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Abstract

Nonparametric inference techniques provide promising tools
for probabilistic reasoning in high-dimensional nonlinear sys-
tems. Most of these techniques embed distributions into re-
producing kernel Hilbert spaces (RKHS) and rely on the ker-
nel Bayes’ rule (KBR) to manipulate the embeddings. How-
ever, the computational demands of the KBR scale poorly
with the number of samples and the KBR often suffers from
numerical instabilities. In this paper, we present the kernel
Kalman rule (KKR) as an alternative to the KBR. The deriva-
tion of the KKR is based on recursive least squares, inspired
by the derivation of the Kalman innovation update. We apply
the KKR to filtering tasks where we use RKHS embeddings
to represent the belief state, resulting in the kernel Kalman fil-
ter (KKF). We show on a nonlinear state estimation task with
high dimensional observations that our approach provides a
significantly improved estimation accuracy while the compu-
tational demands are significantly decreased.

1 Introduction

State estimation and prediction for continuous partially ob-
servable stochastic processes is a significant challenge in
many high-dimensional applications, such as robotics. How-
ever, analytical solutions are only applicable for a limited
set of models with special structure. When assuming linear
models with Gaussian noise, for instance, the Kalman fil-
ter (Kalman 1960) is known to provide an optimal solution.
For more complex models, approximate solutions have to be
used instead (McElhoe 1966; Smith, Schmidt, and McGee
1962; Julier and Uhlmann 1997; Wan and Van Der Merwe
2000). These approximations are again difficult to scale to
high-dimensional problems, they often assume a unimodal
Gaussian observation prior and also require that the model
of the system is known.

The recently introduced methods for nonparametric infer-
ence (Song, Fukumizu, and Gretton 2013; Fukumizu, Song,
and Gretton 2013) alleviate the problems of traditional state
estimation methods for nonlinear systems. The idea of these
methods is to represent probability distributions as points
in reproducing kernel Hilbert spaces. Based on the kernel-
ized versions of the sum rule, the chain rule, and the Bayes’
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rule, inference can be performed entirely in the RKHS. Ad-
ditionally, Song, Fukumizu, and Gretton (2013) use the ker-
nel sum rule and the kernel Bayes’ rule to construct the ker-
nel Bayes’ filter (KBF). The KBF learns the transition and
observation models from observed samples and can be ap-
plied to nonlinear systems with high-dimensional observa-
tions. However, the computational complexity of the KBR
update scales poorly with the number of samples such that
hyper-parameter optimization becomes prohibitively expen-
sive. Moreover, the KBR requires mathematical tricks that
may cause numerical instabilities and also render the objec-
tive which is optimized by the KBR unclear.

In this paper, we present the kernel Kalman rule (KKR) as
alternative to the kernel Bayes’ rule. Our derivations closely
follow the derivations of the innovation update used in the
Kalman filter and are based on a recursive least squares min-
imization objective in a reproducing kernel Hilbert space.
We show that our update of the mean embedding is unbi-
ased and has minimum variance. While the update equations
are formulated in a potentially infinite dimensional RKHS,
we derive, through the application of the kernel trick and
by virtue of the representer theorem (Schölkopf, Herbrich,
and Smola 2001), an algorithm using only products and in-
versions of finite kernel matrices. We employ the kernel
Kalman rule together with the kernel sum rule for filtering,
which results in the kernel Kalman filter (KKF). In contrast
to filtering techniques that rely on the KBR, the KKF allows
to precompute expensive matrix inversions which signifi-
cantly reduces the computational complexity. This allows us
also to apply hyper-parameter optimization for the KKF.

To scale gracefully with larger data sets, we rederive the
KKR and the KKF with the subspace conditional operator
(Gebhardt, Kupcsik, and Neumann 2015). Here, only a sub-
set of the samples is used to span a feature space, while all
training samples are used to estimate the models.

We compare our approach to different versions of the
KBR and demonstrate its improved estimation accuracy
and computational efficiency. Furthermore, we evaluate the
KKR on a simulated 4-link pendulum task and a human mo-
tion capture data set (Wojtusch and von Stryk 2015).

1.1 Related Work

To the best of our knowledge, the kernel Bayes’ rule ex-
ists in three different versions. It was first introduced in its
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original version by Fukumizu, Song, and Gretton (2013).
Here, the KBR is derived, similar to the conditional oper-
ator, using prior modified covariance operators. These prior-
modified covariance operators are approximated by weight-
ing the feature mappings with the weights of the embed-
ding of the prior distribution. Since these weights are po-
tentially negative, the covariance operator might become
indefinite which renders its inversion impossible. To over-
come this drawback, the authors have to apply a form of
the Tikhonov regularization that significantly decreases ac-
curacy and increases the computational costs. A second ver-
sion of the KBR was introduced by Song, Fukumizu, and
Gretton (2013) in which they use a different approach to ap-
proximate the prior-modified covariance operator. In the ex-
periments conducted for this paper, this second version often
leads to more stable algorithms than the first version. Boots,
Gretton, and Gordon (2013) introduced a third version of the
KBR where they apply only the simple form of the Tikhonov
regularization. However, this rule requires the inversion of
a matrix that is often indefinite, and therefore, high regu-
larization constants are required, which again degrades the
performance. In our experiments, we refer to these different
versions with KBR(b) for the first, KBR(a) for the second
(both adapted from the literature), and KBR(c) for the third
version.

For filtering tasks with known linear system equations
and Gaussian noise, the Kalman filter (KF) yields the so-
lution that minimizes the squared error of the estimate to the
true state. Two widely known and applied approaches to ex-
tend the Kalman filter to non-linear systems are the extended
Kalman filter (EKF) (McElhoe 1966; Smith, Schmidt, and
McGee 1962) and the unscented Kalman filter (UKF) (Wan
and Van Der Merwe 2000; Julier and Uhlmann 1997). Both,
the EKF and the UKF, assume that the non-linear system
dynamics are known and use them to update the prediction
mean. Yet, updating the prediction covariance is not straight-
forward. In the EKF the system dynamics are linearized at
the current estimate of the state, and in the UKF the co-
variance is updated by applying the system dynamics to a
set of sample-points (sigma points). While these approxima-
tions make the computations tractable, they can significantly
reduce the quality of the state estimation, in particular for
high-dimensional systems.

Hsu, Kakade, and Zhang (2012) recently proposed an al-
gorithm for learning Hidden Markov Models (HMMs) by
exploiting the spectral properties of observable measures
to derive an observable representation of the HMM (Jaeger
2000). An RKHS embedded version thereof was presented
in (Song et al. 2010). While this method is applicable for
continuous state spaces, it still assumes a finite number of
discrete hidden states.

Other closely related algorithms to our approach are the
kernelized version of the Kalman filter by Ralaivola and
d’Alche Buc (2005) and the kernel Kalman filter based on
the conditional embedding operator (KKF-CEO) by Zhu,
Chen, and Principe (2014). The former approach formulates
the Kalman filter in a sub-space of the infinite feature space
that is defined by the kernels. Hence, this approach does
not fully leverage the kernel idea of using an infinite fea-

ture space. In contrast, the KKF-CEO approach embeds the
belief state also in an RKHS. However, they require that the
observation is a noisy version of the full state of the system,
and thus, they cannot handle partial observations. Moreover,
they also deviate from the standard derivation of the Kalman
filter, which, as our experiments show, decreases the estima-
tion accuracy. The full observability assumption is needed
in order to implement a simplified version of the innovation
update of the Kalman filter in the RKHS. The KKF does
not suffer from this restriction. It also provides update equa-
tions that are much closer to the original Kalman filter and
outperforms the KKF-CEO algorithm as shown in our ex-
periments.

2 Preliminaries

Our work is based on embeddings of probability densities
into reproducing kernel Hilbert spaces (RKHS). For a de-
tailed survey see the work of Song, Fukumizu, and Gret-
ton (2013). An RKHS Hk is a Hilbert space associated with
an inner product 〈·, ·〉 that is implicitly defined by a kernel
function k : Ω × Ω → R as 〈ϕ(x),ϕ(x′)〉 := k(x,x′).
Here, ϕ(x) is a feature mapping into a possibly infinite di-
mensional space, intrinsic to the kernel function. The ker-
nel function k satisfies the reproducing property (Aronszajn
1950), i.e., f(x) = 〈f,ϕ(x)〉 for any f ∈ Hk.

A marginal density P (X) over the random variable X
can be embedded as the expected feature mapping (or mean
map) μX := EX [ϕ(X)] (Smola et al. 2007). Using a finite
set of samples from P (X), the mean map can be estimated
as

μ̂X = 1
m

∑m
i=1 ϕ(xi) =

1
mΥᵀ

x1m, (1)

where Υx = [ϕ(x1), . . . ,ϕ(xm)] is a matrix consisting of
the feature mappings of the samples and 1m ∈ R

m is an
m dimensional all-ones vector. Alternatively, a distribution
can be embedded in a tensor product RKHS Hk × Hk as
the expected tensor product of the feature mappings, i.e.,
CXX := EXX [ϕ(X)⊗ϕ(X)] − μX ⊗ μX (Smola et al.
2007). This embedding is also called the centered covariance
operator. The finite sample estimator is given by

ĈXX = 1
m

∑m
i=1 ϕ(xi)⊗ϕ(xi)− μ̂X ⊗ μ̂X . (2)

Similarly, we can define the (uncentered) cross-covariance
operator for a joint distribution p(X,Y ) of two variables X
and Y as ĈXY = 1

m

∑m
i=1 ϕ(xi)⊗ φ(yi). Here, φ(·) is the

intrinsic feature mapping of another kernel function defined
on the Cartesian product of the domain of y.

The embedding of a conditional distribution P (Y |X) is
defined as a conditional embedding operator CY |X that satis-
fies μY |x := EY |x [φ(Y )] = CY |Xϕ(x) (Song, Fukumizu,
and Gretton 2013). Given a finite set of samples, the condi-
tional embedding operator can be estimated as

ĈY |X = Φy(Kxx + λIm)−1Υᵀ
x, (3)

with the feature mappings Φy := [φ(y1), . . . ,φ(ym)], the
Gram matrix Kxx = Υᵀ

xΥx ∈ R
m×m, the regularization

parameter λ, and the identity matrix Im ∈ R
m×m.
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The kernel Bayes’ rule (KBR) infers the mean em-
bedding μπ

X|y of the posterior distribution Q(X|Y ) =

P (Y |X)π(X)/
∑

X P (Y |X)π(X). It uses the kernel sum
and the kernel chain rule to obtain the prior-modified co-
variance operators Cπ

Y Y and Cπ
Y X . For a more detailed dis-

cussion of these operators, we refer to Song, Fukumizu,
and Gretton (2013). There exist, to the authors’ knowl-
edge, three different versions of the KBR. In the first ver-
sion of the KBR, Fukumizu, Song, and Gretton (2013) used
the tensor product conditional operator in the kernel chain
rule, i.e., μ̂π

X|y = ΥxDGyy

(
(DGyy)

2 + κIm

)−1
Dgy ,

with the diagonal D := diag((Kxx + λIm)−1Kxxα),
the Gram matrix Gyy = Φᵀ

yΦy , the kernel vector
gy and κ as regularization parameter. Song, Fukumizu,
and Gretton (2013) additionally derived the KBR, us-
ing an alternative formulation of the kernel chain rule,
as μ̂π

X|y = ΥxΛ
ᵀ ((DGyy)

2 + κIm

)−1
GyyDgy , with

Λ := (Kxx + λIm)−1Kxxdiag(α). As the matrix DGyy

is typically not invertible, both of these versions of the
KBR use a form of the Tikhonov regularization in which
the matrix in the inverse is squared. Boots, Gretton, and
Gordon (2013) use a third form of the KBR which is de-
rived analogously to the first version but does not use the
squared form of the Tikhonov regularization, i.e., μ̂π

X|y =

Υx (DGyy + κIm)
−1

Dgy . Since the product DGyy is
often not positive definite, a strong regularization parame-
ter is needed to make the matrix invertible.

All three versions of the kernel Bayes’ rule presented
above have drawbacks. First, due to the approximation of
the prior modified covariance operators, these operators are
not guaranteed to be positive definite and, thus, their inver-
sion requires either a harsh form of the Tikhonov regular-
ization or a strong regularization factor and are often still
numerically instable. Furthermore, the inverse is dependent
on the embedding of the prior distribution and, hence, needs
to be recomputed for every Bayesian update of the mean
map. This recomputation significantly increases the com-
putational costs, for example, if we want to apply hyper-
parameter optimization techniques.

3 The Kernel Kalman Rule
In this section, we will present a new approach to Bayesian
reasoning in Hilbert spaces inspired by recursive least
squares estimation (Gauss 1823; Sorenson 1970; Simon
2006). That is, we want to infer the embedding of a dis-
tribution μ+

X,t = EXt|y1:t
[ϕ(X)] a-posteriori to a new

measurement yt, given the embedding of the distribution
μ−

X,t = EXt|y1:t−1
[ϕ(X)] a-priori to the measurement. We

assume a conditional embedding operator CY |X of the distri-
bution P (Y |X) as given. Usually, this conditional operator
can be estimated from a training set of state-measurement-
pairs {(xi,yi)}mi=1.

3.1 Recursive Least Squares for Estimating the
Posterior Embedding

The derivations for the kernel Kalman rule (KKR) are in-
spired by the ansatz from recursive least squares. Hence, the

objective of the KKR is to find the mean embedding μX that
minimizes the squared error
∑

t

(
φ(yt)− CY |XμX

)ᵀ R−1
(
φ(yt)− CY |XμX

)
, (4)

with the metric R, in an iterative fashion. In each iteration,
we want to update the prior mean map μ−

X,t based on the
measurement yt to obtain the posterior mean map μ+

X,t.
From the recursive least squares solution, we know that

the update rule for obtaining the posterior mean map μ+
X,t is

μ+
X,t = μ−

X,t +Qt(φ(yt)− CY |Xμ−
X,t), (5)

where Qt is the Hilbert space Kalman gain operator that is
applied to the correction term δt = φ(yt)− CY |Xμ−

X,t.
We denote the error of the a-posteriori estimator to the

embedding of the true state as ε+t = ϕ(xt)−μ+
X,t, and anal-

ogously, the error of the a-priori estimator as ε−t . It is easy
to show that the kernel Kalman update, given an unbiased a-
priori estimator (E[ε−t ] = 0), yields an unbiased a-posteriori
estimator (E[ε+t ] = 0), independent of the choice of Qt. For
an elaborate discussion of the unbiasedness, we refer to the
supplement. Yet, we want to obtain the kernel Kalman gain
operator Qt that minimizes the squared loss which is equiv-
alent to minimizing the variance of the estimator. The objec-
tive of minimizing the variance can be written as minimizing
the trace of the a-posteriori covariance operator C+

XX,t of the
state xt at time t , i.e.,

minQt
E
[(
ε+t

)ᵀ
ε+t

]
= minQt

Tr E
[
ε+t

(
ε+t

)ᵀ]
(6)

= minQt
Tr C+

XX,t.

Since the measurement residual εt is assumed to be inde-
pendent from the estimation error, and by substituting the
posterior error with ε+t = (I − QtCY |X)ε−t − Qtεt, the
posterior covariance operator can be reformulated as

C+
XX,t =

(I − QtCY |X
) C−

XX,t

(I − QtCY |X
)ᵀ

+QtRQᵀ
t , (7)

where R is the covariance of the measurement residual. Tak-
ing the derivative of the trace of the covariance operator and
setting it to zero leads to the following solution for the kernel
Kalman gain operator

Qt = C−
XX,tCᵀ

Y |X(CY |XC−
XX,tCᵀ

Y |X +R)−1. (8)

From Eqs. 7 and 8, we can also see that it is possible to
recursively estimate the covariance embedding operator in-
dependently of the mean map or of the observations. This
property will allow us later to precompute the covariance
embedding operator as well as the kernel Kalman gain oper-
ator to further improve the computational complexity of our
algorithm.

3.2 Empirical Kernel Kalman Rule

In practice, the conditional observation operator and the ker-
nel Kalman gain operator are estimated from a finite set of
samples. Applying the kernel trick (i.e., matrix identities)
renders the kernel Kalman rule computationally tractable.
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In general, an estimator of the prior mean embedding is
given as μ̂−

X,t = Υxm
−
t , with weight vector m−

t , and an
estimator of the covariance operator is given as Ĉ−

XX,t =

ΥxS
−
t Υ

ᵀ
x, with positive definite weight matrix S−

t .
We can rewrite the kernel Kalman gain operator by sub-

stituting with the estimators of the covariance operator and
of the conditional operator (c.f. Eq. 3) and obtain

Qt = ΥxS
−
t O

ᵀΦy
ᵀ(ΦyOS−

t O
ᵀΦy

ᵀ + κI)−1, (9)

with O = (Kxx + λOIm)−1Kxx and with the simpli-
fication R = κI. However, Qt still contains the inver-
sion of an infinite dimensional matrix. We can solve this
problem by applying the matrix identity A(BA + I)−1 =
(AB + I)−1A and arrive at

Qt = ΥxS
−
t O

ᵀ(GyyOS−
t O

ᵀ + κIm)−1Φy
ᵀ

= ΥxQtΦy
ᵀ, (10)

with Qt = S−
t O

ᵀ(GyyOS−
t O

ᵀ + κIm)−1 and Gyy =
Φᵀ

yΦy . We can now use this reformulation of the kernel
Kalman gain operator and apply it to the update equations
for the estimator of the mean embedding (Eq. 5) and the es-
timator of the covariance operator (Eq. 7). It is now straight
forward to obtain the update equations for the weight vector
mt and the weight matrix St as

m+
t = m−

t +Qt(g:yt
−GyyOm−

t ), (11)

S+
t = S−

t −QtGyyOS−
t , (12)

where g:yt
= Φᵀ

yφ(yt) is the embedding of the measure-
ment at time t. The algorithm requires the inversion of a
m × m matrix in every iteration for computing the kernel
Kalman gain matrix Qt. Hence, similar to the kernel Bayes’
rule, the computational complexity of a straightforward im-
plementation would scale cubically with the number of data
points m. However, in contrast to the KBR, the inverse in
Qt is only dependent on time and not on the estimate of the
mean map. The kernel Kalman gain matrix can, thus, be pre-
computed as it is identical for multiple parallel runs of the
algorithm. While many applications do not require parallel
state estimations, it is a huge advantage for hyper-parameter
optimization as we can evaluate multiple trajectories from
a validation set simultaneously. As for most kernel-based
methods, hyper-parameter optimization is crucial for scaling
the approach to complex tasks. So far, the hyper-parameters
of the kernels for the KBF have typically been set by heuris-
tics as optimization would be too expensive.

3.3 The Subspace Kernel Kalman Rule

The computational complexity of non-parametric inference
suffers from a polynomial growth with the number of sam-
ples used for estimating the embeddings. To overcome this
drawback, several approaches exist that aim to find a good
trade-off between a compact representation and leverag-
ing from a large data set (Snelson and Ghahramani 2006;
Csat and Opper 2002; Smola and Bartlett 2001; Gebhardt,
Kupcsik, and Neumann 2015). In the following paragraphs,
we will explain how the concept of subspace conditional
operators (Gebhardt, Kupcsik, and Neumann 2015) can be

applied to the kernel Kalman rule in order to maintain the
update rules also for large training sets computationally
tractable without ignoring valuable information from the
provided training samples.

The subspace conditional operator uses subspace pro-
jections as representations of the mean map nt =
Υᵀ

x̂μt = Υᵀ
x̂Υxmt and the covariance operator P t =

Υᵀ
x̂CXX,tΥx̂ = Υᵀ

x̂ΥxStΥ
ᵀ
xΥx̂, where Υx̂ is the feature

matrix of a sparse reference set. The subspace conditional
operator of the distribution P (Y |X) is then given as

Cs
Y |X = ΦyKxx̂(K x̂xKxx̂ + λx̂In)

−1Υx̂
ᵀ, (13)

where K x̂x = Υᵀ
x̂Υx ∈ R

n×m is the kernel matrix be-
tween the sparse subset and the full training data. Using the
subspace conditional operator and the subspace representa-
tion of the covariance embedding in the kernel Kalman gain
operator, we arrive at the following finite representation of
the subspace kernel Kalman gain operator

Qs
t = P−

t L
s
(
K x̂xGyyKxx̂L

sP−
t L

s + κIn

)−1
K x̂x,

with Ls = (K x̂xKxx̂ + λIn)
−1. For a detailed derivation

of Qs
t, we refer to the supplement. By analogously applying

the subspace representations to the update equations for the
mean map and the covariance operator, we obtain

n+
t = n−

t +Qs
t

(
g(yt)−GyyKxx̂L

sn−
t

)
, (14)

P+
t = P−

t −Qs
tGyyKxx̂L

sP−
t . (15)

3.4 Recovering the State-Space Distribution

Recovering a distribution in the state space that is a valid
preimage of a given mean map is still a topic of ongoing re-
search. There are several approaches to this problem, such as
fitting a Gaussian mixture model (McCalman, O ’Callaghan,
and Ramos 2013), or sampling from the embedded distri-
bution by optimization (Chen, Welling, and Smola 2010).
In the experiments conducted for this paper, we approached
the preimage problem by matching a Gaussian distribution,
which is a reasonable choice if the recovered distribution is
unimodal. Since the belief state of the kernel Kalman rule is
a mean map as well as a covariance operator, obtaining the
mean and covariance of a Gaussian approximation is done
by simple matrix manipulations. For more details we refer
to the supplement. However, also any other approach from
the literature can be used with the KKR.

3.5 The Kernel Kalman Filter

Similar to the kernel Bayes’ filter (Fukumizu, Song, and
Gretton 2013; Song, Fukumizu, and Gretton 2013), we can
combine the kernel Kalman rule with the kernel sum rule
to formulate the kernel Kalman filter. We assume a data set
{(x̄1, x1, y1), . . . , (x̄m, xm, ym)} consisting of triples with
preceding state x̄i, state xi, and measurement yi as given.
Based on this data set we can define the feature matrices
Υx = [ϕ(x1), . . . ,ϕ(xm)], Υx̄ = [ϕ(x̄1), . . . ,ϕ(x̄m)],
and Φy = [φ(y1), . . . ,φ(ym)]. We represent the belief state
as a mean map μ̂X,t = Υxmt and a covariance opera-
tor ĈXX,t = ΥxStΥ

ᵀ
x. We can learn the estimators of the
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conditional embeddings for the distributions P (X|X̄) and
P (Y |X) as

CX|X̄ = Υx(K x̄x̄ + λT I)
−1Υᵀ

x̄ and (16)

CY |X = Φy(Kxx + λOI)−1Υᵀ
x, (17)

respectively. We can propagate the posterior belief state at
time t to the prior belief state at time t+ 1 time by applying
the kernel sum rule to the mean embedding and the covari-
ance embedding and obtain the following update rules

m−
t+1 = Tm+

t , S−
t+1 = TS+

t T
ᵀ + V , (18)

with T = (K x̄x̄ + λT I)
−1K x̄x. Subsequently, we can use

the kernel Kalman rule to obtain a posterior belief from the
prior embedding conditioned on a new measurement follow-
ing the steps described in Section 3.2.

4 Experimental Results

In this section, we give a concise description of the experi-
ments we conducted to evaluate the performance of the ker-
nel Kalman rule. In a first experiment, we compare only the
kernel Kalman rule to the kernel Bayes’ rule by applying
them to a simple estimation task. In the further experiments,
we compare the kernel Kalman filter to other filtering meth-
ods. For these evaluations we use time series from two simu-
lated environments, a simple pendulum and a quad-link, and
time series from a human motion tracking data set (Wojtusch
and von Stryk 2015). For all kernel based methods, we use
the squared exponential kernel. We choose the kernel band-
widths according to the median trick (Jaakkola, Diekhans,
and Haussler 1999) and scale the found median distances
with a single parameter that is optimized.

4.1 Estimation of an Expectation of a Gaussian
Distribution

In a first simple experiment, we compare the kernel Kalman
rule to the kernel Bayes’ rule. We train the models with
data sets consisting of hidden states, sampled uniformly
from the interval [−2.5, 2.5], and the corresponding mea-
surements, where we add Gaussian noise with standard de-
viation σ = 0.3. The training set consists of 100 samples for
the KKR and KBR and 500 samples for the subspace KKR,
where we still use 100 samples as reference set. We estimate
the hidden state by a conditional operator that maps from the
kernel space back to the original state. Figure 1 shows the
mean squared error (MSE) of the estimated hidden state to

2 4 6 8 10
0.00

0.05

0.10

# of updates

M
SE

KKR
subKKR
KBR(a)
KBR(c)
ML

Figure 1: Estimating the expectation of a Gaussian distribu-
tion with KKR and KBR. The reference is the expected error
of a maximum likelihood estimator.

KKR subKKR KBR(a) KBR(b) KBR(c)
0.0813 s 0.1074 s 1.2149 s 0.8643 s 0.5655 s

Table 1: Mean time consumed for performing 10 updates on
100 estimates (in parallel) over 20 runs.

the true hidden state for 10 iterative updates with new mea-
surements. The graphs depict mean and 2σ intervals over
20 evaluations. We conducted this experiment with all three
versions of the KBR, however, version (b) was numerically
instable which led to MSEs that did not fit into the plot any-
more. We can see that the estimates from the KKR and the
subKKR are at the level of the ML estimator, while the KBR
has a worse performance which is not improving with the
number of updates. In addition, we limit the values in the D
matrix for the KBRs to only positive values in order to get
reasonable results.

In Table 1, we compare the computational efficiency of
the KKR to the KBR. The times shown are the mean times
for 10 updates of 100 estimates. While the single updates
could be performed in parallel with the KKR and the sub-
KKR, they have to be performed for each estimate indepen-
dently for the KBR. It can be clearly seen that the KKR out-
performs the KBR in the order of a magnitude. Furthermore,
the subKKR maintains computational efficiency, while us-
ing 5 times more data points for learning the models.

4.2 Pendulum

In this experiment, we use a simulated pendulum as system
dynamics. It is uniformly initialized in the range [0.1π, 0.4π]
with a velocity sampled from the range [−0.5π, 0.5π]. The
observations of the filters were the joint positions with addi-
tive Gaussian noise sampled from N (0, 0.01). We compare
the KKF, the subspace KKF (subKKF) and the KKF learned
with the full dataset (fullKKF) to version (a) of the kernel
Bayes filter (Song, Fukumizu, and Gretton 2013), the kernel
Kalman filter with covariance embedding operator (KKF-
CEO) (Zhu, Chen, and Principe 2014), as well as to standard
filtering approaches such as the EKF (Julier and Uhlmann
1997) and the UKF (Wan and Van Der Merwe 2000). Both,
the EKF and the UKF require a model of the system dy-
namics. KBF(b) was numerically too instable and KBF(c)
already yielded worse results in the previous experiment. To
learn the models, we simulated episodes with a length of
30 steps (3s). The results are shown in Figure 2. The KKF
and subKKF show clearly better results than all other non-
parametric filtering methods and reach a performance level
close to the EKF and UKF.

4.3 Quad-Link

In this experiment, we used a simulated 4-link pendulum
where we observe the 2-D end-effector positions. The state
of the pendulum consists of the four joint angles and joint
velocities. We evaluate the prediction performance of the
subKKF in comparison to the KKF-CEO, the EKF and the
UKF. All other non-parametric filtering methods could not
achieve a good performance or broke down due to the high
computation times. As the subKKF outperformed the KKF
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Figure 2: Comparison of KKF to KBF(a), KKF-CEO, EKF
and UKF. All kernel methods (except fullKKF) use kernel
matrices of 100 samples. The subKKF method uses a subset
of 100 samples and the whole dataset to learn the conditional
operators. Depicted is the median MSE to the ground-truth
of 20 trials with the [0.25 0.75] quantiles.

(a) anim. QL (b) MCF (c) UKF (d) subKKF

Figure 3: Example trajectory of the quad-link end-effector.
The filter outputs in black, where the ellipses enclose 90% of
the probability mass. All filters were updated with the first
five measurements (yellow marks) and predicted the follow-
ing 30 steps. Figure (a) is an animation of the trajectory.

in the previous experiments and is also computationally
much cheaper, we skip the comparison to the standard KKF
in this and the subsequent experiments.

In a first qualitative evaluation, we compare the long-term
prediction performance of the subKKF in comparison to the
UKF, the EKF and the Monte-Carlo filter (MCF) as a base-
line (see Appendix). This evaluation can be seen in Figure 3.
The UKF is not able to predict the movements of the quad-
link end-effector due to the high non-linearity, while the sub-
KKF is able to predict the whole trajectory.

We also compared the 1, 2 and 3-step prediction perfor-
mance of the subKKF to the KKF-CEO, EKF and UKF
(Fig. 4). The KKF-CEO provides poor results already for
the filtering task. The EKF performs equally bad, since the
observation model is highly non-linear. The UKF already
yields a much better performance as it does not suffer from
the linearization of the system dynamics. The subKKF out-
performed the UKF.
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Figure 4: 1, 2 and 3 step prediction performances in mean
euclidean distances (MED) to the true end-effector positions
of the quad-link.

Figure 5: Example sequence of 4 postures. The markers of
the upper body (violet circles) were observed and the posi-
tions of all markers (yellow crosses) and of all joints (yellow
skeleton) were estimated. The black skeleton is the ground-
truth from the dataset.
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4.4 Human Motion Dataset

We used walking and running motions captured from one
subject from the HuMoD dataset (Wojtusch and von Stryk
2015). The dataset comprised the x, y and z locations of the
36 markers attached to the subject’s body as well as the ve-
locity of the subject in x-direction, computed from the mark-
ers at the left and right anterior-superior iliac spine. We used
walking and running motions at different constant speeds for
training one model. For the evaluation of this model, we
used a test data-set in which the subject accelerates from
0m/s to 4m/s.

In a first experiment, we learned the subKKF with a ker-
nel size of 800 samples, where we used data windows of size
3 with the 3D positions of all 36 markers as state representa-
tion and the current 3D positions of all markers as observa-
tions. In this task, we want to predict the subject’s velocity.
To do so, we learned a conditional operator from the state
representation to the observed velocities in the training set.
Subsequently, we applied our model to the transition motion
dataset to reconstruct the subject’s velocity. The results of
this experiment are depicted in Figure 6.

In a second experiment, we learned the subKKF with a
kernel size of 2000 samples and used data windows of size
4 with all 36 marker positions as state representations. How-
ever, this time we observed only the markers on the upper
body and used all marker positions as well as the joint po-
sitions as prediction targets. Figure 5 shows a sequence of 4
postures, where the blue circles denote the observation, the
red crosses the reconstructed positions of the markers, the
red skeleton is drawn with the reconstructed positions of the
joints and the black skeleton is drawn with the joint positions
in the dataset.

5 Conclusions

In this paper, we proposed the kernel Kalman rule (KKR)
for Bayesian inference with nonparametric representations
of probability distributions. We showed that the KKR, as
an alternative to the kernel Bayes’ rule (KBR), is compu-
tationally more efficient, numerically more stable and fol-
lows from a clear optimization objective. We combined the
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KKR as Bayesian update with the kernel sum rule to for-
mulate the kernel Kalman filter (KKF) that can be applied
to nonlinear filtering tasks. In difference to existing kernel
Kalman filter formulations, the KKF provides a more gen-
eral formulation that is much closer to the original Kalman
filter equations and can also be applied to partially observ-
able systems. Future work will concentrate on the use of
hyper-parameter optimization with more complex kernels
and learning the transition dynamics in the RKHS with an
expectation-maximization algorithm in case of missing in-
formation about the latent state.
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Appendix

We use a Monte Carlo approach to compare the KKF to a
baseline in the quadlink prediction task (c.f. Sec. 4.3). We
sample 105 episodes from the known system equations and
use the knowledge about the observation noise to compute
the likelihood of the observations w.r.t. each of the sampled
episodes. We can then obtain a posterior of each sampled
episode given the observations by normalizing the likeli-
hood. We weigh each of the sampled episodes with its pos-
terior probability and obtain finally the Monte Carlo filter
output as the sum of these weighted episodes.
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