing BP over any pairwise MRF

This section gives a closed form description for the final be-
liefs after convergence of BP in arbitrary pairwise MRFs
under a certain limit consideration of all parameters. This
is a strict and non-trivial generalization of recent works
(Fig. 1). The difficulty of our generalization lies in techni-
cal details: non-symmetric potentials require different cen-
tering points for messages across different directions of an
edge; non-stochastic potentials require different normalizers
for different iterations (and for different potentials in the net-
works) which does not easily lead to a simple matrix formu-
lation; and the full heterogenous case (e.g., different num-
ber of classes k for different nodes) requires a considerably
more general derivation and final formulation.

Our approach is conceptually simple: we center all ma-
trix entries around well-chosen default values and then focus
only on the deviations from these defaults using Maclau-
rin series at several steps in our derivation. The resulting
equations replace multiplication with addition and can thus
be put into the framework of matrix-vector multiplication,
which can leverage existing highly-optimized code. It also
allows us to give exact convergence criteria for the resulting
update equations and a closed form solution (that would re-
quire the inversion of a large matrix). The approach is sim-
ilar in spirit to the idea of writing any MRF (with strictly
positive density) as log-linear model. However, by starting
from the update equations for loopy BP, we solve the in-
tractability problem by ignoring all dependencies between
messages that have traveled over a path of length 2 or more.
Definition 1 (Centering). We call a vector x or matrix X
“centered around c with standard deviation v” if the average
entry μ(x) = c and standard deviation σ(x) = v.
Definition 2 (Residual vector/matrix). If a vector x is cen-
tered around c, then the “residual vector” x̂ around c is de-

fined as x̂ = [x1− c, x2− c, . . .]ᵀ. Accordingly, we denote a
matrix X̂ as a “residual matrix” if each entry is the residual
after centering around c.

For example, the vector x = [1.1, 1.2, 0.7]ᵀ is centered
around c = 1, and the residuals from 1 form the residual
vector x̂ = [0.1, 0.2,−0.3]ᵀ; i.e., x = 13 + x̂, where 13

is the 3-dimensional vector with all entries equal to 1. By
definition of a normalized vector, beliefs for any node s are
centered around 1

ks
, and the residuals for prior beliefs have

non-zero elements (i.e., x̂s �= 0ks ) only for nodes with local
evidence (nodes “with explicit beliefs”). Further notice that
the entries in a residual vector or matrix always sum up to
0 (i.e.,

∑
i x̂(i) = 0). This is done by construction and will

become important in the derivations of our results.
The main idea of our derivation relies then on the fol-

lowing observation: if we start with messages and potentials
with rows and columns centered around 1 with small enough
standard deviations, then the normalizer of the update equa-
tion Eq. (2) is independent of the beliefs and remains con-
stant as Zst = k−1

t . Importantly, the resulting equations
do not require further normalization. The derivation further
makes use of certain linearizing approximations that result
in a well-behaved linear equation system. We show that the
MM solutions implied by this equation system are identi-
cal to those from the original BP update equations in case
of nearly uniform priors and potentials. For strong priors
and potentials (e.g., [ 1 100

100 1 ]), the resulting solutions are
not identical anymore, yet serve as reasonable approxima-
tions in a wide range of problem parameters (see Section 4).
WLOG, we start with potentials that are centered around 1
and then re-center the potentials before using them:4

Definition 3 (Row-recentered residual matrix). Let ψ ∈
R

�×k be centered around 1 and ψ̂ be the residual matrix
around 1. Furthermore, let r̂(j) :=

∑
i ψ̂(j, i) be the sum

of the residuals of row j. Then the “row-recentered residual
matrix” ψ̂

′
has entries ψ̂′(j, i) := 1

k

(
ψ̂(j, i)− r̂(j)

k

)
.

Before we can state our main result, we need some ad-
ditional notation. WLOG, let [n] be the set of all nodes.
For each node s ∈ [n], let ks be the number of its pos-
sible classes. Let ks := 1

ks
1ks , i.e., the ks-dimensional

uniform stochastic column vector. Furthermore, let ktot :=∑
s∈[n] ks be the sum of classes across nodes. To write all

our resulting equations as one large equation system, we
stack the individual explicit (x̂) and implicit (ŷ) residual be-
lief vectors together with the ks-vectors one underneath the
other to form three ktot-dimensional stacked column vec-
tors. We also combine all row-recentered residual matrices
into one large but sparse [ktot × ktot]-square block matrix

4Without changing the joint probability distribution, every po-
tential in a MRF can be scaled so that the average entry is 1. For

example, given ψ = [ 4 6 5
6 8 7 ], we scale by 1

6
to get ψ =

[ 2
3

1 5
6

1 4
3

7
6

]
,

which has the identical semantics but is now centered around 1.
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(notice that all entries for non-existing edges remain empty):

ŷ :=

⎡
⎢⎣
ŷ1
...
ŷn

⎤
⎥⎦, x̂ :=

⎡
⎢⎣
x̂1

...
x̂n

⎤
⎥⎦, k :=

⎡
⎢⎣
k1

...
kn

⎤
⎥⎦, ψ̂′

:=

⎡
⎢⎢⎣
ψ̂

′
11 . . . ψ̂

′
1n

...
. . .

...
ψ̂

′
n1 . . . ψ̂

′
nn

⎤
⎥⎥⎦

We can now state our main theorem:

Theorem 4 (Linearizing Belief Propagation). Let ŷ, x̂, k̂,
and ψ̂

′
be the above defined residual vectors and matrix.

Let ε be a bound on the standard deviation of all non-zero
entries of ψ̂

′
and x̂, σ(ψ̂

′
) < ε and σ(x̂) < ε. Let yBP

v
be the final belief assignment for any node v after con-
vergence of BP. Then, for limε→0+ , argmaxi y

BP
v (i) =

argmaxi ŷ
Lin
v (i), where ŷv results from solving the follow-

ing system of ktot linear equations in ŷ:

ŷ = x̂︸︷︷︸
1st

+ ψ̂
′ᵀ
k︸ ︷︷ ︸

2nd

+ ψ̂
′ᵀ
ŷ︸ ︷︷ ︸

3rd

− ψ̂′ᵀ2
ŷ︸ ︷︷ ︸

4th

(3)

In other words, the MM node labeling from BP can be ap-
proximated by solving a linear equation system if each of the
potentials and each of the beliefs are reasonably tightly cen-
tered around their average values. Notice that the 2nd term
ψ̂

′ᵀ
k is a “bias” vector that depends only on the structure of

the network and the potentials, but not the beliefs. We thus
sometimes prefer to write ĉ′∗ := ψ̂

′ᵀ
k to emphasize that it

remains constant during the iterations. This term vanishes
if all potentials are doubly stochastic. Also notice that the
4th term is what was called the “echo cancellation” in (Gat-
terbauer et al. 2015).5 Simple algebraic manipulations then
lead a closed-form solution by solving Eq. (3) for ŷ:

ŷ =
(
Iktot − ψ̂

′ᵀ
+ ψ̂

′ᵀ2)−1(
x̂+ ĉ′∗

)
(4)

Iterative updates and convergence

The complexity of inverting a matrix is cubic in the num-
ber of variables, which makes direct application of Eq. (4)
difficult. Instead, we use Eq. (3), which gives an implicit def-
inition of the final beliefs, iteratively. Starting with an arbi-
trary initialization of ŷ (e.g., all values zero), we repeatedly
compute the right hand side of the equations and update the
values of ŷ until the process converges:6

5Notice that the BP update equations send a message across an
edge that excludes information received across the same edge from
the other direction: “u ∈ N(s)\ t” in Eq. (2). In a probabilistic
scenario on tree-based graphs, this echo cancellation is required for
correctness. In loopy graphs (without well-justified semantics), this
term still compensates for the message a node t would otherwise
send to itself via a neighbor s, i.e., via the path t → s → t.

6Interestingly, our linearized update equations, Eq. (5), are rem-
iniscent of the update equations for the mean beliefs in Gaussian
MRFs (Malioutov, Johnson, and Willsky 2006; Su and Wu 2015;
Weiss and Freeman 2001). Notice however, that whereas the up-
date equations are exact in the case of continuous Gaussian MRFs,
our equations are approximations for the general discrete case.

Proposition 5 (Update equations). The positive fix points
for Eq. (3) can be calculated iteratively with the following
update equations starting from ŷ(0) = 0:

ŷ(r+1) ← (
x̂+ ĉ′∗

)
+
(
ψ̂

′ᵀ − ψ̂′ᵀ2)
ŷ(r) (5)

These particular update equations allow us to give a suffi-
cient and necessary criterium for convergence via the spec-
tral radius ρ of a matrix.7

Corollary 6 (Convergence). The update Eq. (5) converges
if and only if ρ

(
ψ̂

′ − ψ̂′2)
< 1.

Thus, the updates converge towards the closed-form solu-
tion, and the final beliefs of each node can be computed via
efficient matrix operations with optimized packages, while
the implicit form gives us guarantees for the convergence of
this process.8 In order to apply our approach to problem set-
tings with spectral radius bigger than one (and thus direct ap-
plication of Eq. (5) would not work), we propose to modify
the model by weakening the potentials. In other words, we
multiply ψ̂

′
with a factor that guarantees convergence. We

call the multiplicative factor which exactly separates con-
vergence from divergence, the “convergence boundary” ε∗.
Choosing any ε with s := ε

ε∗
and s < 1 guarantees conver-

gence. We call any choice of s the “convergence parameter.”

Definition 7 (Convergence boundary ε∗). For any ψ̂
′
, the

convergence boundary ε∗ > 0 is defined implicitly by
ρ
(
ε∗ψ̂

′ − ε2∗ψ̂
′2)

= 1.

Computational complexity

Naively materializing ψ̂
′

would lead to a space requirement
of O(n2k2max) where n is the number of nodes and kmax

the max number of classes per node. However, by using a
sparse matrix implementation, both the space requirement
and the computational complexity of each iteration are only
proportional to the number of edges: O(mk2max). The time
complexity is identical to the one of message-passing with
division, which avoids redundant calculations and is faster
than standard BP on graphs with high node degrees (Koller
and Friedman 2009). However, the ability to use existing
highly-optimized packages for efficient matrix-vector multi-
plication will considerably speed-up the actual calculations.

4 Experiments

Questions. Our experiments will answer the following 3
questions: (1) What is the effect of the convergence param-
eter s on accuracy and number of required iterations until
convergence? (2) How accurate is our approximation under

7The “spectral radius” ρ(·) of a matrix is the supremum among
the absolute values of its eigenvalues.

8The intuition behind these equivalences can be illustrated by
comparing to the geometric series S = 1 + x + x2 + . . . and
its closed form S = (1 − x)−1. Whereas for |x| < 1, the se-
ries converges to its closed-form, for |x| > 1, it diverges, and the
closed-form is meaningless.
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varying conditions: (i) the density of the network, (ii) the
strength on the interaction, and (iii) the fraction of labeled
nodes? (3) How fast is the linearized approximation as com-
pared to standard Loopy BP?

Experimental protocol. We define “accuracy” as the
fraction of unlabeled nodes that receive correct labels. In or-
der to evaluate the accuracy of a method, we need to use
graphs with known label ground truth (GT). As we are in-
terested in the accuracy as a function of various parame-
ters, we need graphs with controlled GT. We thus decided
to compare BP against its linearization on synthetic graphs
with known GT, which allows us to measure the accuracy
as result of systematic parameter changes. The well-studied
stochastic block-model (Airoldi et al. 2008) leads to net-
works with degree distributions that are not similar to those
found in most empirical network data. Our synthetic graph
generator is thus a variant thereof with two important dif-
ferences: (1) we actively control the degree distributions in
the resulting graph; and (2) we “plant” exact graph prop-
erties (instead of fixing a property only in expectation). In
other words, our generator preserves desired degree distri-
bution and compatibilities between classes. The online ap-
pendix (Gatterbauer 2015) contains all details. We focus on
the scenario of a network with one non-symmetric potential
along each edge. The generator creates a graph using a tuple
of parameters (n,m,α,ψ, dist), where n is the number of
nodes, m is the number of edges, α is the node label distri-
bution with α(i) being the fraction of nodes of class i, ψ is
the edge potential, and dist is a chosen degree distribution
(e.g., uniform or power law with chosen coefficient).

Parameter choices. Throughout our experiments, we use
k = 3 classes and the potential ψ =

[
1 h 1
1 1 h
h 1 1

]
, parameter-

ized by a value h representing the ratio between min and
max entries. Dividing by (2 + h) centers it around 1. Thus
parameter h models the strength of the potential, and we
expect higher values of h to make our approximation less
suitable. Notice that this matrix is not symmetric and shows
very different modulation behavior across both directions of
an edge. We create graphs with n nodes and assign the same
fraction of nodes to one of the 3 classes: α = [ 13 ,

1
3 ,

1
3 ]. We

also vary the parameters m and d = m
n as the average in-

and outdegree in the graph, and we assume a power law dis-
tribution with coefficient 0.3. We then keep a fraction f of
node labels and measure accuracy on the remainder.

Computational setup. All methods are implemented in
Python and use the optimized SciPy library (Jones et al.
2001) to handle sparse matrix operations. The experiments
are run on a 2.5 Ghz Intel Core i5 with 16G of main mem-
ory and a 1TB SSD hard drive. To allow comparability
across implementations, we limit evaluation to one proces-
sor. For timing BP, we use message-passing with division
which is faster than standard BP on graphs with high node
degree (Koller and Friedman 2009). To calculate the approx-
imate spectral radius of a matrix, we use a method from
the PyAMG library (Bell, Olson, and Schroder 2011) that
implements a technique described in (Bai et al. 2000). Our
code, including the data generator, is inspired by Scikit-learn
(Pedregosa et al. 2011) and is available on Github to encour-

age reproducible research (SSLH 2015).

Question 1. What is the effect of scaling parameter s on
accuracy and number of iterations for convergence?

Result 1. Our scaling parameter s gives an exact criterion
for our approach to converge. In contrast, BP often does
not converge and requires a lot of fine-tuning; e.g., damp-
ing or even scaling of the potential. The accuracy of the
linearization is highest for s close or slightly above 1 and
by not iterating until convergence.

Figure 2a shows the number of required iterations to
reach convergence and confirms our theoretical results from
Corollary 6. In case the convergence condition does not
hold, we scale the centered potential by a value ε, result-
ing from ε = s · ε∗ with s < 1. This action weakens the
potentials, but preserves the relative affinities (we also use
the same approach to help BP find a fixed point if it does
not converge within 200 iterations). Figure 2b shows what
happens to accuracy if we run the iterative updates a fixed
number of times as a function of s. Notice that even consid-
erably scaling a potential does not entirely change the model
and still gives reasonable approximations. The figure fixes
a number of iterations, but then varies again ε via s. Also
interestingly, almost all of the performance gains from the
linearized update equations come from running just a few
iterations, and convergence for optimal labeling is not nec-
essary; instead, by choosing s ≈ 1 (at the exact boundary of
convergence) or even s > 1 and iterating only a few times,
we can maximize the expected accuracy. For the remaining
accuracy experiments, we use s = 0.5 and run our algorithm
to convergence.

Question 2. How accurate is our approximation, and un-
der which conditions is it reasonable?

Result 2. The linearization gives comparable labeling ac-
curacy as LBP for graphs with weak potentials. The per-
formance deteriorates the most in dense networks with
strong potentials.

We found that h, d and f have important influence on
the labeling accuracy of BP and its linearization (whereas
n, dist and α influence only to a lesser extent). Figures 2c
and 2d show accuracy as a function of the fraction f of la-
beled nodes. Notice that we chose the best BP was able to
perform (over several choices of ε and damping factors to
make it converge) whereas for LinBP we consistently chose
s = 0.5 as proposed in (Gatterbauer et al. 2015). Figures 2e
to 2g show labeling quality as a function the strength h of
the potential. For strong potentials (h > 3), BP gives better
accuracy if it converges. In practice, BP often did not con-
verge within 200 iterations even for weak potentials (bor-
dered data points required dampening; red crosses required
additional entry-wise scaling of the potential with our con-
vergence boundary ε∗). In our experiments, BP often did not
converge despite using damping, surprisingly often when h
is not big. It is known that if the potentials are close to in-
difference then loopy BP usually converges. In this case, our
formalism is equivalent to loopy BP (this follows from our
linearization). Thus, whenever loopy BP did not converge,
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(a) Convergence for s<1 (b) f=0.05, h=8, d=5 (c) h=2, d=2 (d) h=2, d=10

(e) f=0.05, d=2 (f) f=0.05, d=5 (g) f=0.05, d=10 (h) d=10

Figure 2: Experimental results for BP and its linearization (abbreviated here as “Lin”): f represents the fraction of labeled
nodes, h the strength of potentials, and d the average node in- and outdegree. All graphs except for (h) have n=1000 nodes.
(a): The convergence parameter s exactly determines convergence for the linearization. (b): Accuracy increases for s close to 1
and few iterations. (c, d): f only marginally affects the relative accuracy between BP and its linearization. (e, f, g): For strong
potentials, BP gives better accuracy if it converges. In practice, BP often did not converge within 200 iterations even for weak
potentials and required a lot of fine-tuning (damping and/or entry-wise scaling of the potential with our convergence boundary
ε∗ to s = 1). (h): Each iteration of our approach is 50 times faster than an implementation of BP with division. In addition,
deploying a proper damping strategy often requires 100s of iterations, which can bring up the total speed-up to a factor 1000
for some of the above data points. (Each data point results from at least 10 samples).

we simply exponentiated the entries of the potential with a
varying factor ε until BP converged. Thus for high h, BP can
perform better than the linearization, but only after a lot of
fine-tuning of parameters. In contrast, for our formulation
we know exactly the boundary of convergence.

Overall, the linearization gives comparable results to the
original BP for small potentials, and BP performance is bet-
ter than the linearization only either for strong potentials
with h ≥ 3 and dampening (see a few yellow dots without
borders as exceptions) or after fine-tuning BP after using our
own convergence boundary and scaling the potentials, or af-
ter a lot of manual fine-tuning.

Question 3. How fast is the linearized approximation as
compared to BP?

Result 3. The linearization is around 100 times faster than
BP per iteration and often needs 10 times fewer iterations
until convergence. In practice, this can lead to a speed-up
of 1000 times.

A key advantage of the linearization is that it has pre-
dictable convergence and comes with considerable speed-
ups. Figure 2h shows that our approach scales linearly in the
number of edges and is 50 times faster than regular loopy BP
per iteration; an iteration on a graph with 3 million nodes

and 30 million edges takes less than 2 sec. Calculating the
exact convergence boundary via a spectral radius calcula-
tion can take more time (approx. 1000 sec for the same
graph). Notice that any dampening strategy for BP results
in increased number of iterations and needs to overcome the
additional slow-down of further iterations. Also recall that
on each circled point in Figs. 2e to 2g, BP did not con-
verge within 200 iterations and required dampening; each
red cross required additional scaling of the potentials with
our calculated ε∗ in order to make BP converge.

5 Conclusions

We have derived a linearization of BP for arbitrary pairwise
MRFs for the purpose of node labeling with MM-inference.
The approach transforms the parameters of an MRF into a
linear equation system that can be solved with simple iter-
ative updates. These updates come with exact convergence
guarantees, allow a closed-form solution, keep the derived
beliefs normalized at each step, and can thus be put into an
efficient linear algebra framework that does not require nor-
malization at each step. Experiments on carefully controlled
synthetic data with known ground truth show that our ap-
proach performs comparably with Loopy BP for weak po-
tentials and comes with a predictable behavior, compelling
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computational advantages, and an easy implementation with
only few lines of code. An unexplored application of the lin-
earization may be speeding-up convergence of regular BP
by starting from good approximations of its fixed points.
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