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Abstract

WiFi-SLAM aims to map WiFi signals within an unknown
environment while simultaneously determining the location
of a mobile device. This localization method has been ex-
tensively used in indoor, space, undersea, and underground
environments. For the sake of accuracy, most methods label
the signal readings against ground truth locations. However,
this is impractical in large environments, where it is hard
to collect and maintain the data. Some methods use latent
variable models to generate latent-space locations of signal
strength data, an advantage being that no prior labeling of
signal strength readings and their physical locations is re-
quired. However, the generated latent variables cannot cover
all wireless signal locations and WiFi-SLAM performance is
significantly degraded. Here we propose the diversified gen-
erative latent variable model (DGLVM) to overcome these
limitations. By building a positive-definite kernel function,
a diversity-encouraging prior is introduced to render the gen-
erated latent variables non-overlapping, thus capturing more
wireless signal measurements characteristics. The defined ob-
jective function is then solved by variational inference. Our
experiments illustrate that the method performs WiFi local-
ization more accurately than other label-free methods.

1 Introduction

Robot localization plays a crucial role in applications such as
activity recognition, surveillance, and content-aware com-
puting. Owing to the portability, low price, and high ac-
curacy of WiFi access points, WiFi-based simultaneous lo-
calization and mapping (SLAM) has been extremely use-
ful for mobile device localization. Exploiting wireless sig-
nal strength for robot localization is a relatively novel but
increasingly useful research field. Here we propose a new
localization approach that utilizes WiFi access points and
aims to improve robot localization.

There is no definite link between the WiFi signal strength
and location of a mobile device; therefore, it is difficult to
generate a good likelihood model of signal strength mea-
surements that can be used to accurately predict the physi-
cal location of a mobile device. Most methods seek to de-
velop robust likelihood models from calibration data col-
lected in a given environment, where calibration data refers
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to a set of wireless signal strength measurements associated
with their ground truth location from a mobile device. Such
approaches have proven to be extraordinarily effective for
robot localization.

Nevertheless, these methods are highly dependent on la-
beled ground truth location data, restricting their flexibility
and applicability. Put another way, mobile devices cannot
be localized based on raw, unlabeled signal strength data.
Although SLAM methods have been developed that simul-
taneously estimate the location and map an environment, the
nature of wireless signal strength prohibits the use of stan-
dard SLAM in this scenario.

Ferris et al. (Ferris, Fox, and Lawrence 2007) pre-
sented Gaussian process latent variable model (GPLVM)-
based WiFi-SLAM to perform localization without the
need for ground truth-labeled physical locations. They
projected high-dimensional signal strength data into two-
dimensional latent variables, where the two-dimensional
latent variables were considered the x-y-coordinates of
the robot. GPLVM-based WiFi-SLAM also incorporated
three types of constraints: locations→signal strengths, sig-
nal strengths→locations and locations→locations. As a con-
sequence, this technique produced a more accurate signal
strength map that could be further used to estimate the phys-
ical locations of mobile devices.

WiFi-SLAM employs GPLVMs (Lawrence 2004) to
project signal strength measurements into a simpler latent
structure. Then, the inferred two-dimensional latent struc-
ture is used to find the x-y coordinates of the WiFi ac-
cess points. In practice, the WiFi access points constantly
send signals from widely distributed locations. Therefore,
GPLVM is needed to generate the latent variables of the x-
y coordinates that span the WiFi signal space as diversely
as possible. However, the GPLVMs in WiFi-SLAM create
highly redundant latent structures without taking diversity
into account. This is because GPLVM places large proba-
bility masses on the places where most WiFi access points
are located and, conversely, small probability masses on the
places where the wireless signal are weak.

Rather than creating latent variables with preferences and
redundancy, a unique group of latent variables would ideally
be created on the full characteristics of the signal strength
measurements. In this paper, we propose DGLVM to place
a diversity-encouraging prior on the independent latent dis-
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tributions. To achieve this, we construct a probability prod-
uct kernel to measure the similarities between the distri-
butions of latent variables. A probability diversity prior is
then obtained by adding the determinant on the constructed
product kernel, where the determinant of this Gram matrix
ensures greater diversity in the created latent variables to
span all possible WiFi signals areas. To solve the objective
function, variational inference is first exploited to obtain a
lower bound and, after maximizing the lower bound, the so-
lution is derived. We experiment on a set of wireless sig-
nal measurements with ground truth locations recorded. Our
results demonstrate the robustness and effectiveness of this
approach for localization.

We first review existing works on SLAM techniques in
Section 2. A brief introduction to GPLVM-based WiFi-
SLAM is provided in Section 3, before demonstrating our
proposed model in Section 4. Finally, we perform experi-
ments and evaluate our method in Section 5. We conclude in
Section 6.

2 Related Work
SLAM techniques can be broadly classified into several
categories: signal-based SLAM, laser SLAM, and visual
SLAM.

In signal-based SLAM, the ground truth locations of
the training signal strength measurements are probably un-
known. Therefore, WiFi-SLAM (Ferris, Fox, and Lawrence
2007) was proposed to project the signal strength measure-
ments into low-dimensional latent variables, where the la-
tent variables are regarded as the x-y locations of the sig-
nal strength. For dimension reduction, approaches such as
GPLVM (Lawrence 2004) and action respecting embed-
dings (ARE) (M. Bowling and Milstein 2005) can be em-
ployed for non-linear dimension reduction. Furthermore,
since successive signal strength readings are based on a time
series, the time-series constraint is introduced into Gaus-
sian process dynamical models (Wang, Fleet, and Hertz-
mann 2006). However, this localization method is inaccu-
rate when only signal measurement information is avail-
able. Other methods seek to label ground truth locations
on the signal strength measurements for training. For in-
stance, (Bahl and Padmanabhan 2000; Haeberlen et al. 2004;
Letchner, Fox, and LaMarca 2005) directly model signal
propagation through space. Conversely, rather than model-
ing signal propagation, (Haeberlen et al. 2004; Letchner,
Fox, and LaMarca 2005) model the signal strength measure-
ments at locations of interest. In reality it transpires that ob-
stacles like walls and furnitures exist in the space that com-
promise modeling accuracy.

In laser-based SLAM, some methods apply Kalman filter-
based techniques to address SLAM issues. For instance, ex-
tended Kalman filters effectively correlate motion and sen-
sor models to estimate the landmark maps and robot poses.
However, one drawback of such techniques is that the sen-
sor model is non-linear, so the estimated pose is less accu-
rate. Therefore, unscented Kalman filter SLAM (Lee, Lee,
and Kim 2006; Kim, Sakthivel, and Chung 2008; Kim, Kim,
and Chung 2011) approaches have been proposed to im-
prove pose and map estimation. Other works have focused

on particle-filter based SLAM such as Rao-Blackwellized
particle filters (RBPF), in which each particle in RBPF
represents a possible robot trajectory and a map. Some
RBPF extensions (Grisetti, Stachniss, and Burgard 2007;
2005) aim to describe more efficient map representations
and reduce the number of particles to improve the motion
model.

Visual SLAM overcomes the limitations of SLAM with
the aid of RGB-D, stereo, or monocular cameras. By jointly
combining visual feature points and depth measurements,
most RGB-D SLAM methods are likely to estimate the
transformations between successive frames with iterative
cloud points (Besl and McKay 1992; Rusinkiewicz and
Levoy 2001; Fitzgibbon 2003) and PnP estimation (Lowe
2004; Bay et al. 2008; Rublee et al. 2011). They also
employ relocalization techniques in case the robot revisits
the same places. These methods inevitably employ the g2o
framework (Kuemmerle et al. 2011) for global optimiza-
tion and to obtain the robot poses. The early monocular
SLAM employed filtering techniques (Davison et al. 2007;
Civera, Davison, and Montiel 2008; Chiuso et al. 2002)
to simultaneously map and localize a camera. However,
these methods turned out to be time consuming and error-
prone. Therefore, other works (Mouragnon et al. 2006; Klein
and Murray 2007; Strasdat, Montiel, and Davison 2012;
Engel, Schops, and Cremers 2014) perform SLAM using
a small number of key frames and, in doing so, simulta-
neously accomplish camera tracking and mapping in real
time. To further enhance accuracy, the relocalization tech-
nique (Klein and Murray 2008) has been employed using
the low-resolution thumbnails of the key frames.

3 GPLVM for WiFi-SLAM

In this section, we describe the basic concepts of GPLVM
(Lawrence 2004). In doing so, we illustrate how GPLVM
can be used to estimate a likelihood model of wireless signal
strength measurements for WiFi-SLAM.

In the case of WiFi-SLAM techniques, let Y ∈ Rn×p

(with columns {y:,j}pj=1) be the wireless signal strength
measurements, where n, p are the number and dimension-
ality of each wireless signal strength measurement, respec-
tively. Wireless signal strength measurements are supposed
to have their own locations. Since the ground truth lo-
cations are unknown, the low-dimensional latent variables
X ∈ Rn×q in GPLVM can be used to denote these locations
in the 2D plane. Then, we have:

p(Y | X) =

p∏
j=1

p(y:,j | X), (1)

where y:,j represents the jth column of Y and

p(y:,j | X) = N (y:,j |0,Kff + σ−1In). (2)

Here, the covariance matrix Kff refers to a kernel function.
Since the observed data are noisy, we take the Gaussian ob-
servation noise variance σ−1 into consideration. The covari-
ance between two latent variables is defined using the expo-
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nentiated quadratic (RBF)-based kernel:

k(xi,:, xk,:) = σ2
f exp

(
− 1

2

q∑
j=1

αj(xi,j − xk,j)
2
)
, (3)

where σ2
f is the signal variance, xi,: is the ith row of X,

and Kff = k(xi,:, xk,:). Moreover, αj is a length scale that
determines the strength of the correlation between locations.
Both σ2

f and αj are parameters that control the smoothness
of the kernel functions.

An example GP signal strength model for one access point
is shown in Fig. 1. Based on the GPLVM framework, Ferris
et al. (2007) proposed the following constraints to render
WiFi-SLAM more robust.

Location → signal strength In WiFi-SLAM, similar lo-
cations are supposed to have similar signal strengths. This
property can essentially be controlled by the kernel function
in Eq. (3) because it measures the similarity between latent
variables.

Signal Strength → location Likewise, similar signal
strengths should correspond to similar locations. GPLVM-
based WiFi-SLAM applied back constraints (Lawrence and
Quinonerocandela 2006) to ensure that the close points in Y
are also close in X.

Location → location Due to the fact that the signal mea-
surements are collected in sequence, the dynamic prior is in-
corporated into the model. Consequently, locations that fol-
low each other during collection should be near each other
in the generated latent space.

Then, the likelihood function that models the observed
wireless signal strength measurements is:

p(Y ) =

∫
p(Y | X)p(X)dX. (4)

The scaled conjugate gradient (SCG) is exploited to solve
the objective function. The interested readers should refer to
(Lawrence 2004) for more details.

4 The Diversified Generative Latent Variable

Model

In WiFi-SLAM, Ferris et al. (2007) incorporated GPLVM
with three constraints to project the signal measurements
into low-dimensional latent variables. These latent variables
are regarded as physical locations of the mobile devices.
However, the latent variables generated in WiFi-SLAM are
highly redundant and overlapping, reducing the capacity of
the model to capture all possible wireless signal areas.

We propose the diversified generative latent variable
model (DGLVM). We construct a diversity prior on a set
of component-specific distributions q(xi|φi)

I
i=1, where xi

refers to a latent variable. The functionality of distribu-
tions q(xi|φi)

I
i=1 are introduced below. Here, a positive-

definite kernel Kφ is constructed between the distribu-
tions q(xi|φi)

I
i=1, such that these distributions are non-

overlapping and are even inclined to be more diverse. Fur-
thermore, variational inference is exploited to solve the ob-
jective function. The created latent variables xi should ex-
plain substantially different regions and lead to enhanced,

Figure 1: The signal strength propagation of one access point
modeled by GPLVM (Ferris, Fox, and Lawrence 2007). The
black trace is the ground truth path.

non-redundant feature extraction of wireless signal measure-
ments (shown in Fig. 2).

The positive-definite kernel K : Φ×Φ → R is defined on
a space Φ. The whole process aims to select a random subset
of possible φ from Φ. Meanwhile, the probability density
associated with a particular finite φ ∈ Φ is defined as:

p(φ ∈ Φ) = |Kφ|, (5)

where |Kφ| is a positive-definite Gram matrix and φ includes
all the parameters of the distributions q(xi|φi)

I
i=1.

Therefore, the objective function is:

F (θ) = logP (Y ) + λ log |Kφ|, (6)

where θ = {φi, σ
2
f , σ, α1, ..., αj} are the hyperparameters

in our proposed model and some of them use the same
symbols as in GPLVM. Furthermore, λ is used to balance
the weights between measurements of likelihood and the
diversity-encouraging prior.

The Kernel-based Diversity Prior

In our model, the kernel Kφ consists of a positive-
definite correlation function R(φi, φj) and the “prior kernel”√
π(φi)π(φj). Then, the kernel can be expressed as:

K(φi, φj) = R(φi, φj)
√
π(φi)π(φj), (7)

where R(φi, φi) = 1.
Here, the kernel-based diversity prior allows for repul-

sion, where we use the probability product kernel to con-
struct each element in the kernel matrix to define the repul-
sion. Therefore, every kernel element is expressed as the in-
ner product of probability distributions:

K(φi, φj ; ρ) =

∫
χ

f(x|φi)
ρf(x|φj)

ρdx, (8)
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Figure 2: Latent variables generated by our model with different prior types on a set of wireless signal measurements. (a) With-
out dynamic and diversity-encouraging priors. (b) With dynamic prior only. (c) With both dynamic and diversity-encouraging
priors.

where ρ > 0.
In the general case of the Gaussian distributions f1 =

N(μ1,Σ1) and f2 = N(μ2,Σ2), the product kernel is:
K(f1, f2) =∫

1√
(2π)ρD|Σ1|ρ

exp
(
−ρ

2
(x− μ1)

TΣ−1
1 (x− μ1)

)
1√

(2π)ρD|Σ2|ρ
exp

(
−ρ

2
(x− μ2)

TΣ−1
2 (x− μ2)

)
dx,

(9)
where D refers to the dimensionality of x. For simplicity, let
ρ = 1, the probability product kernel becomes:

K(f1, f2) =(2π)−
D
2 |Σ̂| 12 (|Σ1||Σ2|)− 1

2 exp

(
−1

2

(

μT
1 Σ

−1
1 μ1 + μT

2 Σ
−1
2 μ2 − μ̂T Σ̂μ̂

))
, (10)

where Σ̂ = (Σ−1
1 +Σ−1

2 )−1 and μ̂ = Σ−1
1 μ1 +Σ−1

2 μ2.
In our approach, the probability product kernel is em-

ployed to measure the variational distributions f1 =
q(xi|μi, Si) and f2 = q(xj |μj , Sj). Note that the covariance
matrices Si and Sj are diagonal matrices. Then, we have:

K(f1, f2) = (2π)−
D
2

( D∏
d=1

1

Sid + Sjd

) 1
2

exp

(

−1

2

D∑
d=1

(μid − μjd)
2

Sid + Sjd

)
. (11)

Here, the normalized variant R(φi, φj) can be derived as
follows:

R(f1, f2) = K(f1, f2)/
√
K(f1, f1)K(f2, f2). (12)

Then, the correlation kernel becomes:

R(f1, f2) =
( D∏

d=1

2
√
SidSjd

Sid + Sjd

) 1
2

exp

(

−1

2

D∑
d=1

(μid − μjd)
2

Sid + Sjd

)
. (13)

Now, the product kernel for the diversity prior is con-
structed. We move on to introduce how to solve the proposed
objective function.

Variational Inference

In our proposed model, we wish to maximize the F (θ)

F (θ) = log

∫
p(Y, F, U,X)dXdFdU + log |Kφ|λ. (14)

Here, the inducing points U are to render the objective
function solvable. Then, the log likelihood function can be
further factorized as:

F (θ) = log

∫ p∏
j=1

p(y:,j |f:,j)
(
p(f:,j |u:,j , X)p(X)dX

)

p(u:,j)dUdF + log |Kφ|λ.
(15)

Note that integration over X is unfeasible since X
is an input, in a rather complex non-linear manner, of
p(f:,j |u:,j , X), which contains the kernel matrix Kff .

Thus, the variational distribution q(F,U,X) is applied to
approximate the true posterior P (F,U,X|Y ) with the form:

q(F,U,X) =

(
p∏

j=1

p(f:,j |u:,j , X)q(u:,j)

)
q(X). (16)

Here, q(X) is a variational distribution that follows:

q(X) =
n∏

i=1

q(xi,:|φi) =

n∏
i=1

N(xi,:|μi,:, Si), (17)

where the variational distribution q(X) is exploited to con-
struct the diversity prior in the last section and each covari-
ance matrix Si is diagonal.

In terms of Jensen’s inequality, the lower bound
F
(
q(X), q(U)

)
of the objective function can be derived by:

F
(
q(X), q(U)

)
=∫

q(F,U,X) log
p(Y )

q(F,U,X)
dXdFdU + log |Kφ|λ.

(18)
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After inserting Eq. (16) into Eq. (18), we have:

F
(
q(X), q(U)

)
=

∫ p∏
j=1

p(f:,j |u:,j , X)q(u:,j)q(X)

(

log

∏p
j=1 p(y:,j |f:,j)p(u:,j)p(X)∏p

j=1 q(u:,j)q(X)

)
dXdFdU + log |Kφ|λ.

(19)

For simplicity, let 〈·〉p be shorthand for the expectation
with respect to the distribution p. Then:

F (q(X), q(U)) =
p∑

j=1

(∫
q(u:,j)q(X)〈logp(y:,j |f:,j)〉p(f:,j |u:,j ,X)dXdu:,j

+ 〈logp(u:,j)

q(u:,j)
〉q(u:,j)

)
−KL

(
q(X)||p(X)

)
+ λ log |Kφ|.

(20)

To simplify the sum term in Eq. (20), let the formulation
within the sum notation be denoted by:

F̂j

(
q(X), q(U)

)
= 〈logp(u:,j)

q(u:,j)
〉q(u:,j)

+

∫
q(u:,j)q(X)〈logp(y:,i|f:,j)〉p(f:,j |u:,j ,X)dXdu:,j .

(21)

Now, the lower bound F
(
q(X), q(U)

)
consists of three

parts: λlog|Kφ|, F̂j

(
q(X), q(U)

)
, and KL divergence

KL
(
q(X)||p(X)

)
.

We then move on to compute KL
(
q(X)||p(X)

)
. Since

both q(X) and p(X) are Gaussian distributions, the KL term
can be easily calculated:

KL
(
q(X)||p(X)

)
=

1

2

n∑
i=1

tr
(
μi,:μ

T
i,: + Si − logSi

)− nq

2
.

(22)

To derive F̂j

(
q(X), q(U)

)
, it is essential to compute

〈log p(y:,i|f:,j)〉p(f:,j |u:,j ,X).

〈log p(y:,i|f:,j)〉p(f:,j |u:,j ,X) = logN(y:,j |KfuK
−1
uu u:,j , σ

2In)

− 1

2σ2
tr(Kff −KfuK

−1
uuKuf ).

(23)

After inserting Eq. (23) into F̂j

(
q(X), q(U)

)
,

F̂j

(
q(X), q(U)

)
can be easily derived and expressed

as:

F̂j(q(X), q(U)) =

1

2σ2
tr
(〈Kff 〉q(X)

)− 1

2σ2
tr
(
K−1

uu 〈KufKfu〉q(X)

)
+

∫
q(u:,j) log

e〈logN(y:,j |aj ,σ
2In)〉q(X)p(u:,j)

q(u:,j)
du:,j .

(24)

F̂j(q(X), q(U)) can be upper bounded by F̂j(q(X)) af-
ter applying the reversing Jensen’s inequality to the KL-like
quantity containing q(u:,j):

F̂j(q(X)) =

1

2σ2
tr
(〈Kff 〉q(X)

)− 1

2σ2
tr
(
K−1

uu 〈KufKfu〉q(X)

)
+ log

∫
e<logN(y:,j |aj ,σ

2Ip)>q(X)p(u:,j)du:,j . (25)

Now q(U) is optimally eliminated, F̂j(q(X)) can be cal-
culated as follows:

F̂j(q(X)) =

[
log

σ−n|Kuu| 12
(2π)

n
2 |σ−2ψ2 +Kuu| 12

e−
1
2y

T
:,jWy:,j

]

− ψ0

2σ2
+

1

2σ2
tr(K−1

uu ψ2), (26)

where ψ0 = tr
(〈Kff 〉q(X)

)
, ψ1 = 〈Kfu〉q(X), ψ2 =

〈KufKfu〉q(X), and W = σ−2In − σ−4ψ1(σ
−2ψ2 +

K−1
uu )ψ

T
1 .

With F̂j

(
q(X), q(U)

)
and KL

(
q(X)||p(X)

)
in hand, we

can optimize the parameters θ in our model using a gradient-
based algorithm.

5 Results

In this section, we compare our proposed method with
Isomap- and GPLVM- based WiFi-SLAM for robot localiza-
tion. GPLVM-based WiFi-SLAM was first proposed to esti-
mate the location of a robot based on WiFi signals without
labeled calibration data. Unlike calibrated data-based meth-
ods, these methods directly project the signal measurements
into latent variables, which are considered to be the phys-
ical locations of the robot. Here, Isomap (Tenenbaum, de
Silva, and Langford 2000) is normally used to initialize the
latent variables of GPLVM. Localization methods with la-
beled calibration data are not considered further since they
are known to have significantly higher accuracy.

The dataset used here is presented in (Ferris, Fox, and
Lawrence 2007). This dataset contains two traces with a
range of around 250 meters that were collected over one
floor of a university building. To collect these data, several
WiFi access points were installed to send signals, and a robot
walked around inside the building and received signals and
recorded the corresponding locations. The ground truth path
is shown in Fig. 3 (d). Isomap is first illustrated to estimate
the robot’s locations. It can clearly be seen that Isomap does
not capture the overall topological structure of the path and
fails to demonstrate clear definitions of intersections and the
correct path alignment.

As shown in Fig. 3, GPLVM-based WiFi-SLAM provides
a finer path resolution with greater topological similarity to
the ground truth trace. However, the ground truth trace in-
cludes four right-angled intersections. GPLVM-based WiFi-
SLAM does not capture this characteristic and simplifies
them as non-right-angled intersections. The root cause of
this phenomenon is that the latent variables generated by
GPLVM are not sufficiently diverse and tend to concentrate
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Figure 3: The results of three localization methods on one of our traces. The x,y axes are measured in meters. In comparison
with other works, our result has more similar topological structure with the ground truth path.

on the most common trace characteristics. In this case, the
trace consists of several straight lines and the common char-
acteristics are the straight line paths. As a result, the less fre-
quent feature, i.e., the right-angled intersection, is not con-
sidered in the latent variables. The latent variables generated
by GPLVM do not capture all aspects of the underlying lo-
cations of the signal strength measurements.

In light of this, our method exploits a diversity-
encouraging prior to train a more robust model for accu-
rate localization. Here, we choose the dimensionality of la-
tent variable q and parameter λ to be 10 and 0.01, respec-
tively. In comparison with the other techniques, the trace of
our method has a normal topological structure. More impor-
tantly, our technique can generate other structures present
in the ground truth trace. The diversity prior appears to be
crucial for capturing more comprehensive features and char-
acteristics of the signal measurements.

However, the mapping between the latent coordinate and
the ground truth coordinate is not clearly defined. Therefore,
the technique described in (Ferris, Fox, and Lawrence 2007)
is exploited to evaluate the localization accuracy. Specifi-
cally, given a new signal measurement, its latent variable is
used to calculate the distance with training latent variables.
Then, the closest point in the latent space to the test latent
variable is selected. The ground truth location of the closest
point is then used as the test location.

To evaluate localization accuracy, we cross-validate each
DGLVM result by performing localization with the remain-
ing test trace. The mean localization error over six local-
ization runs is reported in Fig. 4. Although the localization
accuracy is not high enough, this method represents an im-
provement on WiFi-SLAM techniques that do not use la-
beled calibration data.

6 Conclusion

Here we propose DGLVM to estimate the locations of WiFi
signal strength readings in the case where ground truth loca-
tions are unknown during training. By exploiting a diversity-
engouraging prior, the location estimation accuracy is signif-
icantly improved. Such a prior ensures that the latent vari-
ables, namely the physical locations of the robot, are se-
lected without preference or redundancy. Finally, DGLVM
can construct a sensor model that can be used for WiFi lo-
calization.
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Figure 4: For each method, the error bar illustrates the mean
localization error in meters over six localization runs.

Although promising, our model is still not applicable for
localization and mapping in complicated and large-scale en-
vironments. This is because wireless signals are not con-
stantly stable either indoors or outdoors. To tackle these is-
sues, we will go on to incorporate a variety of sensors (e.g.,
Kinect, IMU, accelerometers) into our model. Our ultimate
aim is to equip any type of mobile device with our WiFi-
SLAM technique to undertake various tasks in the future.
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