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Abstract

We consider the problem of online learning in misspecified
linear stochastic multi-armed bandit problems. Regret guar-
antees for state-of-the-art linear bandit algorithms such as
Optimism in the Face of Uncertainty Linear bandit (OFUL)
hold under the assumption that the arms expected rewards
are perfectly linear in their features. It is, however, of in-
terest to investigate the impact of potential misspecification
in linear bandit models, where the expected rewards are per-
turbed away from the linear subspace determined by the arms
features. Although OFUL has recently been shown to be ro-
bust to relatively small deviations from linearity, we show that
any linear bandit algorithm that enjoys optimal regret perfor-
mance in the perfectly linear setting (e.g., OFUL) must suf-
fer linear regret under a sparse additive perturbation of the
linear model. In an attempt to overcome this negative result,
we define a natural class of bandit models characterized by a
non-sparse deviation from linearity. We argue that the OFUL
algorithm can fail to achieve sublinear regret even under mod-
els that have non-sparse deviation. We finally develop a novel
bandit algorithm, comprising a hypothesis test for linearity
followed by a decision to use either the OFUL or Upper Con-
fidence Bound (UCB) algorithm. For perfectly linear bandit
models, the algorithm provably exhibits OFULs favorable re-
gret performance, while for misspecified models satisfying
the non-sparse deviation property, the algorithm avoids the
linear regret phenomenon and falls back on UCBs sublinear
regret scaling. Numerical experiments on synthetic data, and
on recommendation data from the public Yahoo! Learning to
Rank Challenge dataset, empirically support our findings.

1 Introduction

Stochastic multi-armed bandits have been used with signif-
icant success to model sequential decision making and op-
timization problems under uncertainty, due to their succinct
expression of the exploration-exploitation tradeoff. Regret
is one of the most widely studied performance measures for
bandit problems, and it is well-known that the optimal re-
gret that can be achieved in an iid stochastic bandit instance
with N actions, [0, 1]-bounded rewards and T rounds, with-
out any additional information about the reward distribution,
is1 Õ(

√
NT ). This is achieved, for instance, by the cele-
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1The notation Õ hides polylogarithmic factors.

brated Upper Confidence Bound (UCB) algorithm of (Auer,
Cesa-Bianchi, and Fischer 2002).

The (polynomial) dependence of the regret in a stan-
dard stochastic bandit on the number of actions N can
be rather prohibitive in settings with a very large number
(and potentially infinite) of actions. Under the assumption
that the rewards from playing arms are linear functions of
known features or context vectors, linear bandit algorithms
such as LinUCB (Li et al. 2010), Optimism in the Face
of Uncertainty Linear bandit (OFUL) (Abbasi-Yadkori, Pál,
and Szepesvári 2011) and Thompson sampling (Thompson
1933) give regret Õ(d

√
T ) where d is the feature dimension.

This is particularly attractive in practice where the feature
dimension d � N (for instance, news article recommenda-
tion data typically has d of the order of hundreds while N
is 2 or 3 orders higher). The framework also extends to the
more general contextual linear bandit model, where the fea-
tures for arms are allowed to vary with time (Chu et al. 2011;
Agrawal and Goyal 2013).

The design, and attractiveness, of linear bandit algorithms
hinges on the assumption that the expected reward from
playing arms are linear in their features, i.e., under a fixed
ordering of the arms, the vector of expected rewards from
all arms belongs to a known linear subspace, spanned by the
arms’ features. However, real-world environments may not
necessarily conform perfectly to this linear reward model
and in fact in most cases, have large deviation (Section 7
presents a case study using a real-world dataset to this ef-
fect). One possible reason for this is that features are of-
ten designed with careful domain expertise without explicit
regard for linearity with respect to the utilities of actions.
Another situation where linearity ma be violated is when
there is feature noise or uncertainty (Hainmueller and Ha-
zlett 2014) – even a small amount of noise in the assumed
features shifts the expected reward vector out of the linear
subspace. When the rewards need not be perfectly linear in
terms of the features in hand, it becomes important to study
how robust or fragile strategies for linear bandits can be to
such misspecification.

The specific questions we address are: (a) With features
available for arms with respect to which the arms’ rewards
need not necessarily be linear, how do deviations from lin-
earity impact the performance of state-of-the-art linear ban-
dit algorithms? (b) Is it possible to design bandit algorithms
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Deviation from OFUL UCB RLB
linearity (proposed)
Small O(d

√
T ) O(

√
NT ) O(d

√
T )

Large & non-sparse Ω(T ) O(
√
NT ) O(

√
NT )

Table 1: Regret of OFUL, UCB and the proposed algorithm
(RLB) upto time horizon T under different deviations. We
can see that RLB avoids linear regret of OFUL for large
non-sparse deviations while enjoying the favorable regret of
OFUL under very small deviations.

that control for deviations from linearity and still enjoy
‘best-of-both-worlds’ regret performance, i.e., regret that is
sublinear in T and depends only on the feature dimension
when the model is linear (or near-linear), and that falls back
on the number of arms (as for UCB) when all bets are off
(i.e., the model is far from linear)?

Overview of results. The paper makes the following con-
tributions:

1. We first prove a negative result about the robustness of
linear bandit algorithms to sparse deviations from linear-
ity (Theorem 1): Any linear bandit algorithm that enjoys
optimal regret guarantees on perfectly linear bandit prob-
lem instances (i.e., O(d

√
T ) regret in dimension d), such

as OFUL and LinUCB, must suffer linear regret on some
misspecified linear bandit model. Furthermore our con-
structive argument shows that it is possible to find a mis-
specified model that differs only sparsely from a perfectly
linear model – in fact, by a perturbation of the expected
reward of only a single arm. We also rule out the possibil-
ity of using a state-of-the art bandit algorithm OFUL for
handling instances with large non-sparse deviation (The-
orem 2).

2. Towards overcoming this negative result, we propose and
analyze a novel bandit algorithm (Algorithm 1) (abbrevi-
ated RLB in Table 1), which is not only robust to non-
sparse deviations from linearity but also retains the order-
wise optimal regret performance in the standard linear
bandit model. The algorithm provably achieves OFUL’s
Õ(d

√
T ) regret2 in the ideal linear case, and UCB’s

Õ(
√
NT ) regret for a broad class of reward models which

are not linear but are well-separated from the feature sub-
space in a non-sparse sense, which we characterize (The-
orem 3). The algorithm is comprised of a hypothesis test,
followed by a decision to employ either OFUL or UCB.
Numerical experiments on both synthetic as well as on the
public Yahoo! Learning to Rank Challenge data 3, lend
support to our theoretical results.

Related work. Many strategies have been devised and
studied for stochastic multi-armed bandits for the general
setting without structure – UCB (Auer, Cesa-Bianchi, and
Fischer 2002), ε-greedy (Cesa-Bianchi and Fischer 1998),

2Note that we concern ourselves with studying the gap-
independent (worse-case over problem instances) regret; a similar
exercise can be carried out in terms of the reward gap parameter.

3
https://webscope.sandbox.yahoo.com/catalog.php?datatype=c

Boltzmann exploration (Sutton and Barto 1998), Bayes-
UCB (Kaufmann, Garivier, and Cappe 2012), MOSS (Au-
dibert and Bubeck 2009) and Thompson sampling (Thomp-
son 1933; Agrawal and Goyal 2012; Kaufmann, Korda,
and Munos 2012), to name a few. Linear stochastic ban-
dits have been extensively investigated (Rusmevichientong
and Tsitsiklis 2010; Dani, Hayes, and Kakade 2008; Abbasi-
Yadkori, Pál, and Szepesvári 2011) under the well-specified
or perfectly linear reward model, achieving (near) optimal
problem-independent regret of Õ(d

√
T ) if the features are of

dimension d (note that the number of arms can in principle
unbounded). Researchers have also considered extensions of
linear-bandit algorithms for the case of rewards following a
generalized linear model with a known, nonlinear link func-
tion (Filippi et al. 2008).

In contrast to the abundance of work on linear bandits,
very little work, to the best of our knowledge, has dealt with
the impact of misspecification on stochastic decision mak-
ing with partial (bandit) feedback. A notable study is that of
(Besbes and Zeevi 2015) who study misspecified models in
a specific dynamic pricing setting. Working in a specialized
2-parameter linear reward setting, they arrive at the conclu-
sion that, within a small range of perturbations of the model
away from linearity, one can preserve the sublinear regret
of a standard bandit algorithm. There has been significant
work, in a different vein, on the effect of model misspeci-
fication for the classical linear regression problem (i.e., es-
timation) in statistics where the metric is overall distortion
and not explicitly maximum reward – see for instance the
work of (White 1981) and related references. Very recently
(Gopalan, Maillard, and Zaki 2016) provides some results
for the linear bandit algorithm OFUL when the devation fron
linearity is small. We expect to contribute towards filling a
much-needed gap in the study of sensitivity properties in lin-
early parameterized bandit decision-making in this work.

2 Setup & Preliminaries

Consider a multi-armed bandit problem with N arms, and a
d-dimensional (d � N ) context or feature vector xi ∈ R

d

associated with each arm i, i = 1, . . . , N . An arm i, upon
playing, yields a stochastic and independent reward with ex-
pectation μi. Let μ∗ = maxi μi be the best expected reward,
and let X be the matrix having the feature vectors for each
arm as its columns: X = [x1 | x2 | . . . | xN ] ∈ R

d×N ,
with X T assumed to have full column rank. Define μ =
[μ1 μ2 . . . μN ]T ∈ R

N to be the expected reward vector.
At each time instant t = 1, 2, . . ., the learner chooses any

one of the N arms and observes the reward collected from
that arm. The action set for the player is A = {1, 2, . . . , N}.
The regret after T rounds is defined to be the quantity
R(T ) = Tμ∗−∑T

t=1 μAt
. The goal of the player is to max-

imize the net reward, or equivalently, minimize the regret,
over the course of T rounds. (If the learner has exact knowl-
edge of θ∗ and ε beforehand, the optimal choice is to play a
best possible arm i∗ = argmaxi μi at all time instances.)

Under a perfectly linear model, the observed reward Yt at
time t is modeled as the random variable, Yt = 〈xAt

, θ∗〉+
ηt = μAt

+ ηt, where At is the action chosen at time t, θ∗ ∈
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R
d is the unknown parameter vector, 〈., .〉 denotes the inner

product in R
d and ηt is zero-mean stochastic noise assumed

to be conditionally R-sub-Gaussian given At. Thus, under
a perfectly linear model, the mean reward for each arm is
a linear function of its features: there exists a unique θ∗ ∈
R

d such that μi = xT
i θ

∗ ∀i ∈ A (the uniqueness property
follows from the full column rank of X T ).

Consider now the case where a linear model for μ with
respect to the features X may not be valid, resulting in a de-
viation from linearity or a misspecified linear bandit model.
We model the reward in this case by

Yt = 〈xAt , θ〉+ εAt + ηt = μAt + εAt + ηt,

where θ ∈ R
d is a choice of weights, and ε :=

[ε1 ε2 . . . εN ]T ∈ R
N denotes the deviation in the expected

rewards of arms. Note that (a) the model remains perfectly
linear if4 ε ∈ span(X T ) ⊆ R

N ), and (b) choice of θ satisfy-
ing the equation above is not unique if μ is separated from
the subspace span(X T ), i.e., minθ∈Rd ‖ X T θ − μ ‖2> 0.

3 Lower Bound for Linear Bandit

Algorithms under Large Sparse Deviation

In this section, we present our first key result – a general
lower bound on regret of any ‘optimal’ linear bandit algo-
rithm on misspecified problem instances. Specifically, we
show that any linear bandit algorithm that enjoys the optimal
O(d

√
T ) regret scaling, for linearly parameterized models

of dimension d, must in fact suffer linear regret under a mis-
specified model in which only one arm has a mismatched
expected reward.
Theorem 1. Let A be an algorithm for the linear bandit
problem, whose expected regret is Õ(d

√
T ) on any linear

problem instance with feature dimension d, time horizon T
and expected rewards bounded in absolute value by 1. There
exists an instance of a sparsely perturbed linear bandit, with
the expected reward of one arm having been perturbed, for
which A suffers linear, i.e., Ω(T ), expected regret.

The formal proof of Theorem 1 is deferred to the ap-
pendix, but we present the main ideas in the following.

Proof sketch. The argument starts by considering a per-
fectly linear bandit instance with order of

√
T arms in di-

mension d. It follows from the regret hypothesis that num-
ber of suboptimal arm plays must be O(

√
T ). By a pigeon-

hole argument, since there are order of
√
T suboptimal arms,

there must exist a suboptimal arm that is played no more
than O(1) times in expectation. Markov’s inequality then
gives that the event that both a) this suboptimal arm is played
at most O(1) times and b) overall regret is O(d

√
T ), occurs

with probability at least a constant, say 1/3.
Having isolated a suboptimal arm that is played very

rarely by the algorithm (note that the choice of such an arm
may very well depend on the algorithm), the argument pro-
ceeds by adding a perturbation to this suboptimal arm’s re-
ward to make it the best arm in the problem instance. A

4For a matrix M , span(M ) denotes the subspace spanned by
the columns of M .

change-of-measure argument is now used to reason that in
the perturbed instance, the probability of the algorithm play-
ing the arm in question does not change significantly as it
was anyway played only a constant number of times in the
pure linear model. But this must imply that the expected re-
gret is linear due to neglecting the optimal arm in the per-
turbed problem instance.

4 Performance of OFUL Under Deviation

A state-of-the-art algorithm for the linear bandit problem
is OFUL. We study the performance of OFUL5 for various
cases of deviations ε (suitably “small” and “large”). Specifi-
cally, we argue that OFUL is robust to small deviations, but
for large deviations, the performance of OFUL is very poor
leading to a linear regret scaling. The findings motivate us
to propose a more robust algorithm to tackle linear bandit
problems with significantly large deviations.

At time t ≥ 1, based on previous actions and observations
upto t − 1, OFUL solves a regularized linear least squares
problem to estimate the unknown parameter θ∗ ∈ R

d and
constructs a high-confidence ellipsoid around the estimate
using concentration-of-measure properties of the sampled
rewards. Using the confidence set, the high probability re-
gret of OFUL is O(d

√
T ).

4.1 OFUL with Small Deviation

When the deviation from linearity is considerably small, it
can be shown that OFUL performs similar to the perfect lin-
ear model in terms of regret scaling (see (Gopalan, Mail-
lard, and Zaki 2016, Theorem 3) for details and a formal
quantification of “small” deviation). Assuming ||θ∗||2 ≤ S,
||xi||2 ≤ L and |μi| ≤ 1 for all i ∈ A, with probability at
least 1 − δ̃ (δ̃ > 0), the cumulative regret upto time T of
OFUL is given by,

ROFUL(T ) ≤ 8ρ′
√

Td log

(
1 +

TL2

λd

)(
λ1/2S

+R

√
2 log

1

δ̃
+ d log

(
1 +

TL2

λd

))

where ρ′ is a geometric constant that measures the “distor-
tion” in the arms’ actual rewards with respect to (linear) ap-
proximation and λ is a regularization parameter.

Remark: OFUL retains O(d
√
T ) regret scaling even in

the presence of “small” deviation.

4.2 OFUL with Large Sparse Deviation

The regret of OFUL under pure linear bandit instance is
O(d

√
T ). Therefore from Theorem 1, the cumulative ex-

pected regret under large sparse deviation will be Ω(T ).

5We consider the OFUL algorithm in this work chiefly because
it is known to be the most competitive in terms of regret scaling. It
is conceivable that similar results can be shown for other, related,
bandit strategies as well, such as ConfidenceBall (Dani, Hayes, and
Kakade 2008), UncertaintyEllipsoid (Rusmevichientong and Tsit-
siklis 2010), etc.
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4.3 OFUL with Large Non-sparse Deviation

We need to identify a natural class of structured large de-
viations that we dub non-sparse. We impose the following
structure in terms of sparsity on the expected rewards μ. Re-
call from Section 2 that X denotes the context matrix, μ the
mean reward vector, θ a choice of weights, and ε the devia-
tion from mean μ; thus, μ = X T θ + ε.

Definition 1 (Non-sparse deviation). Given a feature set
Xf = {x1, ..., xN} ⊂ Rd and constants l > 0, β ∈ [0, 1],
an expected reward vector μ ∈ RN is said to have the (l, β)
deviation property if,

P
(|xT

id+1
[Xf

i1,...,id
]−1[μi1,...,id ]− μid+1

| ≥ l
) ≥ 1− β

for all {i1, i2, . . . , id, id+1} ⊆ {1, 2, . . . , N}, such that
{xi1 , xi2 , . . . , xid} linearly independent, where Xf

i1,...,id
=

[xT
i1
, . . . , xT

id
]T and μi1,...,id = [μi1 , . . . , μid ]

T . The ran-
domness is over the choice of d+ 1 arms.

In other words, the deviation of reward μ is (l, β) non-
sparse if, whenever one uses any d linearly independent fea-
tures, with their corresponding rewards, to regress a (d+1)-
th unknown reward linearly, then the magnitude of error is at
least l > 0 (bounded away from 0) with probability at least
1− β. Typically, β is positive and close to 0.

For example, consider the problem instance of Theorem 1,
i.e., only one arm is perturbed away from linearity. This is an
example of sparse deviation. If the perturbed arm is picked
as one of d+1 arms in Definition 1, l will be a large positive
number, but when the perturbed arm is missed, l will be 0,
which is inconsistent with Definition 1. Also, β can be cho-
sen such that the probability of missing the perturbed arm is
strictly greater than β.

We now argue, by counterexample (Theorem 2), that the
regret of OFUL with large non-sparse deviation is Ω(T ).

Theorem 2. Consider a linear bandit problem with A =
{1, 2}, context matrix X = [1 2], mean reward vector μ =
[μ1 μ2]

T with μ2 > μ1 and μ2 = 2μ1. The deviation vector
ε = [ε1 ε2]

T is such that |εi| > c (c > 0) for i = {1, 2}
(with respect to Definition 1, l = c and β = 0). There exists
a problem instance for which the expected regret of OFUL
until time T , E(ROFUL) = Ω(T ).

The description of problem instance with the formal proof
of theorem is deferred to the supplementary material.

Summary: OFUL is robust to “small” deviation (irrespec-
tive of sparsity) but incurs linear regret under large devi-
ation (for both sparse and non-sparse). Theorem 1 shows
the futility of designing any linear bandit algorithm under
sparse deviation. However the quest is still valid if the devi-
ation is large but non-sparse. We will investigate this issue
in rest of the paper. It is clear that under large deviation, con-
text vectors do not contribute in reducing regret and thus a
rational player should discard contexts under such circum-
stances. The player may choose any standard algorithm for
basic multi-armed bandits (UCB for instance).

5 A Linear Bandit Algorithm Robust to

Large, Non-sparse Deviations

This section accomplishes the objective of developing a new
algorithm that maintains the sublinear regret property in
a model with non-sparse, large deviations. Non-sparse de-
viations can be seen to naturally arise in the presence of
stochastic measurement or estimation noise; e.g., let xi and
x̄i be the measured and original context vector respectively
for arm i with xi = x̄i + ζi. ζTi θ can be modeled as a Gaus-
sian random variable with mean, E(ζTi θ) = εi. Substituting,
we get, μ = X T θ + ε. It is possible to find suitable (l, β)
pair (Definition 1) for this model and thus μ is non-sparse.
The associated feature vectors corresponding to the mean
reward vector satisfying Definition 1, are called “uniformly
perturbed features”.

We now define 2 hypotheses – H0 and H1, corresponding
intuitively to “linear” and “not linear” – on (X , μ), which
will be used to quantify the performance of the algorithm
developed in this section. We say that hypothesis H0 holds
if the separation of μ from span(X T ), i.e., the quantity
minθ∈Rd ‖ X T θ − μ ‖2, is 0, i.e., the model is perfectly
linear. On the other hand, we say that hypothesis H1 holds
if the separation is greater than 0 and μ satisfies the (l1, β)
deviation property of Definition 1 with l1 > 0.

Remark: The definition of H0 be generalized to handle
small deviations in the ‖ · ‖2 norm with distortion parameter
ρ′ ≥ 1, in the sense of (Gopalan, Maillard, and Zaki 2016,
Theorem 3).

5.1 A Robust Linear Bandit (RLB) Algorithm

The sequence of actions for the proposed novel bandit algo-
rithm, namely Robust Linear Bandit (RLB) is summarized
in Algorithm 1, mainly consisting of three steps. First, RLB
executes an initial sampling phase, in which d+1 arms out of
N are sampled. Based on these samples, it constructs a con-
fidence ellipsoid for θ∗ in the next phase. Finally, based on
experimentation on the (d+ 1)-th arm, it decides to play ei-
ther OFUL or UCB for the remainder of the horizon. We will
illustrate the necessity of non-sparse deviation as follows:
consider a problem instance with ε = (0, . . . , 0, c, 0, . . . , 0),
|c| � 0. As N � d, with high probability, the deviated
arm can be missed in the sampling phase and according to
Algorithm 1, the learner learns that the model is linear and
decides to play OFUL which according to Theorem 1 incurs
Ω(T ) regret.

Step 1: Sampling of d+ 1 arms

For non-sparse deviation, the choice of d + 1 among N
arms may be arbitrary. Without loss of generality, we sam-
ple the arms indexed {1, 2, . . . , d+1}, k times each (result-
ing (d + 1) × k (:= τ ) sampling instances). From Hoeffd-
ing’s inequality, the sample mean estimate of d + 1-th arm,
μ̂d+1, satisfies P(|μ̂d+1−μd+1| > rs) ≤ exp(−2r2sk). With
δs := exp(−2r2sk), the confidence interval around μd+1 will
be [μd+1 − rs, μd+1 + rs] with probability at least 1− δs.
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Step 2: Construction of Confidence Ellipsoid

Based on the samples of first d arms, RLB constructs a con-
fidence ellipsoid for θ∗ assuming H0 is true. Under H0,

y
(j)
i = 〈xi, θ

∗〉+ ηi,j ∀i ∈ {1, 2, ·, d}, 1 ≤ j ≤ k.

In this setup, we re-define the reward vector Y =

[y
(1)
1 , ·, y(k)1 , y

(1)
2 , ·, y(k)2 , . . . , y

(k)
d ]T , feature-matrix X =

[xT
1 , x

T
1 , ·, xT

1 , x
T
2 , x

T
2 , . . . , x

T
d ]

T and noise vector η =

[η1, η2, . . . , ηkd]
T with Y = Xθ∗ + η. Let θ̂ be the so-

lution of �2 regularized least square, i.e., θ̂ = (XTX +
λI)−1XTY, where λ > 0 is the regularization parameter.

Using the same line of argument as in (Abbasi-Yadkori,
Pál, and Szepesvári 2011), it can be shown that for any δ̄ >
0, with probability at least 1− δ̄, θ∗ lies in the set,

C =

{
θ ∈ R

d :
∥∥∥θ̂ − θ

∥∥∥
V̄

≤ R

×
√

2 log(
det(V̄ )1/2 det(λI)−1/2

δ̄
) + λ1/2S

}

V̄ = λI + k
∑d

i=1 xix
T
i = XTX+ λI , ‖θ∗‖2 ≤ S.

Step 3: Hypothesis test for non-sparse deviation

We project the confidence ellipsoid onto the context of d+1-
th arm. The projection, 〈xd+1, θ〉 , θ ∈ C will result in an
interval, Ie, centered at xT

d+1θ̂ (Lemma ??). We compare Ie
with the interval obtained from sampling d+1-th arm, Is. If
H0 is true, Lemma ?? states that Ie and Is overlap with high
probability. Similarly, from Lemma ??, under H1, Ie will
not intersect with Is with high probability, i.e., probability
of choosing H1 when H0 is true (and vice versa), is signifi-
cantly low. 6 Based on this experiment, the player adopts the
following decision rule: if Ie ∩ Is = φ, declare H0 and play
OFUL, otherwise declare H1 and play UCB.

Algorithm 1 Robust Linear Bandit (RLB)
1: Sample the first d arms k times each.
2: Compute the �2-regularized least square estimate (θ̂)

based on d× k samples assuming H0.
3: Construct a confidence ellipsoid C such that with high

probability, θ∗ ∈ C.
4: Project the ellipsoid onto the context of d+ 1 th arm to

obtain interval Ie.
5: Sample d + 1 th arm k times, obtain mean estimate,

μ̂d+1, and confidence interval Is.
6: If Ie ∩ Is = φ, declare H0 and play OFUL for the re-

maining time instants, otherwise play UCB.

6 Regret Analysis

The objective of RLB is to learn the gap from linearity and
play accordingly to obtain regret of Table 1. For zero devia-
tion, RLB exploits linear reward structure and incur a regret

6Owing to space constraints, Lemma ??, ?? and ??, with their
proofs are moved to supplementary material.

of O(d
√
T ). For large non-sparse deviation, RLB discards

the contexts and avoids linear regret. During the initial sam-
pling phase upto τ , regret will scale linearly as each step
is either forced exploration or exploitation, i.e., Rs(τ) =
O(τ). After that, based on the player’s decision, either
OFUL or UCB is played. For H0, we use regret of OFUL as
given in (Abbasi-Yadkori, Pál, and Szepesvári 2011). With
N arms and time T , (Bubeck and Cesa-Bianchi 2012) pro-
vided O(

√
NT log T ) regret for standard UCB. Also, (Au-

dibert and Bubeck 2009), gave an algorithm MOSS, inspired
by UCB which incurs a regret upper bound of 49

√
NT .

6.1 Regret of Algorithm 1

From Lemma (??) it can be seen that, if H0 is true, OFUL
and UCB are played with a probability of 1 − δ1(k, λ)
and δ1(k, λ) respectively and accordingly regret is accumu-
lated. By an appropriate choice of k and λ, δ1(k, λ) can
be made arbitrarily close to 0. Similarly, under H1, corre-
sponding probabilities are δ2(k, λ)+β and 1− δ2(k, λ)−β
respectively (Lemma ??). β comes from the definition of
non-sparse deviation. Therefore, under non-sparse devia-
tion, probability of playing OFUL and incurring linear re-
gret is δ2(k, λ)+β, which can be pushed to arbitrarily small
value by proper choice of k and λ as typically, β is very
small and close to 0. τ can be choosen as log(T ), a sub-
linear function of T . Now we are in a position to state our
main result - an upper bound on regret of RLB.
Theorem 3 (Regret guarantees for RLB). The expected re-
gret of RLB in T time steps satisfies the following: (a) Under
hypothesis H0,

E(RRLB(T )) ≤ c1((d+ 1)k) + 4[(1− δ1(k, λ))

×
√

(T − log T )d log(1 +
(T − log T )L2

λd
)(λ1/2S

+ R

√
2 log

1

δ
+ d log(1 +

(T − log T )L2

λd
))]

+ 49δ1(k, λ)
√

N(T − log T )

(b) Under H1,

E(RRLB(T )) ≤ c1((d+ 1)k) + 49(1− δ2(k, λ)− β)

×
√

N(T − log T ) + c2(δ2(k, λ) + β)(T − log T )

where, a total of d + 1 arms are sampled k times each, λ is
regularization parameter, δ, L, c1, c2 are constants and,

δ1(k, λ) := exp(−k(rs
√
log k + rp(

√
log k − 1))2

2R2
)

δ2(k, λ) := exp(−k(l1 − rp
√
log k − rs

√
log k)2

2R2
)

with 2rs and 2rp being the length of the intervals Is and Ie
respectively and l1 comes from the definition of H1.

Implication. We see that if k increases, δ1(k, λ) and
δ2(k, λ) goes to 0 exponentially. Under H1 and a given
(l, β) pair, for RLB to decide in favor of H1 and hence en-
suring sub-linear regret with probability greater than 1 −
δ2(k, λ) − β, we need,

√
log k(rp + rs) < l1, (shown

in the proof of Lemma ??). Since rs and rp are both
O(1/

√
k), k satisfies, k/ log k > b/l21 for some constant b
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Figure 1: Regret variations with synthetic data. Figure (a)
represents the scenario with 0 deviation, thus regret of RLB
follows that of OFUL. In (b), where deviation is non-sparse,
RLB avoids the high regret of OFUL and follows UCB.

(> 0). Simulations show that a considerably small λ also
pushes δ1(k, λ) and δ2(k, λ) close to 0. Therefore, with
H0, RRLB(T ) = O(log T ) + O(d

√
T − log T ). Similarly,

for H1, RRLB(T ) = O(log T ) + O(
√
N(T − log T )), as

shown in Table 1.

7 Simulation Results

7.1 Synthetic Data

In this setup, we assume, N = 1000, d = 20 and k = 50.
λ and R are taken as 0.001 and 0.1 respectively. Context
vectors and mean rewards are generated at random (in the
range [0, 1]). All high probability events are simulated with
an error probability of 0.001. The simulation is run for 1000
instances and cumulative regret is shown in Figure 1.

Under H0, RLB predicts correctly with a probability of
false alarm 0.0001. Figure 1 shows the regret performance
of RLB. In the sampling phase, regret is linear and thus
greater than the perturbed OFUL and UCB algorithm. Af-
ter the sampling phase, regret of RLB closely follows regret
of OFUL with probability 0.9999. The false alarm probabil-
lity can be further pushed if the value of k is increased. If we
allow time horizon T to be very large, the deviation in terms
of regret between UCB and RLB will be significantly large.

The same experiment is carried for H1 with |εi| > 2 for
all i ∈ {1, 2, . . . , N}, and RLB verdicts in favor of UCB
with an error (miss detection) of 0.0001. Figure 1 shows the
variation of regret with time. Further, if k is increased, the
error decreases but the regret from sampling phase increases.

7.2 Yahoo! Learning to Rank Data

The performance of RLB is evaluated on the Yahoo! dataset
“Learning to Rank Challenge” (Chapelle and Chang 2011).
Specifically, we use the file set2.test.txt. The dataset
consists of query document instance pairs with 103174 rows
and 702 columns. The first column lists rating given by user
(which we take as reward) with entries {0, 1, 2, 3, 4} and
the second column captures user id. We treat the rest 700
columns as context vector corresponding to each user. We
select 20, 000 rows and 50 columns at random (similar re-
sults were found for several random selections). We cluster
the data using K-means clustering with K = 500. Each clus-
ter can be treated as a bandit arm with mean reward equal to
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Figure 2: RLB on Yahoo! data: In Figure (a), N = 500, d =
50. Regret of UCB, OFUL and RLB is plotted for different
k. Figure (b) denotes similar plots, with N = 800, d = 50.

the empirical mean of the individual rating in the cluster and
context (or feature) vector equals to the centroid of the clus-
ter. Thus, we have a bandit setting with N = 500, d = 50.

To show that the obtained data does not fall in H0 (i.e.,
linear model), we fit a linear regression model. It is observed
that, average value of residuals (error) is 0.15 (with a max-
imum value of 0.67), where average mean reward is 1.13.
Therefore, we conclude that the data falls under H1. We run
OFUL, UCB and RLB on the dataset and regret performance
is shown in Figure 2. We consider the following cases:

1. k = 70: we conclude that all arms are sufficiently sampled
and thus RLB avoids high regret of OFUL and plays UCB.
But RLB suffers high regret upto 3570 rounds.

2. k = 10: arms are not properly sampled, leading to an
increase in the radius Is and violating the lower bound on
k. Owing to this, RLB plays OFUL and incurs high regret.

We carry out the same experiment with K = 800, i.e.,
N = 800, d = 50 and the observations are similar (Fig-
ure 2(b)). For a reasonable value of k (50 in this case), RLB
properly identifies the optimal algorithm (UCB) to play, but
with very low k (10), RLB suffers the high regret of OFUL.
We omit the errorbars as over 1000 instances, regret values
for different algorithms remain almost the same.

8 Conclusion and Future work

We addressed the problem of adapting to misspecification in
linear bandits. We showed that a state-of-the art linear bandit
algorithm like OFUL is not always robust to deviations away
from linearity. To overcome this, we have proposed a robust
bandit algorithm and provided a formal regret upper bound.
Experiments on both synthetic and real world datasets sup-
port our reasoning that (a) feature-reward maps can often
be far from linear in practice, and (b) employing a strategy
that is aware of potential deviation from linearity and tests
for it suitably does lead to performance gains. Moving for-
ward, it would be interesting to explore other non-linearity
structures than sparse deviations as was studied here, and
to derive information-theoretic regret lower bounds for the
class of general bandit problems with given feature sets. It is
also intriguing to investigate the performance of Bayesian-
inspired algorithms like Thompson Sampling on linear ban-
dits in presence of deviations.
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