Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

I See What You See: Inferring Sensor and Policy
Models of Human Real-World Motor Behavior

Felix Schmitt, Hans-Joachim Bieg
and Michael Herman
Robert Bosch GmbH
70465 Stuttgart, Germany
<first name>.<last name > @de.bosch.com

Abstract

Human motor behavior is naturally guided by sensing the en-
vironment. To predict such sensori-motor behavior, it is nec-
essary to model what is sensed and how actions are chosen
based on the obtained sensory measurements. Although sev-
eral models of human sensing haven been proposed, rarely
data of the assumed sensory measurements is available. This
makes statistical estimation of sensor models problematic. To
overcome this issue, we propose an abstract structural esti-
mation approach building on the ideas of Herman et al.’s Si-
multaneous Estimation of Rewards and Dynamics (SERD).
Assuming optimal fusion of sensory information and rational
choice of actions the proposed method allows to infer sensor
models even in absence of data of the sensory measurements.
To the best of our knowledge, this work presents the first gen-
eral approach for joint inference of sensor and policy models.
Furthermore, we consider its concrete implementation in the
important class of sensor scheduling linear quadratic Gaus-
sian problems. Finally, the effectiveness of the approach is
demonstrated for prediction of the behavior of automobile
drivers. Specifically, we model the glance and steering be-
havior of driving in the presence of visually demanding sec-
ondary tasks. The results show, that prediction benefits from
the inference of sensor models. This is the case, especially,
if also information is considered, that is contained in gaze
switching behavior.

Introduction

Prediction models of human motor behavior are important
for several practical applications. For example, an automo-
bile could warn a novice driver of driving errors based on
a model of driving strategies of experienced drivers (Shi-
mosaka, Kaneko, and Nishi 2014). As human behavior can
be very complex, prediction models are often inferred from
data. For prediction in a broad range of situations, as for ex-
ample encountered in real traffic, models are necessary that
generalize well to unseen instances.

Classically, mappings from situational states to likely ac-
tions, stochastic policies, are inferred. However, there is
evidence, that human motor behavior can also be charac-
terized by a task consisting of situational constraints and
an objective (Baron and Kleinman 1969; Todorov and Jor-
dan 2002; Rothkopf, Ballard, and Hayhoe 2007). Objectives
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often hold globally and therefore allow significantly bet-
ter generalization than directly learned policies. Given an
objective function and an explicit model of the situational
constraints, the specific stochastic policy can be obtained
by probabilistic Optimal Control (OC). Conversely, objec-
tives can be inferred from data using probabilistic Inverse
Optimal Control (IOC) (Ramachandran and Amir 2007;
Neu and Szepesviari 2007; Ziebart, Bagnell, and Dey 2010;
Rothkopf and Dimitrakakis 2011).

Besides task objective, sensory uncertainty strongly shapes
human motor behavior. This is because the sensory measure-
ments made by humans are noisy, ambiguous and limited in
scope. For example, visual sensing is restricted to stimuli in
the field of view, where disparate objects can look the same
from a single perspective. According to the theory of per-
ception by Bayesian inference (Knill and Richards 1996),
humans fuse those measurements with internal models of
the sensors and the evolution of the situation for decision on
motor actions.

In this work we assume that the human internal model of
the situational dynamics equals the actual dynamics that are
known at inference time. Instead we focus on the sensor
models and their estimation. Specific sensor models have
been obtained from signal detection experiments, i.e. arti-
ficial tasks, that are e.g. reviewed in (Nash, Cole, and Bigler
2016). For these tasks several inference techniques are avail-
able (Acerbi, Ma, and Vijayakumar 2014). However, the va-
lidity of the inferred models for natural motor tasks is lim-
ited: Tasks like vehicle driving involve several sensors, re-
quire closed-loop choice of continuous valued actions and
often show complex situational dynamics. Hence, methods
for inference of sensor models from real-world behavioral
data are needed, as noted in (Nash, Cole, and Bigler 2016).

Related Work

Data of human sensory measurements is rarely available.
Hence, inference approaches commonly exploit knowl-
edge of the dynamics and objectives of the specific motor
task. Such tasks are often modeled as Linear Quadratical
Gaussian (LQG) problems, rendering them computationally
tractable (Todorov and Jordan 2002). Given objective or pol-
icy in an LQG setting, internal process models can be es-
timated by maximization of the expected likelihood of the
observed actions (Golub, Chase, and Byron 2013). How-



ever, in natural tasks normally neither objective nor policy
are known beforehand. Hence, (Phatak et al. 1976) already
addressed identification of both sensor model and optimal
policy. In that work, an estimation approach was proposed
for optimal behavior in the special case of time-invariant
infinite-horizon LQGs.

Similar as (ibid.) we address joint inference of policy and
sensor model. However, we relax the assumption of opti-
mal behavior to rational behavior according to the Maxi-
mum Causal Entropy (MCE) framework (Ziebart, Bagnell,
and Dey 2010). Furthermore, a new abstract approach for
inference of sensor models in arbitrary Partial Observable
Markov Decision Processes (POMDP)s by application of
the ideas of Simultaneous Estimation of Rewards and Dy-
namics (SERD) (Herman et al. 2016) is presented. In ad-
dition to that, we derive a concrete implementation of the
concept in the problem class of Sensor Scheduling LQGs
(SLQG)s. In contrast to ordinary LQGs (Phatak et al. 1976;
Golub, Chase, and Byron 2013; Chen and Ziebart 2015) that
are characterized by a single static sensor model, SLQGs al-
low control of the sensor model for active information gath-
ering. Thereby, we both extend the implementation of SERD
for small discrete and fully-observable problems (Herman et
al. 2016) to SLQGs and previous work on IOC in SLQGs
(Schmitt et al. 2016a) to inference of sensor models. Finally,
we demonstrate the effectiveness of the proposed method on
data of a new driving experiment conducted in real traffic.

Background

In the following section, we briefly review the mathemati-
cal background of POMDPs as well as previous results on
MCE-IOC and SERD which this work builds on.

POMDPs

The mathematical basis of OC is provided by Markov Deci-
sion Processes (MDP). Here, an agent acts in a world defined
by states x; € X. Applying an action u; € U, the world
changes according to a stochastic process P(x¢11|us, T¢).
The objective of the agent in a finite-horizon MDP is find-
ing a policy 7 that maximizes expected cumulated reward
E[Zf:o r(ut,xt)’ﬁ,P,po] over a horizon T, given a re-
ward model r(uy, ;) and an initial state distribution po ().
Partial observable Markov decision processes further allow
for agents that have no direct access to the states x; but
instead obtain sensory measurements z; € Z according
to a sensor model p*(z;|x;). Using the Bayes filter every
POMDP can be transferred into an equivalent MDP in the
belief-states b(z;) using the process model

Pb(b(l't)|2t, Ut—1, b(il?t_l))

X E[pz(2t|$t)73(17t\ut—1, xt—l)'“t—la b(17t—1)]

and the reward model 7°(uz, b(x;)) = E[r(ug, z4)|b(z¢)].
Hence, POMDPs can be understood as a natural integration
of perception by Bayesian inference into optimal control.

MCE-I0C

Given a set of behavioral data {zy,us}?, t=0,1,...,T,
1 =1,2,...,n, MCE-IOC infers a policy that could have

ey
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generated the data. Here, the policy model is recursively de-
fined by the so-called soft Bellman equations:

Qf (ur,xr) = 0" p(ur, xr) (2)
f/ta(:zt) = log/exp(@f(ut,xt))dut 3)

QY (ug, ) = 07 p(ug, z4) + E[‘Zi1($t+l)llp] 4)
7] (ue|we) = exp(Qf (ug, x1) — VY (24)) ®)

with the soft cost-to-go function Q?, soft value function V¢,
reward parameters 6 and reward features o (u;, z;) (Ziebart,
Bagnell, and Dey 2010). An important property of the MCE
policy 7 is the relationship

T
log 7{ (ut|zs) o B[ Z 0" p(uy, x)

t'=t

7, P], (6
i.e. the higher its expected cumulated value of 67 (uy, ;)
under 7Y the higher the likelihood of 7 (us|x;), what lever-
ages the interpretation as a stochastic generalization of the
OC policy for the reward 6 " (uy, x;) (ibid.).

The reward parameters 6 can be obtained by minimization
of the Lagrangian dual of the MCE problem

E[V{ (zo ]po]—fZfo (o u}) @)

i=1 t=0
(ibid.) using its gradient VD(#) which is given by

D(0) =

{VGQ()(UOJ?O ‘Wo,po} - ZZ@ {ze,u}’) 8
i=1 t=0
_E{ZS@ Ty, Up) 7? , P, po} - *ZZ@ {xtvut}
=1 t=0

The approach is characterized by statistical robustness
(ibid.) and can also be extended to LQGs by application to
the corresponding belief-MDPs (Chen and Ziebart 2015).

SERD

Consider a process model P* differentiable w.r.t. parame-
ters A\. The main idea of simultaneous estimation of rewards
and dynamics (Herman et al. 2016) is that observed behavior
according to an MCE policy contains information regarding
. This is because all three terms V*, Q%> 7% are also
differentiable functions of . Spemﬁcally, (dropplng the de-
pendence on z, u) the gradient V ,\Qt is given by

[VAQtH 7}?+/\177)/\} +/ [VAP/\] t+1 Tdzega (9

(ibid). Hence, A can also be estimated by minimization of
the extended dual function D(6, \) using the gradient

VAD(0, ) = E[V505° |76, o] (10)
T
—E[ > Va0 Elp(a, u)ba(e)]
t=0
T—-1 ~
+3 / [VAPM V2N day ‘fr“,w,po}.
t=0



Inferring Sensor Models

Using the idea of SERD allows to infer an unknown sensor
model p3 of any belief process model 772 without know-
ing the sensory measurements z:: First, the unbiased esti-
mator " ({z;,u;}?) can be used instead of the unknown
O E[o({xs, us 1) |ba ({24 }?)] for Eq. (7), assuming that the
true states {z;}* are known at inference time. Second, the
computation of D(, \) and Vg \D(6, \) requires only inte-
gration over possible z; under the current iterate p5 and not
the actual z}. Essentially, the sensor model is estimated from
its influence on the MCE policy and the corresponding fea-
ture expectation.

For practical application computationally tractable Eq. (2)-
(10) are required. However, even computation of the soft
Bellman equations Eq. (2) is often infeasible for POMDPs,
similar to their classic counterparts.

SLQG Implementation

In the remaining part of this work we will address the
POMDP class of SLQGs. Building on the work of (Schmitt
et al. 2016a), it is shown that most parts of Eq. (2)-(10) al-
low exact and tractable computation, while there exists an
approximation technique and tractable special cases for the
remaining ones.

Definition of Class

Sensor scheduling LQGs are characterized by primary states
x} and actions u} subject to linear-affine dynamics

(1)

with i.i.d. Gaussian disturbances N (€;]0,3). The reward

function on z}, u} is a quadratic form,

$§+1 = Atxi’ + Btui’ + a + €

Gggo(uf, ab) = 2P TePaP + uP Tebul, (12)
with negative semi-definite matrix ©] and negative defi-
nite ©5. This is combined with a set of linear Gaussian
sensor models p3 (z¢|z}; z7) N (2| H (2F)2}, 35 (27))
parametrized by a sensor state z; € X*. The individual
sensor models can be switched by means of actions uj €
U, x7 = xf1(uf, xF) subject to a reward 0. p(uf, z7).
Therefore, SLQGs allow to model problems of active infor-
mation gathering. Their application for modeling human be-
havior was first proposed in (Baron and Kleinman 1969) and
has e.g. been used to predict gaze switching and steering be-
havior of automobile drivers (Schmitt et al. 2016b).

For the sake of readability, we assume that unknown param-
eters \ are present in the sensor noise covariances 35 only.
The matrices H(x7) can be estimated in similar fashion.
SLQGs can be transformed into belief-MDPs in the follow-
ing way: First, we use x; to denote the sequence of previ-
ous sensor states (z§,x%,...,xf), given an initial state x§.
Thereafter the reward of the belief b;, E[OPT op(@h, ub)|by] is

given by pf TO14) +tr(0: 38 (x7)) +uf TOouf, where the
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variables /iy, 32X (x7) result from the Kalman filter,

SR (xF41) :f}lf\(fo) — 2 (xf41) (13)

Pipr ~N (o, B0 0)) (14)

/‘?—5-1 =Ayl + Buf + ay (15)

(x5 41) ::K/\(Xinrl)H($§+1)2§(X§+1) (16)
K\ Xf—s—l :il,)\(Xf+1)H($§+1)TSA(X§+1) + (17)

::H(x§+l)2l§\(X§+1)H($f+1)—r + XX (7741)
=AR (xP) A + 2. (18)

Here, tr(S) denotes the sum of diagonal elements and S™
the Moore-Penrose pseudo-inverse of matrix S.

Policies

Applying the soft Bellman equations, results in functions
VI = Tl TE ol + 7). A9)
QF™ = [ uf) T [ uf) + [ o) o + 0 (20)

+ 07 o(uf, 7f) + 74 (x4 (uf, 7))

+ (0135 () + Q4 DA (x74 (4, %7))),
where the terms Qf, Q}, @2, w?, &3, w} can be obtained in
closed-form and independently of states z7 (Schmitt et al.
2016a). Here, the expression [y; =] denotes the vertical con-

catenation of vectors x, y. Hence, the resulting policy can be
split into two parts:

o (uf, i 1af, %) = N (| Fopdh + foy S (uF 7).

Note, that the terms in f/te")‘, Qf’)‘ which depend on x} can
become problematic as the size of its state space is |X'?|*.
Hence, computation of the integral in Eq. (3) is prohibitively
expensive even for moderate time horizons and small num-
bers of sensor models.
There are two options to address this issue. First, there exist
special cases were the state space of x; remains tractable.
This is obviously the case if |[X'#| = 1, i.e. in ordinary LQGs
(Chen and Ziebart 2015). Furthermore, also regularly en-
forcing switches to a model of perfect sensing of %, as in
(Schmitt et al. 2016a), can reduce the computational bur-
den. This is because shorter sequences (z},,x} ,...,7})
from the last ¢’ perfect sensing have to be considered. An al-
ternative follows from considering the maximum likelihood
sequence X7.. Applying property Eq. (6) of 7 it holds
T
X5 = arg max Z 0] p(uf, 7)) +r(0128(x7)) (1)
T =0
T—1
+ Z (2441 24 (x711)) -
t=0

Such optimal sensor scheduling problems can be solved by
exploiting properties of the Kalman covariance update to
prune the search tree (Vitus et al. 2012). Therefore, the fea-
ture counts of X% may serve as a tractable approximation
of the expectations required for V »D. A similar maximum
likelihood approximation for V4 5D has successfully been
used by (Kuderer, Gulati, and Burgard 2015) for inference
of rewards of driver trajectory planning.



Reward Gradients
Given the policy 7*, the reward gradients are obtained by

T
Vo,Q0" = E| Y i T+ S86) |7 Pp]| 22)
t=0
- T
Ve, Q0™ = B[ Y ubul T|7" P, po] (23)
t=0
} T
Vo.Q0 = E[ Y (i, o) [7 PP o). 24)

&+
I
)

Here the expectations can either be approximated using the
maximum likelihood sequence X7 or exactly be computed
by recursion (Schmitt et al. 2016a) in the special cases men-
tioned before.

Sensor Model Gradients
For computation of V5D the gradients V (:2? *are required.
Therefore, we consider the terms of Qf”\ that depend on A:

7A't>\+1(xf+1> + tr(@lzi (xi) + Q%JAZK(X?JFI)). (25)

When forming the gradient V )\Qf’)‘, the gradient of
the first part, 7% ,(x7,1), is the sum of the gradients

\Y% AQ?«Z\I,...,T succeeding in time. The gradient of the
second part tr(©,35 (x7) + Qf, 34 (x7,,)) is given by
davec(25 (x7)) Tvec(01) + davee(Sh(x7, 1)) Tvec(Qh ),
where the terms dyvec(X}), \vec(Z4) are obtained from
derivation of the Kalman filter update Eq.s (13)-(18):

davec(3R) =(A; @ Ay)dxvec(ER) + vec(ZP) (26)
davec(Sy) =(H ® H)dyvec(3h) + dyvec(X3)  (27)
Ovec(Sy) = — (S5 ® ST )0xvec(S)) (28)

(
+ (I = 8xS3) ® (85 5Y))0xvec(Sx)
+ ((SF5) @ (I — S§Sx))0xvec(Sy)

davec(Ky) =(S5 H @ I)dyvec(3F) (29)
+ (I @ 3R H")dyvec(Sy)

davec(2h) =S8 H' @ I)dyvec(K)) (30)
+ (I ® H"K, )dyvec(SY)

davec(2R) =dyvec(3R) — dyvec(Xh). (31)

Here, I denotes the identity matrix, vec(X) the vectoriza-
tion of a matrix by vertical concatenation of columns and
X ®Y the Kronecker product of matrices X, Y. The deriva-
tive of the Moore-Penrose pseudo-inverse X T is discussed
in (Stewart 1977).

Numerical Evaluation in Application

Our research effort was motivated by the problem of mod-
eling vehicle control and glance behavior of experienced
drivers when engaging in additional visually demanding ac-
tivities. The importance of this motor task arises from the
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fact that inappropriate gaze behavior while driving, i.e. vi-
sual distraction, caused a significant proportion of U.S. road
fatalities in 2014, especially among novice drivers (NHTSA
2016). Specifically, we apply the proposed approach to infer
models for sensing of position and orientation of the vehi-
cle by its driver. Here, previous work (Summala, Nieminen,
and Punto 1996) showed that the amount of glance devia-
tion from the direction of the road scenery correlates with
decrease in driving performance.

SLQG model

Similar as (Schmitt et al. 2016b), we consider additional vi-
sually demanding activities in the driving task of lane keep-
ing. This can be modeled by the following SLQG: The ve-
hicle states are its position in lane y,, its lateral velocity ¥,
its orientation w.r.t. the tangent of the lane center line ¢; and
the angle of the steering wheel o, that can be controlled by
means of the steering angle velocity ¢;. We use the linear-
affine kinematic vehicle model (Risack et al. 1998)

gl 10w 07[w] [0 0
Ol =10 0 cvp| |¢e]| + |0] &+ |—vere| (32)
al lo o ollal U1 0

integrated at 25 Hz and subject to random disturbances on
the dynamics of states vy, ¢;. Here, the steering wheel trans-
mission ratio ¢ is a constant, while the vehicle’s speed v;
and the lane curvature x; parametrize all possible situa-
tions. The reward on the primary states was modeled by
OP(ah,ub) = [y?;92; a?; &), as first experiments did not
show benefits of more complex reward models.

We assume that drivers obtain sensory measurements of
states ¥, ¢, o only. Thereof, the steering angle o is per-
fectly sensed as it is fully given by its derivative, i.e. actions
& Hence, the sensor model can be formalized by

1000 A 00
H:[o 0 1 01,22(955): 0 X2 0]. (33
00 0 1 o 0 o0

Four sensor states z; € {R, H, C, N} are considered that
correspond to the driver glancing at the Road (R), the Head-
up Display (H), the Combi Instrument (C) and the Navi-
gation System (N), depicted in Fig. 1. In any situation the

Figure 1: Sensor states x7: Road (R), Head-up Display (H),
Combi Instrument (C) and Navigation System (N)

driver can glance at the road, i.e. z; = R. If the driver is



engaging in a secondary task, he/she has to switch gaze be-
tween (R) and one of the displays {H, C, N}. We assume a
constant cost for the switching effort and constant utility for
glancing at the required display. This is formalized by the re-
ward model ¢, (uf,zf) = [I(xf = R);uf], where I denotes
the indicator function.

To ensure tractable exact solution as in (Schmitt et al.
2016a), we truncated the sequence x; at the last glance on
the road, i.e ¢ : 27 = R. This was done assuming that once
the glance returns to the road the belief b(z}) jumps to the
state it had when glancing at the road instead of the display
xz; = R, k = t/,...,t. Additionally, we imposed a maxi-
mum length of x} of [n,x = 187 elements corresponding to
glances lengths of 7.5s.

Database

Data for inference was obtained by a driving experiment
in real traffic similar to that of (Schmitt et al. 2016b). 17
drivers were recruited which all had attended at least two
driving safety trainings prior to participation. The experi-
ment consisted of driving at speeds v; € {80, 90,110} km/h
on a public motorway. Here, speed and distance to preceding
vehicles were controlled by the vehicle’s Adaptive Cruise
Control (ACC), so that the driving task was keeping the ve-
hicle in lane alone. At each speed four experimental con-
ditions were triggered by an instructor: Driving without a
secondary task and driving while engaging in a secondary
task that required glancing at one of the displays {H, C, N}.
The resulting glance statistics are shown in Fig. 2.

= 0.1

Oﬂ[i]_}_rl_h_ﬂ_v—-‘
02
M| Fh_ﬂ-lhm
03 | |
z01l | ]

0

0.2

0 1 2
glance duration [1/s]

3

Figure 2: Histograms of durations of glances on displays
{H, C, N}. Solid vertical line indicates the median, dashed
vertical lines the 0.1, 0.9 quantiles.

The task consisted of incrementally typing 30 random digits
1 or 2 which were displayed on a small screen (see Fig. 1
at letter C). Typing all digits required 40 s on average. Simi-
lar to previous work (ibid.), the participants were instructed
to “perform the secondary task as quickly and correctly as
possible while not endangering driving safety”. All vehicle
states oP were recorded by commercial in-vehicle sensors,
while a commercial infra-red camera system (see Fig. 1) was
used to track the gaze of the driver and to estimate state x~.
At each of the three driving speeds three repetitions of the
task at all three displays and of driving without task were
conducted. This resulted in a total amount of four hours of
behavioral data for inference.
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Numerical Experiment

For inference of sensor models and policies the collected
driving periods were subdivided into snippets of exactly
5s length. Using the states z},x; at the beginning of the
snipped as initial state, 100 state/action sequences were sam-
pled based on the vehicle model and the inferred sensor
models and policies. Finally, prediction quality was assessed
with respect to the following metrics:

1. Kullback Leibler divergence

Umax

KL := Y p(d")(log[p(d")] - log[p(d)]),

d=0

(34)

between the distributions of observed d* and predicted off
road glance duration d; = min(k : 2} _, =R,k > 0).

2. Average neg. log-likelihood of the observed states {zP}?

T
1 pPyi
NLL := — glogpumt} 7. P.po),  (39)

based on Gaussian approximation of the predicted state
distribution p(x%) .
We compared our approach to those previously proposed, as
well as MCE SLQG and a direct policy estimation baseline
using a “best guess” sensor model:

1 Direct Policy Estimation by linear regression for sub-
policy 7(u}|u}) and logistic regression for sub-policy
m(uf|d;) based on the durations as in (Schmitt et al.
2016a). Here, Ay, )\ﬁ were chosen to a signal-to-noise ra-
tio of 10133, This corresponds to a 96% confidence inter-
val for estimation of the lane position of 0.3 m at a con-
stant speed of v = 80km/h. The remaining parameters
)\ﬁ’c’N, )‘ﬁ,C,N were set to oo, what implements a driver
who does not sense y, ¢ when not glancing at the road.

MCE SLQG using the same parameters A as in 1.

Estimation of A by maximization of the ex-
pected log-likelihood of the observed actions {u}}?

E [ logr’ ({uf 1)) |{}}, S ({x7})] (Golub, Chase,

and Byron 2013). Here, the MCE policy 7% (uf|2}) for
randomly sampled parameters 6 was used in the first step.
This was followed by MCE SLQG to infer all reward

parameters using the obtained parameters /\%{jﬁ’c’N.

Estimation of sensor models and rewards by maximiza-
tion of the expected log-likelihood of the observed actions
{u}}* under the MCE policy model Eq. (5), interpretable
as an MCE version of (Phatak et al. 1976). This was fol-
lowed by MCE SLQG to infer all reward parameters using

the obtained parameters A§y c v

Our approach for joint inference of sensor model and re-
wards.

For numerical optimization problem 1 was cast as infer-
ence in a generalized linear model (Nelder and Baker 1972),
while we employed an interior-point method to solve 2-5

subject to < 0 and /\%{ﬁyc’N > 0.



Results

We report on the metrics on the tests sets of 5 Monte Carlo
cross-validations (50%/50% split). Here, table 1 presents
the medians of the skewed-distributed values of both met-
rics, where the least prediction errors are in bold digits.

Table 1: Results of the numerical experiment

Methods
1 \ 2 \ 3 \ 4 \ 5
KL +0.64 | +0.55 | +0.28 | +0.27 | +0.25
NLL —7.00 | —8.58 | —8.52 | —8.56 | —8&8.58

In the numerical experiment, the optimization problems 4-5
turned out to be notoriously unbounded if the sensor model

for driving while glancing at the road, /\17{’¢ was inferred.
Problem 3 was not affected by unboundedness. Therefore,

the results are reported for parameters )\ﬁ’d) fixed to a signal-
to-noise ratio of 10'-33 similar to 1,2. Interestingly, this did
not have any negative impact on the approach 3.

In the numerical experiments approaches 2-5 had a signif-
icantly (signed-rank p < 0.01) lower prediction error than
the behavior cloning baseline with respect to both metrics.
Although 2 had the lowest neg. log-likelihood the differ-
ences to approaches 3-5 were not statistically significant
(signed-rank p > 0.01). In contrast, both the differences in
KL between 2 and 3-5 as well as those between 3-4 and 5
were statistically significant (signed-rank p < 0.01).

Discussion

The results of the numerical evaluation, show a clear benefit
of inference of sensor models in addition to the estimation
of policy models. The higher KL of MCE SLQG using the
best guess sensor model could mainly be attributed to shorter
glances off the road and more frequent switches for the dis-
plays H,C. Fig. 3 gives an exemplary comparison between
samples from the MCE SLQG policies with the best guess
sensor model and with the estimated sensor model.
Although we expected differences in the neg. log-likelihood
between approaches 2-5 the results may be explained by
the characteristics of the collected data. First, measuring the
lane position y; and orientation ¢, is limited in accuracy
and therefore small changes cannot be detected. Second, the
choice of the lane position in real-world driving is also in-
fluenced by aspects that are not considered in the model
SLQG, such as the presence of vehicles in the neighboring
lane. Hence, the prediction errors of MCE SLQG based ap-
proaches may rather be dominated by unmodelled influences
than by the used sensor model.

The observation of unbounded optimization problems 4-5
in the case of estimation of )\ﬁ’d’ is in line with the the-
oretical analysis of over-parametrization in (Phatak et al.
1976): If no data of the sensory measurements obtained by
the human is available, deviation from the optimal linear-
affine policy u} = #(z}) can be explained by a stochastic
policy 7wt (uf|2}) = #(2}) + €1 (as the MCE policy model),
the optimal policy acting on noisy estimates of the state
m2(uf|2}) = #(u}) = 7 (2} + €2) or a combination of both.
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Figure 3: Sample for display H using methods 2 and 5. Thick
line (—) is the actual vehicle’s trajectory, dotted line (---)
the estimated trajectory, shaded area the 96% confidence in-
terval of the estimation. Triangles (A/V) indicate switches
to R/H.

In the approach 3 this issue is avoided, as the policy and
sensor model are not estimated simultaneously. However, it
comes at the cost of higher KL in the numerical experiment
of this work. In contrast to /\;‘{’4), sensor model parameters
)\Z}’I’EN could be inferred under the MCE policy model in the
numerical experiment. This is because the noise covariance
¥ (x7) of the state estimate i} in Eq. (13) changed over
time if z; € {H,C,R} (see also Fig. 3) which allows to
separate the influences of the stochastic policy and the noisy
Sensory measurements.

Conclusion and Future Work

We presented a general method for inference of sensor and
policy models of motor behavior. Here, the key elements are
the assumption of perception by Bayesian inference and ra-
tional choice of actions. Specifically, exploiting the differ-
entiability of the maximum causal entropy dual D(6, \) al-
lows to infer both reward parameters 6 and sensor model pa-
rameters A. We considered the concrete implementation for
sensor scheduling LQGs that generalize LQGs addressed in
most of the previous work. Finally, the approach was evalu-
ated in the important application domain of modeling driver
behavior. The results show that prediction of the driver’s
glance behavior in the presence of different visually de-
manding additional activities can be improved using the pre-
sented methodology.

Despite the promising first results, some issues with the pro-
posed approach need to be addressed. As discussed prob-
lems of over-parametrization were present in the considered
application. Hence, future work should investigate if and
how sensor models obtained in laboratory can be used to
define priors for inference from real-world data. Addition-



ally, criteria for a-priory detection of over-parametrization
as (Acerbi, Ma, and Vijayakumar 2014) are relevant. This
would allow to find an appropriate parametrization and an
experimental design for data collection. Although SLQGs
can be used to model real-world active information gather-
ing as demonstrated, the class poses strong restriction on re-
ward models and dynamics. Recently, human motor behav-
ior has successfully been modeled by approximate solution
of more complex POMDPs (Belousov et al. 2016). Those
approximation techniques may also be applicable for ap-
proximate inference of sensor models in general POMDPs.
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