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Abstract

Heuristics serve as a powerful tool in modern domain-
independent planning (DIP) systems by providing critical
guidance during the search for high-quality solutions. How-
ever, they have not been broadly used with hierarchical plan-
ning techniques, which are more expressive and tend to scale
better in complex domains by exploiting additional domain-
specific knowledge. Complicating matters, we show that for
Hierarchical Goal Network (HGN) planning, a goal-based hi-
erarchical planning formalism that we focus on in this pa-
per, any poly-time heuristic that is derived from a delete-
relaxation DIP heuristic has to make some relaxation of the
hierarchical semantics. To address this, we present a princi-
pled framework for incorporating DIP heuristics into HGN
planning using a simple relaxation of the HGN semantics we
call Hierarchy-Relaxation. This framework allows for com-
puting heuristic estimates of HGN problems using any DIP
heuristic in an admissibility-preserving manner. We demon-
strate the feasibility of this approach by using the LMCut
heuristic to guide an optimal HGN planner. Our empirical
results with three benchmark domains demonstrate that si-
multaneously leveraging hierarchical knowledge and heuris-
tic guidance substantially improves planning performance.

Introduction
The primary goal of AI planning research has been to de-
velop planning systems that can efficiently generate high-
quality plans. Search heuristics serve as a powerful tool
in achieving this by guiding the search algorithms towards
high-quality solutions. While domain-independent planning
(DIP) algorithms have greatly benefited in this regard by the
development of informative search heuristics that permit ef-
ficient optimal/anytime plan generation, this is less true in
hierarchical planning formalisms, where planners typically
resort to brute-force search algorithms and rely on sophisti-
cated domain-specific knowledge to control the search.

The main reason for the capability gap is that while DIP
heuristics are typically developed by devising a principled
relaxation of the original planning problem that is easier to
solve (usually in P), analogous relaxations do not work in
hierarchical planning formalisms. For example, Alford et al.
(2014) showed that when delete-relaxation, a problem relax-
ation technique in DIP that is the source of many powerful
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heuristics, is applied to Hierarchical Task Network (HTN)
planning, the resulting decision problem is NP-hard. There-
fore, if we want to leverage DIP problem relaxation tech-
niques to develop efficiently computable heuristics for hier-
archical planning formalisms, we need to not only relax the
problem, but also relax the hierarchical semantics.

In this paper, we focus on the problem of incorporating
DIP heuristics into another hierarchical planning formalism
called Hierarchical Goal Network (HGN) planning (Shiv-
ashankar et al. 2012) via a systematic relaxation of its se-
mantics. We chose HGN planning because it is possible to
represent hierarchical knowledge similar to HTN planning,
and at the same time work with goals instead of tasks, which
makes it easier to incorporate techniques from DIP. In par-
ticular, our main contributions are as follows:

Hardness of Delete-Relaxed HGN Planning. We show
that, like HTN planning, delete-relaxed HGN planning
is also NP-hard, meaning that we need to relax HGN
semantics to develop efficient HGN analogues of arbitrary
DIP heuristics.

Hierarchy-Relaxed HGN Planning. Next, we propose one
such relaxation called Hierarchy-Relaxation, and prove
that Hierarchy-Relaxed HGN (HRHGN) Planning can be
compiled into DIP. This provides a principled framework
to incorporate any DIP heuristic h into HGN planning:
given an HGN planning problem P , we can hierarchy-
relax it to the HRHGN problem Phr, compile Phr into
the DIP problem Pdip and use h to compute a heuris-
tic estimate h(Pdip) for P . We show that this framework
is admissibility-preserving: admissible DIP heuristics will
translate into admissible HGN heuristics.

Optimal HGN Planner Guided by the LMCut Heuristic.
We demonstrate the feasibility of this approach by incor-
porating the admissible DIP heuristic LMCut (Helmert
and Domshlak 2009) into an optimal HGN planning
algorithm, which we call Hierarchically-Optimal Goal
Decomposition Planner using LMCut (HOGL). Our ex-
periments on three benchmark domains demonstrate that
HOGL’s ability to simultaneously leverage hierarchical
knowledge and DIP heuristics allows it to outperform
state-of-the-art optimal DIP algorithms and blind search
HGN planning algorithms. Furthermore, they also show
that the use of LMCut, a state-of-the-art heuristic, allows
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HOGL to outperform HOpGDP (Shivashankar et al.
2016), a recently proposed optimal HGN planner that
uses a version of the hL heuristic (Karpas and Domshlak
2009) customized for HGN planning.

Preliminaries

Here we detail the DIP model and formalize HGN planning,
borrowing heavily from Shivashankar et al. (2016).

Domain-Independent Planning

We define a DIP domain Ddip as a finite-state transition sys-
tem in which each state s is a finite set of ground atoms of a
first-order language L, and each action a is a ground instance
of a planning operator o. A planning operator is a 4-tuple
o = (head(o), pre(o), eff(o), cost(o)), where pre(o) and
eff(o) are conjuncts of literals called o’s preconditions and
effects, and head(o) includes o’s name and argument list (a
list of the variables in pre(o) and eff(o)). cost(o) represents
the non-negative cost of applying operator o.

Actions. An action a is applicable in a state s if s |=
pre(a), in which case the resulting state is γ(s, a) = (s −
eff−(a)) ∪ eff+(a), where eff+(a) and eff−(a) are the
atoms and negated atoms, respectively, in eff(a). A plan
π = 〈a1, . . . , an〉 is executable in s if each ai is applica-
ble in the state produced by ai−1; and in this case γ(s, π) is
the state produced by executing π. If π and π′ are plans or
actions, then their concatenation is π ◦ π′.

We define the cost of π = 〈a1, . . . , an〉 as the sum
of the costs of the actions in the plan, i.e. cost(π) =∑

i∈{1...n} cost(ai).

Goal Networks and HGN Methods

A goal network is a way to represent the objective of satis-
fying a partially ordered multiset of goals. Formally, it is a
pair gn = (T,≺) such that:
• T is a finite nonempty set of nodes;
• Each node t ∈ T contains a goal gt that is a DNF (dis-

junctive normal form) formula over ground literals;
• ≺ is a partial order over T .

HGN Methods. An HGN method m is a 4-tuple
(head(m), goal(m), pre(m), network(m)) where the
head head(m) and preconditions pre(m) are similar to
those of a planning operator. goal(m) is a conjunct of lit-
erals representing the goal m can decompose. network(m)
is the goal network that m decomposes into. By convention,
network(m) has a last node tg containing goal(m) to en-
sure that m accomplishes its own goal.

An action a (or method instance m) is relevant to a goal
formula g if eff(a) (or post(m), respectively) entails at least
one literal in g and does not entail the negation of any literal
in g.

Whether a node has predecessors impacts the kinds of op-
erations we allow. We refer to any node in a goal network
gn having no predecessors as an unconstrained node of gn,
otherwise the node is constrained. We define the following
operations over any goal network gn = (T,≺):

1. Goal Release: Let t ∈ T be an unconstrained node. Then
the removal of t from gn, denoted by gn− t, results in the
goal network gn′ = (T ′,≺′) where T ′ = T \ {t} and ≺′
is the restriction of ≺ to T ′.

2. Method Application: Let t ∈ T be an unconstrained
node. Also, let m be a method applied to t with
network(m) = (Tm,≺m). Then the application of m to
gn via t, denoted by gn ◦t m, results in the goal network
gn′ = (T ′,≺′) where T ′ = T ∪ Tm and ≺′=≺ ∪ ≺m

∪{(tm, t) | m ∈ Tm}. Informally, this operation adds
the elements of network(m) to gn, preserving the order
specified by subgoals(m) and setting all nodes of m as a
predecessors of t.

HGN Domains, Problems and Solutions

An HGN domain is a pair D = (Ddip,M) where Ddip is a
DIP domain and M is a set of HGN methods.

An HGN planning problem is a triple P = (D, s0, gn0),
where D is an HGN domain, s0 is the initial state, and gn0 =
(T,≺) is the initial goal network.

Definition 1 (Solutions to HGN Planning Problems). The
set of solutions for P is defined as follows:

Base Case. If T is empty, the empty plan is a solution.

In the following cases, let t ∈ T be an unconstrained node.

Unconstrained Goal Satisfaction. If s0 |= gt, then any so-
lution for P ′ = (D, s0, gn0 − t) is also a solution for
P .

Action Application. If action a is applicable in s0 and
a is relevant to gt, and π is a solution for P ′ =
(D, γ(s0, a), gn0), then a ◦ π is a solution for P .

Method Decomposition. If m is a method applicable in
s and relevant to gt, then any solution to P ′ =
(D, s0, gn0 ◦t m) is also a solution to P .

Note in Definition 1 that the HGN methods pose con-
straints on solution validity; even if a plan π is executable
in s0 and accomplishes all the goals in gn0 in the right or-
der, it is not a valid solution unless it can be shown to be
derived from the given methods. In this sense, HGN plan-
ning is similar to HTN planning.

Let us denote S(P ) as the set of solutions to an HGN
planning problem P as allowed by Definition 1. Then we
can define what it means for a solution π to be hierarchically
optimal with respect to P as follows:

Definition 2 (Hierarchically Optimal Solutions). A solution
πh,∗ is hierarchically optimal with respect to P if πh,∗ =
argminπ∈S(P )cost(π).

Limits to Deriving HGN Heuristics from DIP

Problem Relaxations

The decompositional structure of HGNs provides significant
pruning power during search, and, ideally, we would incor-
porate this structure into HGN heuristics. Below, we show
that the delete-relaxation technique (planning using only
positive preconditions and effects) popularized by Hoffmann
and Nebel (2001) is not sufficient to make HGN problems
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solvable in polynomial time. Thus, we cannot incorporate
strict HGN semantics into our adaptations of DIP heuristics.

Theorem 3. Let HGN+ be the class of ground (proposi-
tional) HGN problems with positive preconditions, goals,
and effects. Then plan-existence for HGN+ is NP-complete.

Proof. Membership: HGN problems can be translated to
HTN problems in a plan preserving manner, and the transla-
tion does not require negative preconditions (Alford et al.
2016b). Since HTN planning with positive preconditions
and effects is NP-complete, HGN+ is in NP.

Hardness: Let v1, . . . , vn be the variables of a CNF-SAT
formula F = c1 ∧ . . . ∧ cm. Define an HGN problem P =
(D, s, g) as follows.

Let the initial state s = ∅ and goal g = (chosen v1).
For each vi (i ≤ n), let D have an action (set vi false)

with the precondition (can choose false vi) and ef-
fect (is false vi) ∧ (chosen vi) and an action with
no preconditions that asserts (can choose false vi).
For i < n, let D also have a method with the goal
(chosen vi) and the totally-ordered sequence of subgoals
〈(can choose false vi) , (is false vi) , (chosen vi+1)〉.
Let D have analogous actions and methods for
(set vi true). For vn, both the true and false methods
replace their last subgoal with (checked c1).

For each conjunction ck and negative literal ¬vi of
ck, there is an action (check ck vi) with precondition
(can check ck)∧ (is false vi) and effect (checked ck), as
well as a precondition-less action that sets (can check ck).

For each k < m, there is a method with goal
(checked ck) and a totally-ordered sequence of subgoals
〈(can check ck) , (checked ck) , (checked ck+1)〉. For cm,
the method for (checked cm) omits the final task.

From the initial state, both the (set v1 x) actions and
the (chosen v1) methods are relevant, but only the meth-
ods are applicable. After either method is applied, the
(can choose x v1) subgoal is now the only unconstrained
subgoal, and the (set x v1) action can be applied. Once that
goal is released, only the (set v1 x) action is relevant and
applicable to (is x v1), which can then be released. Then
the last subgoal (chosen v2) starts the process for the next
variable. Once vn is chosen, the only unconstrained subgoal
is (checked c1), and a similar process ensues to ensure that
each ck has at least one true literal. After cm is checked, the
entire subgoal graph can be released, and the chosen values
for each vi form a witness to the solvability of F . Since solv-
ing P implies a solution to F and P contains only positive
effects, preconditions, and goals, plan-existence for HGN+

is NP-hard.

Deriving HGN Planning Heuristics from

Domain-Independent Planning Heuristics

The previous section demonstrated the need for relaxations
of HGN semantics to allow for efficient HGN analogues
of existing DIP heuristics. We shall now define Hierarchy-
Relaxation, one such relaxation of the HGN semantics.

Hierarchy-Relaxed HGN (HRHGN) Planning

Hierarchy-relaxation, as the name suggests, relaxes the se-
mantics of HGN planning problems to allow any executable
sequence of actions that achieve the goals in the goal net-
work in the right order, whether or not they are consistent
with the hierarchical knowledge.

More formally, the hierarchy-relaxation of an HGN prob-
lem P = ((Ddip,M), s0, gn0) removes the hierarchical de-
composition knowledge (i.e. the set of methods M ), result-
ing in the HRHGN problem Phr = (Ddip, s0, gn0).

Solutions to HRHGN Problems. The set of solutions
SHR(Phr) to an HRHGN problem Phr can be defined as
the set of all action sequences that are (1) executable in s0,
and (2) achieve all the goals in gn0 in the order specified.

Given the HGN problem P and its hierarchy-relaxed ver-
sion Phr, it is easy to see that the set of solutions to P
S(P ) ⊆ SHR(Phr), the intuition being that every solution
to P trivially satisfies the definition for Phr, while there
could be solutions to Phr that are not solutions to P be-
cause they don’t obey the constraints imposed by the meth-
ods. This is equivalent to task-insertion from the HTN lit-
erature, which (in general) reduces computational complex-
ity by allowing the planner to insert arbitrary tasks into the
task network (Geier and Bercher 2011; Alford et al. 2014;
Alford, Bercher, and Aha 2015).

Looking at the definition of HRHGN planning, it looks
very similar to domain-independent planning, the only dif-
ference being the objective is not a single goal formula,
but is instead a goal network. In fact, we can show that
an HRHGN planning problem can be translated into a DIP
problem having an “equivalent” set of solutions:

Theorem 4. Given an HRHGN problem Phr =
(Ddip, s0, gn0), we can construct a DIP problem P ′dip =

(D′dip, s
′
dip, g

′
dip) in polynomial time such that there exists

a bijection between the solution sets for Phr and P ′dip that
match solutions having identical costs.

Proof Sketch. We can construct the DIP problem P ′dip
as follows. We begin by creating a dummy predicate
achievedx and a dummy action dummyx for each node x in
gn0. The preconditions of dummyx ensure that every par-
ent of x in gn0 has already been achieved, and that the goal
gx in x is satisfied. If these conditions are true, it inserts
achievedx into the state. All dummy actions are of zero cost.
More formally, the model of dummyx is:

• pre(dummyx) =
∧

x′ is a parent of x in gn0
achievedx′ ∧ gx

• eff(dummyx) = achievedx
• cost(dummyx) = 0

D′dip is the original Ddip combined with the new dummy
predicates and actions. s′dip is identical to s0. Finally, g′dip =
∧

x∈gn0
achievedx. This represents the objective that all the

goals in the goal network must be achieved; the requirement
that they must be achieved in the correct order is encoded
in the action models of the dummy actions. Note that this
compilation can be done in O(|gn|).
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By virtue of the construction, it can be shown that every
solution π to Phr can be mapped to an equivalent solution π′
to P ′dip which contains all of π and some additional dummy
actions (which are of zero-cost, and hence don’t change plan
cost). Furthermore, we can show that P ′dip does not have
additional solutions that don’t map back to a solution to Phr.
Hence the theorem follows.

An immediate consequence of the above theorem is that
the optimal solution costs of Phr and P ′dip must be equal:

Corollary 5. The costs of the optimal solutions to an
HRHGN problem Phr and the corresponding compiled DIP
problem Pdip are equal.

Heuristics for HGN Planning via HRHGN Planning

Using Thm. 4, we can formulate a procedure hhgn(P, hdip)
that can use an arbitrary DIP heuristic hdip to compute
heuristic estimates for a HGN planning problem P :
1. Input: HGN planning problem P and DIP heuristic hdip.
2. Let Phr be the hierarchy-relaxed version of P , and Pdip

the compilation of Phr into DIP as specified in Thm. 4.
3. Return hdip(Pdip).

If hdip is an admissible heuristic, then we can show that
hhgn as constructed above is an admissible HGN heuristic:
Theorem 6 (From admissible DIP to admissible HGN
heuristics). Given an HGN problem P = ((Ddip,M), s0,
gn0) and an admissible DIP heuristic hdip, hhgn(P, hdip)
is an admissible cost estimate of P .

Proof Sketch. Let OPTP ,OPTPhr
, and OPTPdip

be the
optimal solution costs respectively of P , its hierarchy-
relaxation Phr and the DIP compilation Pdip of Phr. We
then know that OPTPhr

≤ OPTP due to the hierarchy-
relaxation. Furthermore, from Corollary 5, we know that
OPTPhr

= OPTPdip
. Finally, we know from the admissi-

bility of hdip that hdip(Pdip) ≤ OPTPdip
. From these, we

can show that hhgn(P, hdip) = hdip(Pdip) ≤ OPTP .

Discussion

HRHGN planning is a strong relaxation of HGN planning
because it effectively ignores the hierarchical constraints
from the HGN methods. Therefore, if a planning domain
models its critical constraints in the methods, then the
heuristic computation ignores them, thus leading to poten-
tially uninformative heuristic estimates. Despite this, we be-
lieve that Hierarchy-Relaxation is a useful concept for the
following reasons.

From a theoretical standpoint, Theorem 3 shows that some
relaxation of the HGN semantics is necessary to efficiently
compute heuristic estimates using DIP heuristics; we show
that hierarchy-relaxation is a candidate relaxation for this.
From a practical standpoint, hierarchy-relaxation helps ad-
vance the state-of-the-art in admissible heuristics for hier-
archical planning. Not only does it trivially dominate blind
search algorithms, but we can also show that it is a gener-
alization of hHL (Shivashankar et al. 2016), the only other
non-trivial admissible heuristic for HGN planning that we

are aware of. Shivashankar et al. proposed this admissi-
ble heuristic that extended the admissible landmark-based
DIP heuristic hL (Karpas and Domshlak 2009) to compute
heuristic estimates for HGN planning problems. hHL pro-
ceeds by extending DIP landmark generation techniques (in
this case, LAMA’s (Richter and Westphal 2010)) to com-
pute sound landmark graphs for HGN planning problems.
hL takes these landmark graphs as input to compute admis-
sible HGN estimates. It can be shown that hHL is a specific
instantiation of our HRHGN framework using hL as the DIP
heuristic. In our experimental study, we compare HOGL,
our planner, against HOpGDP, an optimal HGN planner that
uses hHL for search guidance.

Experiments

Theorem 6 allows us to take any admissible DIP heuris-
tic and transform it into the corresponding admissible HGN
heuristic that can then be used to guide optimal HGN plan-
ners. To test the feasibility of this approach, we implemented
HOGL, an optimal HGN planner that executes an A∗ search
in accordance with Definition 1. It computes heuristic es-
timates using our framework instantiated with the LMCut
heuristic (Helmert and Domshlak 2009).

Our main experimental hypotheses are:

H1. Due to its ability to simultaneously leverage state-
of-the-art DIP heuristics and sophisticated hierarchical
knowledge, HOGL can outperform both optimal DIP al-
gorithms and blind HGN search algorithms, which re-
spectively do not leverage hierarchical knowledge and
search heuristics. To test this, we compared HOGL to
the optimal classical planner A*-LMCut1 and HOGLblind,
a blind version of HOGL that uses the trivial heuristic
h = 0.

H2. The use of LMCut, one of the most informative DIP
heuristics, in HOGL results in fewer node expansions than
other optimal heuristic HGN planners. To test this hy-
pothesis, we compared HOGL to HOpGDP, which uses
the hL heuristic (Karpas and Domshlak 2009), one that
Helmert and Domshlak (2009) have shown to be less in-
formative than LMCut.

For each domain, we randomly generated 25 problem in-
stances per problem size. We ran all problems on a Xeon
E5-2639 with a per problem limit of 8 GB of RAM and 25
minutes of planning time.

A*-LMCut HOGLblind HOpGDP HOGL

log (175) 44 66 140 163
bw (225) 118 208 216 219
depots (175) 79 131 148 155

Total (575) 241 405 504 537

Table 1: Number of problems solved by the various planners.

Table 1 provides an overview of our study. As shown,
HOGL solves more problems than the other planners across

1We use the authors’ implementation in the Fast-Downward
planning system: https://fast-downward.org
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all three domains, solving 537 out of a possible 575 prob-
lems. Both A*-LMCut and HOGLblind solve far fewer prob-
lems than HOGL; in fact, the only other planner that is some-
what competitive with HOGL is HOpGDP, which solves 504
problems within the time/memory limit.

(a) (b)

Figure 1: Scatter plot of node expansions and planning times
for HOGL and HOpGDP across the study.

Figure 1 provides more insights on how HOGL and
HOpGDP compare head-to-head. It shows scatter plots com-
paring the number of node expansions and planning times
of HOGL and HOpGDP on problems that they both solved.
HOGL outperforms HOpGDP on both metrics; the numbers
on either side of the y = x line indicate the number of data
points in that section (not including on y = x). For example,
HOGL expanded fewer nodes than HOpGDP for 407 prob-
lems, while the opposite was true only for 20.

We now examine how these planners compare on the
three benchmark domains. We will first describe the plan-
ning models for these domains, and then discuss general
trends observed in our study.

Logistics. We ran the planners on 25 randomly generated
problems for each problem size ranging from 4 . . . 10. The
HGN domain models contained three methods that provide
knowledge to: (1) move packages between two locations in
the same city using trucks, (2) move packages between air-
ports using planes, and (3) combine 1 and 2 to move pack-
ages across different cities. To allow for multiple packages
to be loaded onto (resp. unloaded from) a truck/plane at a
time, we introduced dummy predicates into methods 1 and
2 that allow zero or more additional loads (resp. unloads)
after the first load (resp. unloads). The choice of how many
additional loads/unloads to make is left to the planner.

Blocks-World. We ran the planners on 25 randomly
generated problems for each problem size ranging from
4, 6, . . . , 20. We used HGN methods from the GDP plan-
ner (Shivashankar et al. 2012), which uses a recursive pred-
icate that moves only blocks that can be moved onto blocks
that are in their final position; this helps avoid moves that
must later be undone.

Depots. Like in the first two domains, we randomly gen-
erated 25 problems for each problem size (num. packages)

ranging from 4 . . . 10. The HGN methods for Depots com-
bined aspects of the HGN methods of the first two domains,
including the mechanisms to have multiple loads/unloads.

Results. Figure 2 shows the plots for the three test do-
mains. Note that all plots are log-linear. We evaluated the
planners both in terms of planning times (indicating the
planning performance) and number of node expansions (in-
dicating the search guidance). Data points were discarded
for a problem size if the planner did not solve all of the cor-
responding problem instances within the time/memory limit.

Across all three domains, A*-LMCut performs the worst
according to both measures due to lack of domain-specific
knowledge. HOGLblind performs slightly better in all three
domains, even though it does a blind A* search, due to the
additional knowledge it can leverage. However, its perfor-
mance is heavily dependent on the quality of the knowl-
edge. For example, it performs poorly in Logistics due to
the looseness of the hierarchical knowledge with respect to
the multiple loads/unloads. In contrast, it solves lots of prob-
lems in Blocks-World since there is sophisticated knowledge
available to control the search.
HOGL and HOpGDP both perform better than the first

two planners due to their ability to exploit both DIP heuris-
tic guidance as well as domain-specific knowledge, thus
supporting Hypothesis H1. HOGL also consistently outper-
forms HOpGDP due to the use of the more-informative
LMCut heuristic; this can be seen in terms of lower planning
times and lower node expansions across all three domains.
This supports Hypothesis H2.

Takeaways from the Experimental Study

The main takeaway from this study is that due to its ability
to leverage both search heuristics and hierarchical knowl-
edge, HOGL is the top-performing planner in this experi-
ment across the test domains. This result can be viewed in
two different ways. First, it provides a generic mechanism
to incorporate search heuristics into hierarchical goal-based
planners in domains that are naturally expressed in HGN
planning but not DIP. The current approaches to compute
optimal plans using hierarchical planners in such domains
use brute-force search algorithms similar to HOGLblind or
the HTN planner SHOP2 (Nau et al. 2003) run in breadth-
first search/depth-first branch-and-bound mode.

Second, this can be flipped around and be viewed as a
generic mechanism to inject hierarchical knowledge into
DIP. This would be applicable in domains that are naturally
expressed in PDDL, but also have domain-specific strategies
that can be leveraged. In such cases, search heuristics are no
longer divorced from the use of hierarchical knowledge; our
approach instead provides a principled way to combine the
power of the two modes of search guidance.

We also noted that using search heuristics made writing
hierarchical knowledge easier. This was because in the ab-
sence of heuristics, search guidance is provided by only the
knowledge. Hence, there is more pressure on the domain
author to write sophisticated knowledge that minimizes the
amount of backtracking; with heuristics, we can afford to
write much simpler (but complete) models, knowing that the
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(a) (b) (c)

(d) (e) (f)

Figure 2: Log-linear plots of number of nodes expanded and planning times of the planners across the Logistics, Blocks-
World, and Depots domains. Each data point is the average over 25 randomly generated problems. Data points where all the 25
problems are not solved within the time/memory limits were discarded.

heuristic will provide additional guidance. An example of
this was in the Logistics and Depots domains where choos-
ing the right set of packages to load onto a vehicle at a
given location can be tricky if we want to ensure optimality.
In our HGN model, we modeled this using a simple recur-
sive method that can load as many packages as the planner
wants at that location; the planner can choose to terminate
the loading process at any point with a dummy zero-cost
action. As the difference in performance between HOGL
and HOGLblind in these domains indicates, the heuristic pro-
vided useful guidance to the planner at these decision points,
which HOGLblind sorely missed.

Related Work

The most relevant literature on incorporating search heuris-
tics into hierarchical planning is the prior work on HGN
planning, in particular the Goal Decomposition Planner
(GDP) (Shivashankar et al. 2012), the Goal Decomposition
with Landmarks planner (GoDeL) (Shivashankar et al. 2013)
and HOpGDP, the last of which we have already discussed.
As mentioned previously, HGN planning allows for hierar-
chical modeling of planning domains like HTN planning,
but allows for more compact planning models than HTN
planning (Shivashankar et al. 2012) as well as greater com-
patibility with DIP techniques owing to the use of goals in
the hierarchy as opposed to tasks. GDP and GoDeL both
adapt the Relaxed Planning Graph heuristic (Hoffmann and
Nebel 2001) for use with a depth-first search algorithm, and
so provide no optimality guarantees. There have been at-
tempts to incorporate heuristics into HTN planning as well.

The H2O planner (Waisbrot, Kuter, and Konik 2008) ex-
tended SHOP2 with DIP heuristics to estimate how close a
method’s goal was to the current state. However, it retained
the depth-first nature of SHOP2, and thus also could not pro-
vide optimality guarantees.

Alford, Kuter, and Nau (2009) provided a translation of a
subset of HTN planning into PDDL (extended further in (Al-
ford et al. 2016a)), and therefore could use DIP algorithms
to solve the translated problem. They later proved a neg-
ative result stating that delete-relaxation heuristics are not
feasible for HTN planning in general by proving that delete-
relaxed HTN planning is NP-hard (Alford et al. 2014). How-
ever, they showed that if task-insertion is allowed, delete-
relaxed HTN planning is in P. This corresponds well with
our results; delete-relaxed HRHGN planning (which roughly
is HGN planning with task insertion) is in P, while delete-
relaxed HGN planning is still NP-hard. The main distinction
with the task insertion results is that we further show that
HRHGN planning can be compiled into DIP, which allows
us to leverage DIP heuristics directly. An analogous polyno-
mial compilation is not possible in the case of HTN planning
with task insertion since it is NEXPTIME-complete (Alford,
Bercher, and Aha 2015).

Finally, there has been some work on developing search
heuristics into POCL-based HTN planning (Elkawkagy et
al. 2012; Bercher, Keen, and Biundo 2014) that do not es-
timate plan cost, but instead estimate the number of flaws
needed to be resolved before reaching a solution.
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Conclusions and Future Work

In this paper, we have developed a principled framework
to incorporate arbitrary DIP heuristics into HGN plan-
ning in an admissibility-preserving manner by relaxing the
HGN semantics appropriately. We used this approach to
develop HOGL, an optimal HGN planner, and our experi-
ments demonstrated that simultaneously leveraging hierar-
chical knowledge and DIP heuristic guidance results in sub-
stantially improved planning performance. Therefore, an im-
portant takeaway from this paper is that search heuristics
in hierarchical planning, despite being a relatively underex-
plored topic in AI Planning, can play an important role in
computing high-quality solutions more efficiently and scal-
ably.

There are several avenues for future work, including us-
ing HGN heuristics to develop anytime planners that con-
tinue searching after the first solution is found, and extend-
ing our framework to incorporate numeric and temporal DIP
heuristics to guide numeric and temporal HGN planners. In
addition, an interesting theoretical question is whether we
can tighten Hierarchy-Relaxation by re-introducing “calcu-
lated” amounts of knowledge from the methods in such a
way so as to compute more informative heuristic estimates
while remaining in P.
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