
Deep Learning Quadcopter Control via Risk-Aware Active Learning

Olov Andersson, Mariusz Wzorek, Patrick Doherty
{olov.a.andersson, mariusz.wzorek, patrick.doherty}@liu.se

Department of Computer and Information Science
Linköping University, SE-58183

Linköping, Sweden

Abstract

Modern optimization-based approaches to control increas-
ingly allow automatic generation of complex behavior from
only a model and an objective. Recent years has seen grow-
ing interest in fast solvers to also allow real-time operation
on robots, but the computational cost of such trajectory op-
timization remains prohibitive for many applications. In this
paper we examine a novel deep neural network approxima-
tion and validate it on a safe navigation problem with a real
nano-quadcopter. As the risk of costly failures is a major con-
cern with real robots, we propose a risk-aware resampling
technique. Contrary to prior work this active learning ap-
proach is easy to use with existing solvers for trajectory op-
timization, as well as deep learning. We demonstrate the effi-
cacy of the approach on a difficult collision avoidance prob-
lem with non-cooperative moving obstacles. Our findings in-
dicate that the resulting neural network approximations are
least 50 times faster than the trajectory optimizer while still
satisfying the safety requirements. We demonstrate the poten-
tial of the approach by implementing a synthesized deep neu-
ral network policy on the nano-quadcopter microcontroller.

Introduction

Optimization-based approaches to control and behavior syn-
thesis promise to automatically generate low-level control
commands given a model of the dynamics and an objective
function. With increasing computational power and maturity
of tools, trajectory optimization has been used for increas-
ingly complex behavior like quadcopter flight with slung
load, collision avoidance (Geisert and Mansard 2016) or hu-
manoid motion (Tassa, Erez, and Todorov 2012), without the
need for tedious custom-tailored controller architectures.

However, in many cases the computational cost of op-
timization is still too high for the real-time requirements
of real robots, particularly on smaller embedded platforms
that have limited computational power. Even though there
has been a push towards fast solvers (Ferreau et al. 2013;
Domahidi et al. 2012; Houska, Ferreau, and Diehl 2011),
the domain of problems where real-time operation is practi-
cal remains limited.

Policy-based approaches on the other hand are fast to
execute but remain a challenge to train. High-dimensional

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

continuous problems are challenging for dynamic program-
ming, and policy-gradient approaches popular in robotics
are typically limited to parametric policies with a moderate
number of parameters.

It was recently suggested to combine trajectory and
policy-based methods, where a particular trajectory opti-
mizer acts as teacher for a deep neural network control pol-
icy. Guided policy search (GPS) (Levine and Koltun 2013)
alternates between stochastic trajectory optimization under
a locally Linear-Quadratic Gaussian (LQG) assumption and
fitting a neural network policy via supervised learning. A
heuristic cost term or constraint is imposed to make the tra-
jectory not stray too far from the current policy, with the aim
of making it easier to learn for the neural network. A simi-
lar but deterministic formulation was used by Mordatch and
Todorov (2014), which also empirically demonstrated that
such a training regime can yield greater sample efficiency.

Learning control policies from an optimizer this way has
the advantage that it reduces a difficult policy search prob-
lem to supervised learning, a technique that has shown great
promise in simulation. In Mordatch et al. (2015) it was used
to animate complex movement behaviors and in Zhang et
al. (2016) it was used for collision avoidance of static ob-
stacles with a simulated quadcopter. Reports of tests with
real hardware are so far few however, where it usually fea-
tures in safe and controlled environments. In Mordatch et al.
(2016) it was combined with an adaptive low-level control
scheme for balancing and reaching tasks with a DARWIN-
OP, a 45 cm humanoid, and in Levine, Wagener, and Abbeel
(2015) vision-based guided policy search was used for a ma-
nipulation task on a larger PR-2.

A major concern with real robots is the risk of costly fail-
ures. The aim of this paper is to provide a practical approach
to construct safe behaviors, generated via offline trajectory-
optimization software, into real-time deep policy approxi-
mations. The main contributions are that we propose a train-
ing procedure with a novel risk-aware resampling step, im-
proving the policy where it matters. This procedure is ag-
nostic of trajectory optimizer, which contrary to GPS is easy
to use with existing constrained solvers. We demonstrate
that policies maintain safety while being much faster than
a state-of-the-art solver for a difficult collision avoidance
scenario with non-cooperative moving obstacles. The com-
putational advantages allow us to implement the deep pol-

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

3812



icy approximation on the microcontroller of a Crazyflie 2.0
nano-quadcopter. To the best of our knowledge this is the
first on-board implementation on such a small embedded
system, and serves to demonstrate how complex behavior
policies can be automatically synthesized and used for com-
putationally constrained platforms.

The remainder of this paper is structured as follows.
First we provide the necessary background on trajectory
optimization and deep policy approximations, then we in-
troduce the training procedure with risk-aware resampling.
The nano-quadcopter platform is briefly covered before we
demonstrate the computational gains and safety of the ap-
proach in simulation as well as with real flights.

Trajectory Optimization

Consider a robot with the state vector x ∈ R
n, con-

trol vector u ∈ R
m and uncertain transition dynamics

p(xt|xt−1,ut−1), where x may include dynamic state like
linear and angular velocities. Uncertainty in the dynamics is
typically quantified by the fit of some learned function

xt = f̂(xt−1,ut−1; θdyn) + εt. (1)

We assume discrete-time dynamics, either directly or
through some numerical integration scheme like Euler or
Runge-Kutta. By solving the discrete-time optimization
problem in Eq. (2) at each time step t, we can select the fu-
ture controls ut..t+T−1 that generate a trajectory xt+1..t+T

with minimal cost c(xt+1..t+T ,ut..t+T−1) from the current
state.

arg min
ut...ut+T−1

E [c(xt+1..t+T ,ut..t+T−1)]

subject to
Pr(g(xt+1..t+T ,ut..t+T−1) ≥ 0) > p.

(2)

In many real-world applications, constraint (vector) func-
tions g(xt,ut−1) ≥ 0 also need to be satisfied along the
trajectory. These can include control saturation, speed limits,
or geometric constraints for e.g. collision avoidance. Due to
the uncertain nature of the dynamics and state of a real sys-
tem, the trajectory is stochastic and constraints can only be
satisfied with some probability p. This corresponds to a con-
tinuous domain Markov decision process with constraints
and state uncertainty. The distribution of the state is com-
monly assumed given by some estimator from observations,
p(xt|o1...ot), whose stochastic properties are known and in-
variant of the state.

Unfortunately, the constrained non-linear probabilistic
case is difficult and rarely feasible to solve in anything ap-
proaching real-time. For linear-Gaussian problems, uncer-
tainty can be propagated in closed-form using a Kalman fil-
ter, or approximated by such. This can also allow easier ap-
proximations for some probabilistic constraints (Blackmore
and Ono 2009; Vitus and Tomlin 2011). For the special case
of unconstrained linear-quadratic Gaussian systems with ad-
ditive noise, a deterministic solver using the linear-Gaussian
mean estimate is also optimal.

Most classical trajectory optimization methods from op-
timal control instead focus on deterministic optimization

problems, where models are deterministic and known, of-
ten derived form physical insight. Even when that is not the
case, “determinizing” the problem by working with expected
values of uncertain variables is often sufficient in practice.
Since the problem is discrete-time, it allows a trajectory to
be computed with standard optimization packages, where
constraints can easily be included. Deterministic constraints
will not fully hold for stochastic problems, but one can em-
ploy a safety margin. More sophisticated approaches in-
clude using Bayesian optimization of deterministic approxi-
mations to satisfy probabilistic constraints (Andersson et al.
2016).

Model-predictive control (MPC) is an iterative applica-
tion of trajectory optimization where at each time step t a
trajectory with fixed planning horizon T is computed, typ-
ically 10-100 time steps and action ut is executed. This
makes it robust to inevitable disturbances in real-world ap-
plications and controller performance relies on using a plan-
ning horizon with sufficient look-ahead for the chosen task.
Due to the advantages of optimization-based control, there
has been a push towards fast MPC solvers. These are in-
creasingly available, at least for convex problems (Ferreau
et al. 2013; Domahidi et al. 2012). They typically have cu-
bic complexity in the number of constraints per time step
(≥n), and interior-point solvers can enjoy linear time com-
plexity in the planning horizon (Domahidi et al. 2012). Non-
linear solvers can also be built on these via SQP-like iter-
ations, e.g. Houska, Ferreau, and Diehl (2011). Even with
these advances, the computational cost of MPC is often still
not practical on real robots, and real-time solutions are re-
liant on domain simplifications. In the following we instead
aim to find robust approximations to trajectory/MPC solvers
by training deep neural network policies.

Learning Deep Policy Approximations
Policy-based methods differ from trajectory optimization by
instead of at each time step solving for the control signals
from the current state, they optimize a parametric policy map
from any state to control signals, u = πθ(x). If these can be
successfully constructed offline, only evaluation is required
at each time step. Training policies for the high-dimensional
continuous problems in robotics remains a difficult problem,
and most success comes from direct policy search methods
with a moderate number of parameters (Deisenroth et al.
2013).

However, if we have a near-optimal trajectory optimizer,
e.g. an MPC solver, to generate examples (xi,ui) of near-
optimal actions, you can instead reduce this to a simpler
problem of learning a supervised learning policy approxima-
tion π̂(x) ≈ πtraj.opt.(x). A difficulty with this is that stan-
dard empirical risk minimization assumes i.i.d. data such
that Ex,u[L(πθ(x),u)] =

∑
i[L(πθ(xi),ui)], but here we

have a sequential dependence from the dynamical system
xt = f(xt−1,ut−1).

Disregarding this is suboptimal as errors can accumulate
over time, particularly for unstable regions, resulting in poor
performance or even dangerous failures. A mitigating cir-
cumstance here is that a near-optimal controller has a strong
stabilizing effect on the system, such that moderate bounded

3813



Figure 1: Training procedure for deep neural network policy approximations.

errors in the policy tend to not accumulate, but instead result
in more benign steady-state errors. Unfortunately, the error
of a supervised policy approximation π̂(x) can get arbitrar-
ily bad in regions with little data. Since there is a sequential
dependence in the data distribution of xi,ui, this can eas-
ily lead to a feedback loop where errors in state and policy
approximation accumulate over time.

One popular approach to dealing with this “data mis-
match” in learning control policies via supervised learning
is DAGGER (Ross, Gordon, and Bagnell 2011), which is
formulated as active learning from an oracle. It is a batch
algorithm that in each episode fits a policy via supervised
learning and then records the encountered state. At the end
of the episode it asks the oracle for what the correct action
should have been and aggregates the examples.

Another recent approach is guided policy search and sim-
ilar algorithms, that specifically tightly couple policy learn-
ing with a trajectory optimizer (Levine and Koltun 2013;
Mordatch and Todorov 2014). Both problems are jointly op-
timized, coupled by costs or constraints to force the gener-
ated, now sub-optimal, trajectory closer to the current policy.
Effectively a bias towards trajectories that are easy to learn,
with the aim to mitigate accumulating errors. Unfortunately,
the coupled nature imposes requirements on trajectories and
solver, and has so far only been demonstrated with rather
elaborate custom-tailored solvers. Constrained solvers are
commonly used in optimization-based control both to en-
code goals and to keep the robot within a safe operating en-
vironment. The iLQR-type (Todorov and Li 2004) trajectory
solvers often used for GPS do not work directly with con-
straints. Emulating constraints in the cost function does not
appear to be ideal either due to the recursive Gauss-Newton
assumptions inherent to the iLQR backward pass.

Ideally, we would like some method to go from an offline
solution using standard trajectory optimization software, to a
fast deep neural network approximation that is safe to imple-
ment on a real robot. One such approach would be to employ
DAGGER. While originally not proposed for deep learning
from trajectory optimization, it is conceptually agnostic of
both choice of learning algorithm and oracle.

While DAGGER is a simple and powerful technique, it
can require many iterations until it converges to a policy
that is safe enough for use on a real robot. Especially when
a robot has costly failure modes that are relatively rare. In
practice, certain states of a domain tend to be more risky
than others. E.g. states close to obstacles, high speeds, or
large tilt angles for keeping ground robots from tipping over.

This highlights a perhaps under-appreciated aspect of learn-
ing control policies via a supervised learning transformation.
The cost function of the original control problem in Eq. (2),
c(xt+1..t+T ,ut..t+T−1), or the constraints, can be very sen-
sitive to errors in ut for certain “dangerous” states xt, while
being very forgiving in others. This information is lost when
transforming it to an empirical loss Ex,u[L(πθ(x),u)] with
i.i.d.data. Since sequential dependence is ignored, we can-
not capture the true objective, but we can prioritize accuracy
in dangerous regions of the state space.

As we are using a trajectory solver, these might already
be encoded as constraints on the solution, in which case
the dangerous regions can be trivially defined as some delta
around the important constraints.

Risk-Aware Resampling

To combat both the data mismatch problem and heteroge-
neous costs we propose a simple but effective resampling
technique. Formally, assume we can reshape the data dis-
tribution to q(x,u) = r(x,u)p(x,u), where r(x,u) is a
rescaling function assigning higher weight to dangerous re-
gions while still ensuring that q(x,u) is a proper probability
distribution. It is easy to see that this can be formulated as a
rescaling of the loss function,

Eq(x,u)[L(π̂θ(x),u)] =

∫∫
q(x,u)L(π̂θ(x),u) dxdu

=

∫∫
r(x,u)p(x,u)L(π̂θ(x),u) dxdu (3)

= Ep(x,u)[r(x,u)L(π̂θ(x),u)].

To address both issues we want to select a r(x,u) that
widens the state distribution to make the controller robust
to moderate state perturbations from policy approximation
errors, as well as assigns more importance to dangerous re-
gions. We used a resampling procedure that first adds a small
amount of noise N (0, σr) to make the controller robust to
moderate state perturbations from policy approximation er-
rors. To amplify dangerous state we do rejection sampling,
drawing more samples from dangerous regions by only ac-
cepting non-dangerous state with p = 1/or, where or is
an odds-multiplier of drawing dangerous state, reflecting a
rescaling of the loss. We found that a σr of 0.1 standard de-
viations and or of 10 worked well.

This has the dual benefit of both increasing sample cov-
erage and implicitly reweighting the loss function in dan-
gerous regions. Another benefit is that this also allows use

3814



of standard supervised learning software without needing to
tamper with the loss function.

The full training procedure with this risk-aware resam-
pling is seen in Figure 1. Given an objective, constraints and
approximate model we can automatically generate wanted
robot behavior with a trajectory optimizer using an MPC
scheme. For robustness we simulate the system by sampling
the stochastic model and state estimator, while recording
the chosen state-action (xt,ut). These then go through the
robustness-enhancing risk-aware resampling step based on
the domain-specific dangerous regions. Finally, we learn a
deep neural network approximation using standard square
loss. While we found that this enabled one-shot learning of
safe controllers for our application, it is straight-forward to
use multiple DAGGER-like iterations.

Deep Neural Network Training

To learn the deep policy approximation we minimize
Ex,u[L(πθ(x),u)], where L(.) is simple square loss. The
policy is represented by a fully-connected feed-forward deep
neural network (DNN) (Bengio, Goodfellow, and Courville
2015), with θ its parameters.

Each DNN layer i is defined by

yi+1 = hi(Wiyi + bi) (4)

with network input y1 = x, output yN = π̂(x), and hi(x) is
the (vector) activation function for layer i. In this paper we
use the popular ReLU activation function, which for each
neuron j is the scalar function

hi,j(x) =

{
x if x > 0

0 otherwise
(5)

for all hidden layers i, except the output layer yN , which
is linear. The networks were implemented in Tensorflow1,
a graph-based language for numerical computation, and
trained using a consumer Geforce GTX970 GPU. Feed-
forward policy evaluation was also implemented on the
nano-quadcopter microcontroller, as will be detailed in the
experiments section.

Training batches contained about 500 000 examples from
the trajectory optimizer, which for our problems took ap-
proximately 12 hours to generate. We used the ADAM
(Kingma and Ba 2015) stochastic gradient algorithm with
mini-batches of size 500 and early stopping. Even just a
small amount of dropout (Srivastava et al. 2014), e.g. 1-5%,
seemed to be helpful for the larger problems.

Platform

The platform used in the experiments is a Crazyflie 2.0 from
Bitcraze2, seen in Figure 2. The Crazyflie 2.0 is an open-
source 7 cm nano-quadcopter platform. It has an empty
weight of 27 grams, with 15 grams of payload capacity.
The platform is capable of up to 7 minutes of continuous
flight. Communication to the ground is realized using the

1www.tensorflow.org
2www.bitcraze.io

Figure 2: The Bitcraze Crazyflie 2.0 nano-quadcopter.

Crazyradio PA (2.4GHz ISM band radio) with 1 km line-
of-sight range. On-board integrated sensors include a 10-
DOF IMU with accelerometer, gyro, magnetometer and a
high precision pressure sensor. The data is collected and pro-
cessed by a STM32F405 main application MCU (Cortex-
M4, 168MHz, 192kb SRAM, 1Mb flash). The Crazyflie uses
a complementary filter for roll, pitch and yaw angle estima-
tion and has standard on-board PID controller stabilization
for angles given target setpoints.

Experiments

We evaluate the proposed deep policy approximation ap-
proach on navigation and collision avoidance tasks with the
Crazyflie nano-quadcopter. We first validate the safety of
the DNN policies in a difficult simulated collision avoidance
scenario and then proceed to implement a suitable policy on
the on-board microcontroller.

We follow the training procedure in Figure 1. First we
estimate a probabilistic dynamics model of the platform
f̂(.; θdyn) from Eq. (1). There are a multitude sources of er-
ror for a real robotic system, unmodelled dynamics (e.g. tur-
bulence), sensors, latencies and jitter from processing and
communication. We therefore do not seek a perfect model
and make a linear approximation, a common modeling as-
sumption for quadcopters. We treat the on-board attitude
PID loops as part of the dynamics and control the quad-
copter using the setpoints as control inputs u. The needed
quadcopter state x is position, velocity and angles. The pa-
rameters and errors are identified using domain knowledge
and flight data.

Navigation and Collision Avoidance

Efficient collision avoidance outside of controlled environ-
ments is in general a hard problem in robotics, particularly
for moving obstacles with uncertain motion patterns. Since
a trajectory optimizer can take both robot and obstacle dy-
namics into account, it can produce better behavior. We use
a standard objective function with a cost set to reflect dis-
tance to the quadcopter navigation goal and small costs on
actions, to make flight less aggressive close to the desti-
nation. To enforce obstacle avoidance we put constraints
on the minimum distance between quadcopter and obstacle
positions along the flight trajectory, dist(pq,t,po,t) ≥ 0.

3815



Figure 3: Safety margin for stochastic collision avoidance.

Obstacles with uncertain movement patterns, e.g. humans,
are harder since their trajectories are stochastic. We follow
Andersson et al. (2016) and use safe deterministic approx-
imations with parametric soft margin m(θ,xt), such that
dist(pq,t,po,t) ≥ m(θ,xt). We use the parameterization
seen in Figure 3, where safe parameter values of θlimit = 1.0
and θscale = 0.9 were found by simulation.

Obstacle constraints are non-convex, and one can use
standard non-linear solvers like IPOPT (Wächter and
Biegler 2006) since our deep policy learning approach only
requires trajectories offline. To offer a better comparison of
the possible performance gains of the proposed approach,
we instead use the domain-specific iterative MPC solver and
scenarios of Andersson et al. (2016), which admitted 10Hz
real-time operation on a desktop CPU.

As benchmark we use the warehouse scenario, seen in
Figure 4. This is a difficult scenario where the quadcopter
is given navigation goals to pick up green boxes while peo-
ple move around randomly in the same small area, and with-
out regard for the quadcopter. It is not allowed to fly above
humans, so we restrict it to the x-y plane. This makes the
collision avoidance task harder, and is a reasonable safety
requirement for indoor use. For our proposed risk-aware
resampling, we define the high-risk regions to be all state
within 1m of an obstacle. We did not need to tune this.

We consider two problem sizes of this scenario, one mov-
ing obstacle and three moving obstacles. We learn DNN
policy approximations and evaluate their safety and perfor-
mance. To perform navigation we need the six-dimensional
dynamic state of the quadcopter, and since destination is a
free variable we encode it as an input to the policy. Each
obstacle is then encoded as another position and velocity
pair. We use three hidden layers for each problem size,
with the network architectures 10-200-200-200-2 and 18-
400-400-400-2 respectively. In terms of computational cost,
the largest deep neural network approximation took about
1ms, over 50 times faster than the trajectory optimization
via MPC. This is illustrated in greater detail by Figure 5.

The safety results of a 20 minute stochastic simulation

Figure 4: The warehouse scenario with three obstacles.

with one obstacle can be seen in Table 1.

Scenario Collisions Min. Dist. TTP

Traj. Opt. (MPC) 0 0.14m 3.12 s

Supervised DNN 9 −0.38m 3.14 s

DAGGER DNN 0 0.21m 3.14 s

Risk-Aware 0 0.19m 3.14 s

Resampling DNN

Table 1: One non-cooperative moving obstacle.

Even in the smaller scenario, a simple supervised DNN
approximation using the trajectory optimizer as teacher re-
sulted in possibly costly and dangerous collisions with the
obstacle. Looking at the recorded minimum distance, as the
obstacles and quadcopter have 0.35m and 0.07m radius re-
spectively, the quadcopter managed to go almost straight
through it. This is problematic as a small nudge can be ac-
ceptable in practice, while collisions at high speed can cause
serious damage. This behavior is typical of the data mis-
match problem, errors accumulate when the dynamical sys-
tem runs into regions rarely seen during training.

Scenario Collisions Min. Dist. TTP

Traj. Opt. (MPC) 0 0.03m 4.63 s

Supervised DNN 49 −0.41m 4.63 s

DAGGER DNN 9 −0.39m 5.08 s

Risk-Aware 0 0.16m 5.48 s

Resampling DNN

Table 2: Three non-cooperative moving obstacles.

Both DNN-augmented DAGGER and the proposed risk-

3816



Traj. Opt. 3x400_TF 2x50_TF 2x50_C

[m
s
]

10 -2

10 0

10 2

Figure 5: Computational cost of action selection.

aware resampling can handle this smaller instance. However,
as can be seen in Table 2, the larger problem instance is
too complicated for robust policies without risk-aware re-
sampling, and DAGGER also exhibits the same problematic
worst-case performance.

An interesting observation is that there is a trade-off be-
tween safety and travel time to package (TTP). The trajec-
tory optimizer oracle , while computationally expensive, can
make just the right safety trade-off to quickly pick up the
packages. The DNNs are approximations and lose some ac-
curacy. Risk-aware resampling allocates more of their ac-
curacy towards safety, which is precisely the trade-off we
wanted to make for operating real robots.

On-board DNN Flights

Having ascertained that the method works in simulation, we
considered the final step towards a working application, im-
plementing the policy on-board the nano-quadcopter MCU.
As generating the behavior via on-board optimization was
infeasible, we only evaluated the policy. As the Crazyflie
is designed to be small and affordable, it lacks the sensors
for positioning and detecting obstacles that may be found
on larger more expensive UAVs. We used a room equipped
with a motion capture system from Vicon3 and added a small
amount of noise, emulating a laser ranging sensor.

The Bitcraze software running on the MCU uses a real-
time operating system kernel from FreeRTOS4. Tasks are
implemented in the form of modules and scheduled for ex-
ecution with a fixed update rate. The implementation of our
controller was added to the main stabilization task before
the target angle set points are set and processed by the inner
PID control loops. Each time the external position, velocity
and obstacle data are received, the neural network processes
them and calculates the target angle setpoints. The sensing
updates are sent at 10Hz from the ground.

While processing power was acceptable, the low amount
of SRAM turned out to be a bottleneck for large neural net-
works. Memory is normally not a concern, but this high-

3www.vicon.com
4www.FreeRTOS.org

x [m]

-5 0 5

y
 [
m

]

-4

-2

0

2

4
Quadcopter
Obstacle

(a) Trajectories.

Time [s]

0 20 40

D
is

ta
n
c
e
 [
m

]

0

1

2

3

4

5
Distance to obstacle [m]

(b) Distance to obstacle.

x [m]

-5 0 5

y
 [
m

]

-4

-2

0

2

4
Quadcopter
Obstacle

(c) Trajectories.

Time [s]

0 20 40 60

D
is

ta
n
c
e
 [
m

]

0

1

2

3

4

5
Distance to obstacle [m]

(d) Distance to obstacle.

Figure 6: On-board DNN quadcopter experiments. Top
shows it dodging one human obstacle. Bottom shows it fly-
ing a rectangular pattern while avoiding one human obstacle.

lights the different computational and memory trade-offs in-
herent to trajectory and policy approaches. While the origi-
nal network sizes were chosen for high accuracy in a square-
loss sense, as noted this is an imperfect metric of actual
performance. We found that a 10-50-50-2 architecture could
reach sufficient safety for collision avoidance with one ob-
stacle, and we leave real-world tests of larger problem in-
stances for future work.

As Tensorflow is not made for use on resource constrained
platforms, we implemented feed-forward operation of the
networks in C. As seen in Figure 5, while Tensorflow saw
little change in performance due to overhead in the graph
execution, the native implementation realized the expected
two orders of magnitude speed-up. Another advantage for
embedded systems is that the run-time of a DNN policy has
low variance, while non-convex trajectory optimization re-
quires complicated iterative numerical algorithms that may
take a variable number of steps to converge to a solution.
Methods for learning sparser networks or deeper and better
abstractions seem like promising directions for leveraging
large DNN policies on embedded systems without dedicated
hardware.

We share typical flight results5 in Figure 6. The human
obstacle repeatedly walks towards the quadcopter, which in
response glides to the side. As can be seen in Figure 6b it
maintains a safe distance and never gets closer than 0.8m.
In Figure 6c the quadcopter instead attempts to navigate in
a rectangle pattern while the person is walking around ran-
domly. The quadcopter maintains a safe distance throughout
and we did not encounter any collisions in our experiments.

5See supplemental material: youtu.be/xa53w1tyZl0

3817



Conclusions

Guided by a real quadcopter application, we examined using
deep policy approximations to overcome the computational
issues with optimization-based control for robotic platforms.
We proposed a novel risk-aware active learning procedure
that allows use of both standard trajectory-optimization and
deep learning software, while still enabling us to one-shot
learn safe policies for difficult quadcopter collision avoid-
ance scenarios. We found the deep neural network policies
to be over 50 times faster on the more challenging prob-
lems, and the smaller instances even allowed on-board im-
plementation on a nano-quadcopter microcontroller while
retaining safety. Deep policy approximations appear to be
a promising research direction for embedded platforms that
can be expected to improve with advances in deep learning.
In particular, methods to learn sparser or deeper and more
abstract architectures is an avenue of particular interest, as
that could further reduce both memory and computational
requirements.

Acknowledgments

This work is partially supported by grants from the Swedish
Research Council (VR) Linnaeus Center CADICS, the EL-
LIIT Excellence Center at Linköping-Lund for Information
Technology, the National Graduate School in Computer Sci-
ence, Sweden (CUGS), the Swedish Foundation for Strate-
gic Research (SSF) project Symbicloud.

References

Andersson, O.; Wzorek, M.; Rudol, P.; and Doherty, P. 2016.
Model-predictive control with stochastic collision avoidance
using bayesian policy optimization. In 2016 IEEE International
Conference on Robotics and Automation (ICRA), 4597–4604.
Bengio, Y.; Goodfellow, I. J.; and Courville, A. 2015. Deep
learning. Book in preparation for MIT Press.
Blackmore, L., and Ono, M. 2009. Convex chance constrained
predictive control without sampling. In Proceedings of the
AIAA Guidance, Navigation and Control Conference, 7–21.
Deisenroth, M. P.; Neumann, G.; Peters, J.; et al. 2013. A
survey on policy search for robotics. Foundations and Trends
in Robotics 2(1-2):1–142.
Domahidi, A.; Zgraggen, A.; Zeilinger, M.; Morari, M.; and
Jones, C. 2012. Efficient interior point methods for multistage
problems arising in receding horizon control. In IEEE Confer-
ence on Decision and Control (CDC), 668 – 674.
Ferreau, H. J.; Kirches, C.; Potschka, A.; Bock, H. G.; and
Diehl, M. 2013. qpoases: A parametric active-set algorithm
for quadratic programming. Mathematical Programming Com-
putation 1–37.
Geisert, M., and Mansard, N. 2016. Trajectory generation for
quadrotor based systems using numerical optimal control. In
2016 IEEE International Conference on Robotics and Automa-
tion (ICRA), 2958–2964.
Houska, B.; Ferreau, H.; and Diehl, M. 2011. ACADO Toolkit
– An Open Source Framework for Automatic Control and Dy-
namic Optimization. Optimal Control Applications and Meth-
ods 32(3):298–312.

Kingma, D., and Ba, J. 2015. Adam: A method for stochastic
optimization. In International Conference on Learning Repre-
sentations (ICLR 2015), San Diego, 2015.
Levine, S., and Koltun, V. 2013. Variational policy search
via trajectory optimization. In Advances in Neural Information
Processing Systems (NIPS), 207–215.
Levine, S.; Wagener, N.; and Abbeel, P. 2015. Learning
contact-rich manipulation skills with guided policy search. In
2015 IEEE International Conference on Robotics and Automa-
tion (ICRA), 156–163.
Mordatch, I., and Todorov, E. 2014. Combining the bene-
fits of function approximation and trajectory optimization. In
Robotics: Science and Systems (RSS).
Mordatch, I.; Lowrey, K.; Andrew, G.; Popovic, Z.; and
Todorov, E. V. 2015. Interactive control of diverse complex
characters with neural networks. In Advances in Neural Infor-
mation Processing Systems 28 (NIPS). Curran Associates, Inc.
3132–3140.
Mordatch, I.; Mishra, N.; Eppner, C.; and Abbeel, P. 2016.
Combining model-based policy search with online model learn-
ing for control of physical humanoids. In 2016 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 242–
248.
Ross, S.; Gordon, G. J.; and Bagnell, D. 2011. A reduction of
imitation learning and structured prediction to no-regret online
learning. In Proceedings of the Fourteenth International Con-
ference on Artificial Intelligence and Statistics, AISTATS 2011,
Fort Lauderdale, USA, April 11-13, 2011, 627–635.
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: A simple way to prevent neu-
ral networks from overfitting. The Journal of Machine Learning
Research 15(1):1929–1958.
Tassa, Y.; Erez, T.; and Todorov, E. 2012. Synthesis and sta-
bilization of complex behaviors through online trajectory opti-
mization. In 2012 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (RSS), 4906–4913. IEEE.
Todorov, E., and Li, W. 2004. Iterative linear-quadratic regula-
tor design for nonlinear biological movement systems. In First
International Conference on Informatics in Control, Automa-
tion and Robotics, 222–229 vol. 1. N.P.: INSTICC Press.
Vitus, M. P., and Tomlin, C. 2011. Closed-loop belief space
planning for linear, gaussian systems. In 2011 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2152–
2159.
Wächter, A., and Biegler, T. L. 2006. On the implementation of
an interior-point filter line-search algorithm for large-scale non-
linear programming. Mathematical Programming 106(1):25–
57.
Zhang, T.; Kahn, G.; Levine, S.; and Abbeel, P. 2016. Learning
deep control policies for autonomous aerial vehicles with mpc-
guided policy search. In 2016 IEEE International Conference
on Robotics and Automation (ICRA), 528–535.

3818




