
Latent Dependency Forest Models

Shanbo Chu and Yong Jiang and Kewei Tu
School of Information Science and Technology

ShanghaiTech University, Shanghai, China
{chushb, jiangyong, tukw}@shanghaitech.edu.cn

Abstract

Probabilistic modeling is one of the foundations of modern
machine learning and artificial intelligence. In this paper, we
propose a novel type of probabilistic models named latent
dependency forest models (LDFMs). A LDFM models the de-
pendencies between random variables with a forest structure
that can change dynamically based on the variable values. It is
therefore capable of modeling context-specific independence.
We parameterize a LDFM using a first-order non-projective
dependency grammar. Learning LDFMs from data can be for-
mulated purely as a parameter learning problem, and hence the
difficult problem of model structure learning is circumvented.
Our experimental results show that LDFMs are competitive
with existing probabilistic models.

Introduction

Probabilistic modeling is one of the foundations of modern
machine learning and artificial intelligence, which aims to
compactly represent the joint probability distribution of ran-
dom variables. The most widely used approach for probabilis-
tic modeling is probabilistic graphical models. A probabilistic
graphical model represents a probability distribution with a
directed or undirected graph. It represents random variables
with the nodes in the graph and uses the edges in the graph to
encode the probabilistic relationships between random vari-
ables. However, traditional probabilistic graphical models
have a number of limitations. First, inference takes expo-
nential time in the worst case. Second, learning probabilistic
graphical models (in particular, learning the model structures)
is very difficult in general. Third, the dependencies between
variables are fixed and therefore context-specific indepen-
dence (CSI) (i.e., independency between variables that only
holds given a specific assignment of certain variables) cannot
be represented in the basic form of probabilistic graphical
models.

To alleviate or solve the first two problems of probabilistic
graphical models, a number of tractable probabilistic models
are proposed. One example is mixtures of trees (MTs) (Meila
and Jordan 2001), which represent a probability distribution
with a finite mixture of tree distributions. Inference and learn-
ing of MTs are both tractable. In addition, certain CSI can be
represented in MTs.
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More recently, sum-product networks (SPNs) (Poon and
Domingos 2011) have been proposed as a type of very ex-
pressive tractable probabilistic models that subsume many
previous probabilistic models as special cases. A SPN can be
represented as a rooted directed acyclic graph with univari-
ate distributions as leaves and sums and products as internal
nodes. Exact inference in SPNs can be done in linear time
with respect to the network size. However, the large number
of latent sum and product nodes in SPNs makes learning
(especially structure learning) of SPNs very challenging.

It has been shown that SPNs can be seen as an extension of
probabilistic context-free grammars (PCFGs) and a special
case of stochastic And-Or grammars (Poon and Domingos
2011; Tu 2016b). Based on this observation, we would like to
draw a parallel between learning probabilistic models such as
SPNs and unsupervised learning of probabilistic grammars.
Learning the structure of a probabilistic model resembles
learning the set of production rules of a grammar, while
learning model parameters resembles learning grammar rule
probabilities. From the unsupervised grammar learning liter-
ature, one can see that learning approaches based on PCFGs
have not been very successful, while the state-of-the-art per-
formance has mostly been achieved based on less expressive
models such as dependency grammars (DGs) (Klein and
Manning 2004; Headden III, Johnson, and McClosky 2009;
Tu and Honavar 2012; Spitkovsky 2013). In comparison with
PCFGs, DGs eliminate all the latent nodes (i.e., nontermi-
nals) and therefore the difficult discrete optimization prob-
lem of structure learning can be easily converted into the
more amenable continuous optimization problem of param-
eter learning. Inspired by this property of DGs, we propose
latent dependency forest models (LDFMs) as a new type of
probabilistic models. LDFMs encode the relations between
variables with a dependency forest (a set of trees). A distri-
bution over all possible dependency forests given the current
assignment of variables is specified using a first-order non-
projective DG (McDonald and Satta 2007). The probability
of a complete assignment can then be computed by adding
up the weights of all the dependency forests. Figure 1 gives
an example of using LDFMs to compute the joint probabil-
ity of an assignment of two random variables. The number
of possible forests grows exponentially with the number of
variables, but the summation of the forest weights can still
be computed tractably by utilizing the Matrix Tree Theorem
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Figure 1: An example of using LDFMs to compute the joint
probability of X1 = False and X2 = True. Left: all pos-
sible pairwise dependencies between the two variables and
a root node (explained in the following section); each de-
pendency has a weight. Right: all three possible dependency
forests and their weights. Bottom: computing the joint proba-
bility.

(MTT) (Tutte 1984).
Compared with existing probabilistic models, LDFMs

have the following features. Similar to SPNs, LDFMs model
latent dependencies between random variables, i.e., the de-
pendencies are dynamically determined based on the assign-
ments of the random variables, and therefore LDFMs are
capable of modeling CSI (we give an example of modeling
CSI with LDFMs in the supplementary material (Chu, Jiang,
and Tu 2017)). Unlike SPNs, there is no latent variable in
LDFMs, resulting in easier learning. Similar to MTs, LDFMs
assume the latent dependencies to form a forest structure; but
unlike MTs that restrict the possible dependency structure
to a small number of forest structures, LDFMs consider all
possible forest structures at the same time. By parameterizing
the model using a first-order non-projective DG, unnormal-
ized joint probability computation can still be made tractable.
Unlike most of the previous probabilistic models, learning
LDFMs from data can be formulated purely as a parame-
ter learning problem without the difficult step of structure
learning, and therefore it can be handled by any continuous
optimization approach such as the expectation-maximization
(EM) algorithm.

Related Work

Probabilistic Modeling

Probabilistic modeling aims to compactly model a joint distri-
bution over a set of random variables. Many different types of
probabilistic models have been proposed in the literature. The
most widely used probabilistic models are perhaps Bayesian
networks (BNs) (Pearl 1988) and Markov networks (MNs)
(Kindermann and Snell 1980). A BN models a set of random
variables and their conditional dependencies with a directed
acyclic graph (DAG). The nodes in the DAG represent the
random variables and the edges represent the dependencies.
The dependencies are specified between variables regardless
of their assignments, so CSI is not representable. The infer-
ence of BNs is generally intractable: computing the exact
probability of a marginal or conditional query is �P-complete

(Roth 1996). In addition, learning the structure of BNs from
data is very challenging and finding the global optimum struc-
ture is known to be NP-hard (Chickering, Heckerman, and
Meek 2004). A MN is similar to a BN in its representation
of dependencies, the differences being that BNs are directed
and acyclic, whereas MNs are undirected and may be cyclic.
In general, exact inference of MNs is also �P-complete (Roth
1996) and learning of MNs is hard.

Mixtures of trees (MTs) (Meila and Jordan 2001) repre-
sent joint probability distributions as finite mixtures of tree
distributions. One can represent certain CSI in MTs by us-
ing different tree distributions to model different contexts.
Like most mixture models, the EM algorithm can be used
for the learning of MTs. The inference of MTs takes linear
time in n (the number of variables) and each step of the EM
learning algorithm takes quadratic time in n. The number of
mixture components in a MT is usually set to a small number
in practice. LDFMs can also be seen as a mixture of tree
distributions, but unlike MTs, LDFMs consider all possible
structures of tree distributions and resort to first-order non-
projective DGs to encode the mixture weight of each tree
distribution.

A sum-product network (SPN) (Poon and Domingos 2011)
is a tractable deep probabilistic model represented as a
rooted DAG with univariate distributions as leaves and sums
and products as internal nodes. A sum node computes the
weighted sum of its child nodes and a product node computes
the product of its child nodes. The root of a SPN can repre-
sent different types of probability distributions according to
different inputs. For example, when all the leaves are set to 1,
the root represents the partition function; when the input is
evidence, the root represents the unnormalized marginal prob-
ability of the evidence; and when the input is a complete as-
signment, the root represents the unnormalized joint probabil-
ity. SPNs can also represent CSI by using different sub-SPNs
to model distributions of variables under different contexts.
Calculating the root value of a SPN is a bottom-up process
with time complexity linear in the network size, so inference
is tractable in terms of the network size. Structure learning of
SPNs is still a challenging problem involving difficult discrete
optimization and recently a variety of approaches have been
proposed (Gens and Pedro 2013; Rooshenas and Lowd 2014;
Adel, Balduzzi, and Ghodsi 2015). More recently, some sub-
classes of SPNs have been proposed (Rahman, Kothalkar,
and Gogate 2014; Peharz, Gens, and Domingos 2014).

For most of the above models, learning involves identifica-
tion of a good model structure, which is typically a difficult
discrete optimization problem. Borrowing ideas from the
unsupervised grammar learning literature, we formulate a
LDFM as a first-order non-projective dependency “grammar”
on variable assignments and circumvent the structure learn-
ing step by including all possible “grammar rules” in the
model and then learning their parameters.

Dependency Grammars

In natural language processing (NLP), dependency grammars
(DGs) are a simple flexible mechanism for encoding words
and their syntactic dependencies through directed graphs. In
the directed graph derived from a sentence, each word is a
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Figure 2: A non-projective dependency tree of an example
sentence (from (McDonald and Satta 2007)).

node and the dependency relationships between words are
the edges. In a non-projective dependency graph, an edge can
cross with other edges. Non-projectivity arises due to long
distance dependencies or in languages with flexible order.
In most cases, the dependency structure is assumed to be a
directed tree. Figure 2 is an example non-projective depen-
dency tree for the sentence A hearing is scheduled on the
issue today. Each edge connects a word to its modifier and
is labeled with the specific syntactic function of the depen-
dency, e.g., SBJ for subject. Dependency parsing (finding the
dependency trees) is an important task in NLP and McDonald
et al. (McDonald et al. 2005) proposed an efficient parsing
algorithm for first-order non-projective DGs by searching
for maximum spanning trees (MSTs) in directed graphs. Mc-
Donald and Satta (McDonald and Satta 2007) appealed to
Matrix Tree Theorem to make unsupervised learning feasible
for first-order non-projective DGs via the EM algorithm.

LDFMs can be seen as an extension of first-order non-
projective DGs for probabilistic modeling. There are two
main differences between non-projective DGs and LDFMs.
One difference is that LDFMs use the nodes in a dependency
tree to represent the assignments of the variables, while non-
projective DGs use the nodes to represent the words in a
sentence. The other difference is that when viewed as genera-
tive models, a DG always produces a valid sentence while a
LDFM may produce invalid assignments of variables if there
are conflicting or missing assignments.

Latent Dependency Forest Models

Basics

Let X = (X1, X2, . . . , Xn) be a set of random variables and
x = (x1, x2, . . . , xn) be an assignment to the set of random
variables. Given an assignment x, we construct a complete
directed graph Gx = (Vx, Ex) such that,

• Vx = {x0 = root, x1, . . . , xn} where x0 is a dummy root
node.

• Ex = {(xi, xj)|i �= j, 0 ≤ i ≤ n, 1 ≤ j ≤ n}
Gx contains all possible pairwise dependencies between the
variables under the current assignments x. We assume that
the actual dependency relations between the variables al-
ways form a forest structure (a set of trees). By adding an
edge from the dummy root node to the root of each tree of
the dependency forest, we obtain a single dependency tree
structure that is a directed spanning tree of the graph Gx

rooted at x0. We denote this tree by T = (VT , ET ), where
VT = Vx, ET ⊆ Ex.

We assume that the strength of each pairwise dependency
is independent of any other dependencies and denote the
dependency strength from node xi to node xj by edge weight
wij . We can compute the strength or weight of a spanning
tree T = (VT , ET ) as the product of the edge weights:

w(T ) =
∏

(xi,xj)∈ET

wij

The partition function is the sum over the weights of all
possible dependency trees for a given assignment x, which
represents the weight of the assignment. We denote this value
as Zx.

Zx =
∑

T∈T (Gx)

w(T ) =
∑

T∈T (Gx)

∏
(xi,xj)∈ET

wij

T (Gx) is the set of all possible dependency trees. The size of
T (Gx) is exponential in n, but we can use Matrix Tree Theo-
rem (Tutte 1984) to compute the partition function tractably.
Matrix Tree Theorem (MTT). Let G be a graph with nodes
V = {x0, x1, . . . , xn} and edges E. Define (Laplacian) ma-
trix Q as a (n+1)× (n+1) matrix indexed from 0 to n. For
all i and j, define:

Qij =

⎧⎨
⎩

∑
i′ �=j,(xi′ ,xj)∈E

wi′j if i = j

−wij if i �= j, (xi, xj) ∈ E

If the i-th row and column are removed from Q to produce
the matrix Qi, then the sum of the weights of all the directed
spanning trees rooted at node i is equal to the determinant of
Qi.

Thus, to compute Zx, we construct matrix Q from graph
Gx and compute the determinant of matrix Q0. The time com-
plexity is O(n3) if we use LU decomposition for determinant
calculation.

Based on the framework introduced above, now we present
two generative probabilistic models: LDFM and LDFM-S.

LDFM

LDFM requires that the weight of each dependency (xi, xj)
is the conditional probability of generating the variable Xj

and setting its value to xj given the assignment Xi = xi

or the root node. We denote this probability by wxj |xi
. We

impose the constraint 0 ≤ wxj |xi
≤ 1 and the normal-

ization condition
∑

j �=i

∑
xj

wxj |xi
= 1 for each xi (or∑

j �=i

∫
xj

wxj |xi
= 1 for continuous variables).

An assignment x = (x1, x2, . . . , xn) is generated recur-
sively in a top-down manner. First, we generate a depen-
dency tree with n+ 1 nodes uniformly at random. We label
the root node as x0. Then, starting from the root node, we
recursively traverse the tree in pre-order; at each non-root
node, we generate a 〈variable, value〉 pair conditioned on
the 〈variable, value〉 pair of its parent node. The probability
of generating an assignment x is:

p(x) = βn!Zx ∝ Zx
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where β is the uniform probability of the tree structure, and
βn! is a constant w.r.t. x. The derivation details can be found
in the supplementary material (Chu, Jiang, and Tu 2017).

Note that, however, the above process may also generate
invalid assignments. First, it allows multiple assignments of
the same variable to be generated at different nodes, resulting
in duplicate or conflicting assignments. Second, since there
are only n non-root nodes, if some variables are assigned
at multiple nodes, then there must be some other variables
that are not assigned at all. One could modify the genera-
tion process to disallow invalid assignments, but that would
break the assumed independence between the strength of
pairwise dependencies, leading to intractable computation of
the partition function Zx.

Since we are only interested in the space of valid assign-
ments (i.e., no duplicate or missing variable assignment), we
define the joint probability of a valid assignment x as

φ(x) =
p(x)∑

x∈A p(x)
=

Zx

γ

where A is the set of valid assignments and γ is the nor-
malization factor. The joint probability is proportional to the
partition function Zx, so we can use MTT to compute the un-
normalized joint probability. However, the normalized joint
probability is intractable to compute because computing the
normalization factor γ is �P-hard, which is similar to the case
of Markov networks.

LDFM-S
The assumption of uniformly distributed tree structures in
LDFM can be unreasonable in many cases. In LDFM-S,
instead of first uniformly sampling a tree structure and then
instantiating the tree nodes, we generate the tree structure and
the 〈variable, value〉 pairs at the tree nodes simultaneously.
Starting from the root node, we generate a tree structure
in a top-down recursive manner: at each node xi, we keep
sampling from the conditional distribution wxj |xi

to generate
new child nodes until a dummy stop node is generated; then
for each child of xi, we recursively repeat this procedure. We
denote the probability of generating a stop node given the
assignment Xi = xi by ws|xi

and require the normalization
condition ws|xi

+
∑

j �=i

∑
xj

wxj |xi
= 1 for each xi (or

ws|xi
+
∑

j �=i

∫
xj

wxj |xi
= 1 for continuous variables). It is

easy to see that if ws|xi
is larger, then xi is more likely to be

a leaf node in the tree structure. The probability of generating
an assignment x is:

p(x) =
∑

T∈T (Gx)

∏

(xi,xj)∈ET

wxj |xi

∏

xi∈VT

ws|xi

= Zx

∏

xi∈Vx

ws|xi

The joint probability of a valid assignment x is:

φ(x) =
p(x)∑

x∈A p(x)
=

Zx

∏
xi∈Vx

ws|xi

γ

where A is the set of valid assignments and γ is the nor-
malization factor. Again, computing the unnormalized joint
probability is tractable by using MTT, but computing the
normalization factor is �P-hard. Note that when all the stop
weights ws|xi

are equal, LDFM-S reduces to LDFM.

Inference

In probabilistic inference, the set of random variables are
divided into query, evidence, and hidden variables and we
want to compute the conditional probabilities of the query
variables given the evidence variables. Inference of LDFMs
in general can be shown to be �P-hard, so we resort to Markov
chain Monte Carlo (MCMC) for approximate inference.

One way to do MCMC is by Gibbs sampling, which resam-
ples each of the query and hidden variables in turn according
to its conditional distribution given the rest of the variables.
After getting enough samples, we can compute the probabil-
ity of a particular query as the fraction of the samples that
match the query. At each resampling step, the conditional
distribution is computed from the unnormalized joint proba-
bilities, which takes O(n3) time and thus can be slow when
n is large.

For more efficient sampling, we apply the idea of data
augmentation (Tanner and Wong 1987) and simultaneously
sample the latent dependency tree structure and the variable
values. We name this method tree-augmented sampling. We
first randomly initialize the values of the query and hidden
variables as well as the dependency tree structure. At each
MCMC step, we randomly pick a variable and simultane-
ously change its value and its parent node in the dependency
tree (with the constraint that no loop is formed). Suppose
variable Xi is picked, then the proposal probability of value
xi and parent Xj is proportional to the dependency weight
wxi|xj

where xj is the value of Xj in the previous sample.
It can be shown that the acceptance rate of the proposal is
always one. The time complexity of each sampling step is
O(n), which can be further reduced if the dependencies be-
tween variables are sparse. After getting enough samples,
we estimate the query probability based on the statistics of
the sampled variable values while disregarding the sampled
dependency trees.

Learning

We want to learn a LFDM form data where the dependency
structure of each training instance is unknown. We avoid the
difficult structure learning problem by assuming a complete
LDFM structure, i.e., we assume that all the dependencies be-
tween 〈variable, value〉 pairs are possible (having nonzero
weights), rather than trying to identify a subset of possible de-
pendencies. We then rely on parameter learning to specify the
weights of all the dependencies. This strategy is quite differ-
ent from that of learning other types of probabilistic models,
as structure learning is unlikely to circumvent for most of
them. For BNs, if we assume a complete structure (i.e., the
skeleton being a complete graph), then the model size (in
particular, sizes of conditional probability tables) becomes
exponential in the number of random variables and learning
becomes intractable. For SPNs, there is no general principle
of constructing a “complete” structure; if we assume that
there is at least one node for each possible scope (subset of
random variables), then the model size is also exponential.

Our learning objective function is the log-likelihood of the
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Table 1: Dataset Statistics. Dimension represents the number of variables. Avg cardinality represents the average number of values
a variable can take and Max cardinality represents the maximum number of values a variable can take. Avg degree represents
the average number of edges connected to each node in the ground truth BN and Max in-degree represents the max number of
inward edges directed to a node in the ground truth BN.

Dataset Asia Child Alarm Sachs Insurance Water Win95pts Hepar2 Hailfinder
Dimension 8 20 37 11 27 32 76 70 56
Avg cardinality 2 3 2.84 3 3.30 3.63 2 2.31 3.98
Max cardinality 2 6 4 3 5 4 2 4 11
Avg degree 2 2.5 2.49 3.09 3.85 4.12 2.95 3.51 2.36
Max in-degree 2 2 4 3 3 5 7 6 4

model.
|D|∑
α=1

log p(xα) =

|D|∑
α=1

logZxα
+ constant

where D = {xα}|D|
α=1 is the training dataset. Note that we

compute the likelihood based on p(x), the probability of
generating an assignment, instead of φ(x), the probability
of a valid assignment. This makes our learning algorithm
tractable and also encourages the learned model to be more
likely to produce valid assignments.

Since the dependency structure of each training sample is
hidden, we can use the expectation-maximization (EM) algo-
rithm for learning LDFM parameters. We uniformly initialize
all the dependency weights, which we find to be the most
effective initialization method.

In the E-step, we compute the partition functions and edge
expectations of the training samples. For a training sample x,
the edge expectation of (xi, xj) is defined as follows:

〈(xi, xj)〉x =
∑

T∈T (Gx)

w(T )× I((xi, xj), T )

where I((xi, xj), T ) is an indicator function which is one
when (xi, xj) is in the tree T and zero otherwise. Follow-
ing the work of McDonald and Satta (McDonald and Satta
2007), we can compute the edge expectations through matrix
inversion. When i, j > 0,

〈(xi, xj)〉x = wxj |xi
Zx[((Q

0)−1)jj − ((Q0)−1)ji]

When i = 0 and j > 0,

〈(x0, xj)〉x = wxj |x0
Zx((Q

0)−1)jj

In the M-step, we update the parameters wxj |xi
to maxi-

mize the log-likelihood subject to the constraints of wxj |xi
≥

0 and
∑

j �=i

∑
xj

wxj |xi
= 1 (for discrete variables). By

solving the above constrained optimization problem with the
Lagrange multiplier method, we can get:

wxj |xi
=

∑|D|
α=1

1
Zxα

〈(xi, xj)〉xα∑|D|
α=1

1
Zxα

∑
j′ �=i

∑
xj′

〈(xi, xj′)〉xα

For continuous variables, we can assume a certain form of
conditional distributions (e.g., a bivariate conditional normal
distribution) and derive its optimal parameters in terms of the
partition functions and edge expectations in a similar manner.

In addition to maximum likelihood estimation, we may
also run maximum a posteriori (MAP) estimation using EM
with a prior over the parameters. We find that the modified
Dirichlet prior (Tu 2016a), which is a strong sparsity prior,
can sometimes significantly improve the learning results.

Experiments

We empirically evaluated the learning and inference of
LDFMs on nine datasets and compared the performance
against several popular probabilistic models including mix-
tures of trees (MTs), Bayesian networks (BNs), dependency
networks (DNs), and sum-product networks (SPNs).

To produce our training and test data, we picked nine BNs
that are frequently used in the BN learning literature from
bnlearn (http://www.bnlearn.com/bnrepository/), a popular
BN repository. For each BN, we sampled two training sets of
5000 and 500 instances, one validation set of 1000 instances,
and one testing set of 1000 instances. All the random vari-
ables are discrete. Table 1 shows the statistics of each BN. It
can be seen that many of the ground truth BNs are much more
complicated than a tree structure and some have relatively
high tree-width. Note that the way we produced our data ac-
tually gives BNs an advantage in our evaluation because the
data never goes beyond the representational power of BNs.
Nevertheless, as we will see, LDFMs and a few other models
still outperform BNs on these datasets.

We learned the five types of models from the training data
and evaluated them by their accuracy in query answering
on the test data. For each test data sample, we randomly
divided the variables into three subsets: query variables Q,
evidence variables E, and hidden variables H . We then ran
the learned model to compute the conditional probability
p(Q = q|E = e), where q and e are the values that Q and
E take in the test data sample. A model that is closer to the
ground truth would produce a higher conditional probability
on average. Four different proportions of dividing the query,
evidence, and hidden variables (e.g., 30% query variables,
10% evidence variables, and 60% hidden variables) were
used and for each proportion, a thousand query instances
were generated from the test set. Following the evaluation
metrics of the previous work (Rooshenas and Lowd 2014),
we report the maximum of the conditional log-likelihood
(CLL) and the conditional marginal log-likelihood (CMLL):∑

Xi∈Q log p(Xi = xi|E = e). We normalize CLL or
CMLL by the number of query variables to facilitate compar-
ison across different query proportions.
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Table 2: The maximum of CLL and CMLL normalized by the number of query variables. The bold numbers mark the best
performance. g-LDFM denotes the results of LDFM by using Gibbs sampling and t-LDFM denotes the results of LDFM by
using tree-augmented sampling.

5000 training instances 40% Query, 30% Evidence 30% Query, 20% Evidence
Dataset g-LDFM t-LDFM BN DN SPN MT g-LDFM t-LDFM BN DN SPN MT

Asia -0.258 -0.241 -0.274 -0.268 -0.262 -0.262 -0.268 -0.240 -0.286 -0.276 -0.272 -0.272
Child -0.609 -0.663 -0.721 -0.634 -0.630 -0.707 -0.650 -0.702 -0.744 -0.670 -0.688 -0.761
Alarm -0.293 -0.357 -0.436 -0.317 -0.277 -0.343 -0.335 -0.396 -0.473 -0.375 -0.328 -0.379

Insurance -0.460 -0.538 -0.565 -0.499 -0.476 -0.557 -0.550 -0.616 -0.660 -0.598 -0.581 -0.652
Sachs -0.605 -0.620 -0.675 -0.610 -0.644 -0.647 -0.632 -0.627 -0.698 -0.649 -0.683 -0.681
Water -0.399 -0.401 -0.474 -0.407 -0.415 -0.435 -0.434 -0.439 -0.496 -0.445 -0.457 -0.478

Win95pts -0.166 -0.169 -0.229 -0.185 -0.118 -0.121 -0.163 -0.193 -0.251 -0.207 -0.147 -0.146
Hepar2 -0.481 -0.483 -0.509 -0.490 -0.489 -0.507 -0.481 -0.482 -0.513 -0.493 -0.497 -0.513

Hailfinder -0.991 -1.091 -1.223 -1.089 -0.941 -1.241 -1.013 -1.096 -1.242 -1.110 -0.979 -1.268
500 training instances 40% Query, 30% Evidence 30% Query, 20% Evidence

Dataset g-LDFM t-LDFM BN DN SPN MT g-LDFM t-LDFM BN DN SPN MT
Asia -0.263 -0.246 -0.301 -0.266 -0.272 -0.264 -0.268 -0.244 -0.296 -0.280 -0.276 -0.273
Child -0.623 -0.677 -0.801 -0.668 -0.757 -0.927 -0.665 -0.706 -0.813 -0.701 -0.804 -0.898
Alarm -0.328 -0.368 -0.521 -0.359 -0.426 -0.526 -0.370 -0.403 -0.605 -0.408 -0.463 -0.510

Insurance -0.478 -0.542 -0.665 -0.533 -0.596 -0.706 -0.564 -0.617 -0.751 -0.621 -0.698 -0.776
Sachs -0.627 -0.634 -0.702 -0.653 -0.759 -0.733 -0.644 -0.654 -0.712 -0.678 -0.780 -0.723
Water -0.406 -0.411 -0.482 -0.431 -0.511 -0.531 -0.441 -0.445 -0.507 -0.462 -0.541 -0.543

Win95pts -0.162 -0.191 -0.271 -0.205 -0.151 -0.174 -0.188 -0.205 -0.311 -0.231 -0.173 -0.194
Hepar2 -0.491 -0.488 -0.539 -0.503 -0.531 -0.641 -0.490 -0.485 -0.535 -0.504 -0.535 -0.591

Hailfinder -1.024 -1.10 -1.449 -1.127 -1.187 -2.244 -1.040 -1.098 -1.511 -1.135 -1.197 -1.938

We trained LDFM using EM and modified Dirichlet prior
on each dataset and used the two MCMC approaches intro-
duced in the Inference section to estimate the query proba-
bilities. For the other four probabilistic models, we used the
Libra toolkit (Lowd and Rooshenas 2015) to train them and
tuned the hyperparameters of the training algorithms accord-
ing to the query probabilities on the validation set. Specifi-
cally, Libra learns BNs with decision-tree CPDs (Chickering,
Heckerman, and Meek 1997) which is an extension of plain
BNs that is capable of modeling CSI; it learns DNs using
an algorithm similar to (Heckerman et al. 2001); it uses the
algorithm proposed in (Meila and Jordan 2001) to learn MTs;
and it learns SPNs using direct and indirect variable interac-
tions (Rooshenas and Lowd 2014). Note that in Libra, the
input data to the MTs and SPNs training algorithms needs
to be binary, so we binarized all the variables when training
MTs and SPNs. After training the four probabilistic models,
we again used Libra to do inference. For BNs and DNs, we
used the Gibbs sampling algorithm implemented in Libra.
For MTs and SPNs, Libra first converted the trained models
to an equivalent arithmetic circuit (AC) and then used an
exact AC inference method to do inference.

We report the evaluation results of two proportions in Ta-
ble 2, and report the results of the other two proportions in
the supplementary material (Chu, Jiang, and Tu 2017). The
evaluation results of LDFM-S are similar to the results of
LDFM, and we report them in the supplementary material. It
can be seen that LDFMs are competitive with the other prob-
abilistic models and achieve the best results on most datasets.
Comparing the performance of the two MCMC approaches
of LDFMs, we see that Gibbs sampling achieves better over-

all results than tree-augmented sampling; however, in our
experiments tree-augmented sampling is more than twenty
times faster than Gibbs sampling on average. SPNs have very
good performance on the larger training set, which verifies
their effectiveness in probabilistic modeling compared with
traditional approaches; however, their performance is not as
good on the smaller training set suggesting that SPNs may
require more data to learn than LDFMs. BNs perform worst
on average even though the data was generated from ground
truth BNs, which suggests that structure learning of BNs is
still a very challenging problem.

Conclusion

In this paper, we propose latent dependency forest models
(LDFMs), a novel probabilistic model. A LDFM models the
dependencies between random variables with a forest struc-
ture that can change dynamically based on the variable values.
We define a LDFM as a generative model parameterized by
a first-order non-projective DG. We propose two MCMC
approaches, Gibbs sampling and tree-augmented sampling,
for inference of LDFMs. Learning LDFMs from data can
be formulated purely as a parameter learning problem, and
hence the difficult problem of model structure learning is cir-
cumvented. We derive an EM algorithm for learning LDFMs.
Our experimental results show that LDFMs are competitive
with existing probabilistic models.
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Non-projective dependency parsing using spanning tree al-
gorithms. In Proceedings of the conference on Human Lan-
guage Technology and Empirical Methods in Natural Lan-
guage Processing, 523–530. Association for Computational
Linguistics.
Meila, M., and Jordan, M. I. 2001. Learning with mixtures
of trees. The Journal of Machine Learning Research 1:1–48.
Pearl, J. 1988. Probabilistic reasoning in intelligent systems:
networks of plausible inference. Morgan Kaufmann.
Peharz, R.; Gens, R.; and Domingos, P. 2014. Learning
selective sum-product networks. In LTPM workshop.

Poon, H., and Domingos, P. 2011. Sum-product networks:
A new deep architecture. In Computer Vision Workshops
(ICCV Workshops), 2011 IEEE International Conference on,
689–690. IEEE.
Rahman, T.; Kothalkar, P.; and Gogate, V. 2014. Cutset
networks: A simple, tractable, and scalable approach for
improving the accuracy of chow-liu trees. In Joint European
Conference on Machine Learning and Knowledge Discovery
in Databases, 630–645. Springer.
Rooshenas, A., and Lowd, D. 2014. Learning sum-product
networks with direct and indirect variable interactions. In
Proceedings of the 31st International Conference on Machine
Learning (ICML-14), 710–718.
Roth, D. 1996. On the hardness of approximate reasoning.
Artificial Intelligence 82(1):273–302.
Spitkovsky, V. I. 2013. Grammar Induction and Parsing
with Dependency-and-Boundary Models. Ph.D. Dissertation,
Computer Science Department, Stanford University, Stanford,
CA.
Tanner, M. A., and Wong, W. H. 1987. The calculation of
posterior distributions by data augmentation. Journal of the
American statistical Association 82(398):528–540.
Tu, K., and Honavar, V. 2012. Unambiguity regularization
for unsupervised learning of probabilistic grammars. In Pro-
ceedings of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural
Language Learning, 1324–1334.
Tu, K. 2016a. Modified dirichlet distribution: Allowing
negative parameters to induce stronger sparsity. In Confer-
ence on Empirical Methods in Natural Language Processing
(EMNLP 2016), Austin, Texas, USA.
Tu, K. 2016b. Stochastic And-Or grammars: A unified
framework and logic perspective. In IJCAI.
Tutte, W. T., ed. 1984. Graph Theory. Cambridge University
Press.

3739




