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Abstract

Cybersecurity is increasingly threatened by advanced and
persistent attacks. As these attacks are often designed to dis-
able a system (or a critical resource, e.g., a user account) re-
peatedly, it is crucial for the defender to keep updating its
security measures to strike a balance between the risk of be-
ing compromised and the cost of security updates. Moreover,
these decisions often need to be made with limited and de-
layed feedback due to the stealthy nature of advanced attacks.
In addition to targeted attacks, such an optimal timing policy
under incomplete information has broad applications in cy-
bersecurity. Examples include key rotation, password change,
application of patches, and virtual machine refreshing. How-
ever, rigorous studies of optimal timing are rare. Further, ex-
isting solutions typically rely on a pre-defined attack model
that is known to the defender, which is often not the case
in practice. In this work, we make an initial effort towards
achieving optimal timing of security updates in the face of
unknown stealthy attacks. We consider a variant of the in-
fluential FlipIt game model with asymmetric feedback and
unknown attack time distribution, which provides a general
model to consecutive security updates. The defender’s prob-
lem is then modeled as a time associative bandit problem with
dependent arms. We derive upper confidence bound based
learning policies that achieve low regret compared with opti-
mal periodic defense strategies that can only be derived when
attack time distributions are known.

Introduction

Malicious attacks are constantly evolving to inflict increas-
ing levels of damage on the nation’s infrastructure systems,
cooperate IT systems, and our digital lives. For example, the
Advanced Persistent Threat (APT) has become a major con-
cern to cybersecurity in the past few years. APT attacks ex-
hibit two distinguishing behavior patterns (van Dijk et al.
2013) that make them extremely difficult to defend using
traditional techniques. First, these attacks are often funded
well and persistent. They attack a target system (or a crit-
ical resource) periodically with the goal to compromise it
completely e.g., by stealing full cryptography keys. Second,
the attacks can be highly adaptive. In particular, they often
act covertly, e.g., by operating in a “low-and-slow” fash-
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ion (Bowers et al. 2014), to avoid immediate detection and
obtain long-term advantages.

From the defender’s perspective, an effective way to
thwart continuous and stealthy attacks is to update its se-
curity measures periodically to strike a balance between
the risk of being compromised and the cost of updates.
The primary challenge, however, is that such decisions
must often be made with limited and delayed feedback be-
cause of the covert nature of the attacker. In addition to
thwarting targeted attacks, such an optimal timing prob-
lem with incomplete information is crucial in various cy-
bersecurity scenarios, e.g., key rotation (van Dijk et al.
2013), password changes (Tan and Xia 2016), application
of patches (Beattie et al. 2002), and virtual machine refresh-
ing (Juels et al. 2016). For example, Facebook receives ap-
proximately 600,000 “compromised logins” from impostors
every day (Barnett 2011). An efficient approach to stop these
attacks is to ask users to update their passwords when the
risk of attack is high.

Although time-related tactical security choices have been
studied since the cold war era (Blackwell 1949), rigorous
study of timing decisions in the face of continuous and
stealthy attacks is relatively new. In 2012, in response to
an APT attack on it, the RSA lab proposed the FlitIt game,
which was one of the first models to study timing decisions
under stealthy takeovers. The FlipIt game model abstracts
out details about concrete attack and defense operations by
focusing on the stealthy and persistent nature of players. The
basic model considers two players, each of whom can “flip”
the state of a system periodically at any time with a cost. A
player only learns the system state when she moves herself.
The payoff of a player is defined as the fraction of time when
the resource is under its control less the total cost incurred.

The FlipIt game captures the stealthy behavior of play-
ers in an elegant way by allowing various types of feedback
structures. In the basic model where neither player gets any
feedback during the game and each move flips the state of
the resource instantaneously, it is known that periodic strate-
gies with random starting phases form a pair of best response
strategies (van Dijk et al. 2013). As a variant of the basic
model, an asymmetric setting is studied in (Laszka, Johnson,
and Grossklags 2013) where the defender gets no feedback
during the game while the attacker obtains immediate feed-
back after each defense but incurs a random attack time to
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take over the resource. In this setting, it is shown in (Laszka,
Johnson, and Grossklags 2013) that periodic defense and im-
mediate attack (or no attack) form a pair of best response
strategies. However, little is known beyond these two cases.
In particular, designing adaptive defense strategies with par-
tial feedback remains an open problem.

Although the FlipIt game provides a proper framework
to understand the strategic behavior of stealthy takeover, it
relies on detailed prior knowledge about the attacker. In par-
ticular, it requires parameters such as the amount of time
needed to compromise a resource and the unit cost of each
attack (or their distributions) to be fixed and known to the de-
fender so that the equilibrium solution can be derived. These
parameters limit the scope of the attack model, which, how-
ever, can be hard to verify before the game starts. To ad-
dress this fundamental limitation, we propose to study on-
line learning algorithms that make minimum assumptions
about the attacker and learn an optimal defense strategy from
the limited feedback obtained during the game. Given the
advances in big data analytics and their applications in cy-
bersecurity, it is feasible for the defender to obtain partial
feedback even under stealthy attacks. Such a learning ap-
proach makes it possible to derive adaptive and robust de-
fense strategies against unknown attacks where the type of
the attacker is derived from a fixed but unknown distribu-
tion, as well as the more challenging dynamic attacks where
the type of the attacker can arbitrarily vary over time.

In this work, we make a first effort towards achiev-
ing optimal timing of security updates in the face of un-
known stealthy attacks. We consider a variant of FlipIt game
with asymmetric feedback similar to (Laszka, Johnson, and
Grossklags 2013), but with two key differences. First, we
consider repeated unknown attacks with attacker’s type sam-
pled from an unknown distribution. Second, we assume that
the defender obtains limited feedback about potential attacks
at the end of each period. The defender’s goal is to mini-
mize the long-term cumulative loss. Our objective is to de-
rive an adaptive defense policy that has a low regret com-
pared with the optimal periodic defense policy when the at-
tack time distribution is known. A key observation is that
the set of defense periods that the defender can choose from
are dependent in the sense that the loss from one defense pe-
riod may reveal the potential loss from other periods, espe-
cially shorter ones. Moreover, two defense policies played
for the same number of rounds may span different lengths
of time, which has to be taken into account when comparing
the policies. In this paper, we model the defender’s problem
as a time associate stochastic bandit problem with depen-
dent arms, where each arm corresponds to one possible de-
fense period. We derive optimal defense strategies for both
the finite-armed bandit setting where the defense periods can
only take a finite set of values, and the continuum-armed
bandit setting where the defense periods can take any values
from a non-empty interval.

Our main contributions can be summarized as follows.

• We propose a stochastic time associative bandit model
for optimal timing of security updates in the face of un-
known attacks. Our model captures both the limited feed-

back about stealthy attacks and the dependence between
different defense options.

• We derive upper confidence bound (UCB) based policies
for time associative bandits with dependent arms. Our
policies achieve a regret of O (log(T (K + 1)) +K) for
the finite arm case, where T is the number of rounds
played and K is the number of arms, and a regret of
O(T 2/3) for the continuous arm setting.

Our learning model and algorithms are built upon the as-
sumption that the defender can learn from frequent system
compromises. This is reasonable for many online systems
such as large online social networks and content providers
and large public clouds, in which many customers are sub-
ject to similar attacks. In this setting, even if a single user
is compromised occasionally, the system administrator can
pool data collected from multiple users to obtain a reliable
estimate quickly. For example, given the large number of at-
tacks towards its users, Facebook can collect data from thou-
sands of incidents of similar compromises in a short time.
Our online learning algorithms can be used by Facebook to
alert users to update their passwords when necessary.

Related Work

Time-related tactical security choices have been studied
since the cold war era (Blackwell 1949). However, the study
of timing decisions in the face of continuous and stealthy at-
tacks is relatively new. In particular, the FlipIt game (van
Dijk et al. 2013) and its variants (Laszka, Johnson, and
Grossklags 2013; Laszka et al. 2014) are among the few
models that study this problem in a rigorous way. However,
all of these models assume that the parameters about the
attacker are known to the defender at the beginning of the
game. A gradient-based Bayesian learning algorithm was
recently proposed in (Tan and Xia 2016) for a setting sim-
ilar to ours, where the failure time was assumed to follow
a Weibull distribution with one unknown parameter. In con-
trast, we consider a general attack time distribution.

Multi-armed bandit problems have been extensively stud-
ied for both the stochastic setting and the adversarial set-
ting (Bubeck and Cesa-Bianchi 2012). Many variants of
bandit models have been considered including bandits with
side observations (Caron et al. 2012; Buccapatnam, Ery-
ilmaz, and Shroff 2014). In the context of cybersecu-
rity, bandit models have been applied to anomaly detec-
tion (Liu, Zhao, and Swami 2013) and stackelberg security
games (Balcan et al. 2015). However, the only previous work
that studies the time associative bandit model is (György et
al. 2007), where the arms are assumed to be mutually inde-
pendent. In contrast, we propose to model the optimal timing
problem in cybersecurity as a time associative bandit prob-
lem with dependent arms and study algorithms that can ex-
ploit side-observations to improve performance.

Model

We consider the following variant of the FlipIt game (van
Dijk et al. 2013) with two players, a defender and an at-
tacker, and a security sensitive resource to protect. The at-
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Figure 1: An example of the proposed game model. Blue circles
and red circles represent the defender’s and the attacker’s actions,
respectively. A blue segment denotes an interval where the resource
is under protection, and a red segment denotes an interval where the
resource is compromised.

tacker is persistent in compromising the resource. In re-
sponse, the defender updates its security measures, e.g.,
keys, passwords, etc., from time to time to thwart the at-
tacker. Assume a continuous time horizon. At any time in-
stance, either the defender or the attacker can make a move
to take over the resource at some cost. At time τ , the re-
source is under the control of the player that makes the last
move before τ . Let τt, t = 1, 2, ... denote the time instance
of the t-th defense action, and xt = τt+1 − τt the t-th de-
fense period. We assume τ1 = 0 without loss of generality.
Each defense action (move) incurs a fixed cost CD, which
is known to the defender. Let X denote the set of all possi-
ble defense periods. We assume that X ⊆ [xmin, xmax] with
xmin > 0. See Figure 1 for an example.

We further make the following assumptions about the
game: (1) The attack in round t takes a random time at to
succeed, which is i.i.d. sampled from a distribution Fa that
is initially unknown to the defender. In contrast, the defender
recaptures the resource immediately once it makes a move,
which is a reasonable assumption as it is usually much more
time consuming to compromise a resource than updating its
security measures. We may also interpret at as the awareness
time that the attacker takes to discover a new vulnerability
in the system. We assume that at is out of the control of
the attacker but its distribution is known to the attacker. The
attacker does not know the value of at until it successfully
compromises the system in round t. (2) Whenever the de-
fender makes a move, this fact is learned by the attacker im-
mediately. On the other hand, the defender has delayed and
incomplete feedback in the following sense. First, the de-
fender only gets feedback at the end of each round. Second,
at time τt+1, the defender learns the value of at if at < xt,
that is only when an attack is observed. Thus, the game has
asymmetric feedback, a common scenario in cybersecurity.
(3) The attacker is myopic and does not have a move cost.
Therefore, it always attacks immediately right after a secu-
rity update. Our model and solutions can be extended to the
case when the attacker is myopic but with a hidden move
cost (see (Zheng, Shroff, and Mohapatra 2016)).

Under the above assumptions, in each round t, the re-
source is fully protected if at ≥ xt and is compromised for
a duration of xt − at otherwise. The loss to the defender in
round t is then defined as:

l(xt, at) = f [(xt − at)
+] + cd (1)

where f(·) models the loss from attack and cd models the
cost of each defense action. We assume that f(·) ∈ [0, 1],

f(0) = 0, and f(·) is increasing. For instance, we can con-
sider (1) a binary loss function where l(xt, at) = 1 + cd if
xt > at and l(xt, at) = cd otherwise; or (2) a linear loss
function l(xt, at) = (xt−at)

+

xmax
+ cd (where the xmax factor

is introduced to normalize the loss value).
The defender’s objective is to minimize the long-term av-

erage loss defined as follows:

λu = lim sup
T→∞

E(
∑T

t=1 l(x
u
t , at))∑T

t=1 x
u
t

(2)

where u denotes any defense policy and xu
t is the t-th de-

fense period chosen by policy u. Let l(x) = Ea1(l(x, a1))
denote the expected loss of defense period x, and let λ(x) =
l(x)
x denote the time average loss of a periodic policy with

period x. We make two observations: (1) defending all the
time is not necessarily a good option as it may incur a
very high defense cost; (2) it can be shown that the peri-
odic defense policy with period x∗ = minx∈X λ(x) min-
imizes the long-term time average loss (Puterman 1994;
György et al. 2007). However, this optimal policy cannot
be found when the distribution of at is unknown. Let λ∗ =
λ(x∗) denote the optimal loss. To find an optimal defense
policy when the distribution of at is unknown, we adopt the
time associative bandit model (György et al. 2007) by con-
sidering each defense period as an arm. For a defense policy
{xt}, the (pseudo) regret for the first T rounds with respect
to the optimal periodic policy can be defined as:

RT = max
x∈X

E

[
T∑

t=1

l(xt, at)− λ(x)xt

]
(3)

=
T∑

t=1

l(xt)− λ∗
T∑

t=1

xt (4)

Our objective is to find a defense policy with low regret.
Note that any learning algorithm with limT→∞ RT

T = 0
minimizes the long-term loss as T → ∞. We also note that
even if l(xt, at) as a function of xt (for a fixed at) has a sim-
ple structure, the mean loss function l(xt) � Eat(l(xt, at))
may have a complicated form depending on the distribu-
tion of at. Therefore, previous works on linear and convex
bandits cannot be directly applied to our problem. On the
other hand, we observe that the defender may obtain side-
observations during the game, which can be utilized to de-
sign more efficient learning algorithms.

Side observations: As we discussed before, the defender
learns the value of at if at < xt (hence its loss as well) at the
end of each round. From this feedback, the defender may get
side observations in the following sense. Consider any round
t. If at < xt, then the defender learns the value of at; there-
fore, it learns l(xi, at) for any xi ∈ X if it has played xi in-
stead of xt. On the other hand, if at ≥ xt, the defender only
learns the value of l(xi, at) = cd for any xi ≤ xt, but not
the value of l(xj , at) for xj > xt. This implies that playing
an arm that corresponds to a longer defense period provides
more side observations about other arms. Our learning algo-
rithm incorporates these side-observations to minimize the
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expected regret. Indeed, our algorithm and its regret bound
apply to any loss function l(xt, at) where playing one period
provides side-observations to all shorter periods.

Multiple resources: Our model can be readily extended to
consider multiple resources (nodes) subject to i.i.d. attacks,
which can be used to model multiple users subject to inde-
pendent attacks in an online system such as Facebook. In this
case, samples from multiple nodes can be pooled together
when choosing the next defense period for a node. Con-
sider a system with N nodes that are subject to i.i.d. attacks
with unknown attack times sampled from Fa. Let τst denote
the time instance of the t-th security update on node s and
xst = τs(t+1) − τst the t-th defense period for node s. Note
that xst can be different for different s. Let ast denote the
attack time in the t-th attack towards node s. Let l(xst, ast)
denote the loss to the defender in round t over node s. When
the nodes are subject to i.i.d. attacks, there is an optimal
defense period x∗ for all nodes with minimum time aver-
age loss λ∗, similar to the single node setting. The i.i.d. as-
sumption may hold in practice because (1) some parameters
such as the attack time may be out of the control of the at-
tacker and can be approximated as i.i.d. random variables
during the time horizon of the game; (2) an adversarial at-
tacker may choose to avoid correlated attacks to make its be-
havior more unpredictable. Assume that the game is played
for Ts rounds over node s, and let T =

∑
s Ts. Then the

regret over the T rounds of play across all the nodes can be
defined as RT =

∑N
s=1

∑Ts

t=1 l(xst)− λ∗
∑N

s=1

∑Ts

t=1 xst.
Note that, when choosing xst, feedback from all the nodes
received before τst can be used. Our online learning algo-
rithms can be directly applied to this setting.

Optimal Timing Algorithms

In this section, we present our learning algorithms for the
optimal timing problem for both discrete and continuous de-
fense periods.

Discrete Defense Periods

We first consider the finite-armed setting where the set of
defense periods is finite, denoted by X = {x1, ..., xK}.
Let it denote the index of the arm played in round t, i.e.,
xi(t) is the defense period chosen for round t. Let ni(t) =∑t

s=1 I(is = i) denote the number of plays of arm i during
the first t rounds. Let li,t = 1

ni(t)

∑t
s=1 I(is = i)l(xi(s), as)

denote the average loss from arm i during the first t rounds,
and λi,t =

li,t
xi

the time average loss of arm i. To simplify
the notation, we omit the subscript t in li,t and λi,t when it
is clear from the context, and let li � l(xi) and λi � λ(xi).
Let Δi = li − xiλ

∗ denote the relative loss of playing arm
i. Note that Δi∗ = 0 for an optimal arm i∗ and Δi ∈ [0, 1]
by our assumption about l. Then RT =

∑
i�=i∗ ΔiE(ni(T )).

Let Δmin � mini:Δi>0 Δi and Δmax � maxi Δi.
To derive an optimal defense policy, we consider the

following variant of the improved upper confidence bound
based policy proposed in (Auer and Ortner 2010) for
stochastic bandits. We modify the improved UCB policy to

Algorithm 1 Improved UCB algorithm for time-associative
bandits with side observations

Input: A set of periods X , the number of rounds T .
Initialization: Set Δ̃0 = 1, X0 = X .
for m = 0, 1, 2, ..., do

x(1) = min{xi ∈ Xm}; x(2) = max{xi ∈ Xm}.
Arm selection:
If |Xm| = 1, play the single period in Xm until T .
Else play the longest period in Xm until round

min(nm, T ), where nm =
⌈
2γm log(T (K+1)Δ̃2

m)

Δ̃2
m

⌉
and

γm =
(
1 +

x(2)

x(1)

)2

; update li, λi for all xi ∈ Xm.

Arm elimination:
λm = minxi∈Xm

(
λi + cm/xi

)
where cm =√

log(T (K+1)Δ̃2
m)

2nm
.

To get Xm+1, delate all the periods xi ∈ Xm such that

li−xiλm ≥ minxj∈Xm lj−xjλm+2
(
1 +

xj

x(1)

)
cm.

Reset: Δ̃m+1 = Δ̃m

2 .

address the time associative regret while taking the depen-
dence between arms into account.

The algorithm proceeds in multiple stages, where each
stage involves multiple rounds (see Algorithm 1). In each
stage m, as in the improved UCB policy, our policy esti-
mates Δi by a value Δ̃m, and maintains a set of active arms
Xm. Δ̃0 is initialized to 1 and is halved in each stage. X0

initially contains all the arms. At the end of each stage m, a
subset of arms are deleted from Xm according to their ob-
served losses in previous rounds. Compared with the im-
proved UCB policy for stochastic bandits, our policy has
several key differences. First, in the arm selection phase,
each active arm is played nm − nm−1 times in stage m in
the improved UCB policy, where nm is a function of Δ̃m

and is chosen so that any suboptimal arm i is eliminated as
soon as Δ̃m < Δi

2 with high probability. In contrast, only
the longest period in Xm is played nm − nm−1 times in our
policy, which provides side observations to all the shorter
periods as we discussed above. For any arm xi ∈ Xm, li
is defined as if i is played in all the previous nm rounds.
In addition, the definition of nm in our policy is different
from the improved UCB policy. In particular, nm depends
on the ratio of the maximum active period to the minimum
active period, which is needed to bound the time associative
regret. Second, in the arm elimination phase, we compare
the relative losses of arms instead of average losses as in the
improved UCB, since average loss alone does not take the
length of a defense period into account. In particular, we es-
timate the relative loss of arm i by li,nm

− xiλm, where λm

is an estimate of λ∗ defined by

λm = min
xi∈Xm

(
λi,nm

+ cm/xi

)
(5)

where cm =

√
log(T (K+1)Δ̃2

m)
2nm

. The value of cm is chosen
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so that for all i, λi,nm is in the cm/xi-vicinity of λi with
high probability.

To establish the regret bound of the algorithm, we need
the following lemmas.
Lemma 1. (Chernoff-Hoeffding Bound (Hoeffding 1963))
Let X1, X2, ..., Xn be a sequence of independent random
variables with support [a, b] and E(Xt) = μ for all Xt. Let
Xn = 1

n

∑n
t=1 Xt. Then for any ε > 0, we have

P{Xn ≥ μ+ ε} ≤ e
− 2nε2

(b−a)2 ,

P{Xn ≤ μ− ε} ≤ e
− 2nε2

(b−a)2 .

Lemma 2. Consider any stage m where there is an optimal
arm i∗ ∈ Xm. If li ≤ li + cm for all xi ∈ Xm and l∗ ≥
li∗ − cm, then we must have λ∗ ≤ λm ≤ λ∗ + 2cm/xi∗ .

Proof. To see this, let xj ∈ Xm be the arm that minimizes
λj . Then we have λ∗ ≤ λj ≤ λj + cm/xj = λm, and
λm ≤ λi∗ + cm/xi∗ ≤ λ∗ + 2cm/xi∗ .

We now show the following bound on the expected regret
of Algorithm 1.
Theorem 1. The expected regret of Algorithm 1 is at most
48γ log

(
T (K+1)

Δ2
max
4

)

Δmin
+

∑
i:Δi>0

(
Δi +

48
Δi

)
, where γ =

(1 + xmax

xmin
)2.

Proof. Without loss of generality, we assume that the opti-
mal arm is unique and has index K, and sort the set of arms
such that Δ1 ≥ Δ2 ≥ · · · ≥ ΔK = 0. For any subopti-
mal arm i, let mi = min{m : Δ̃m < 1

2Δi} denote the first
stage in which Δ̃m < 1

2Δi. We have 2mi = 1
Δ̃mi

≤ 4
Δi

<

1
Δ̃mi+1

= 2mi+1. Note that m1 ≤ m2 ≤ · · · ≤ mK−1.
We consider the following events similar to (Perchet and

Rigollet 2013). Let Ai denote the event that the optimal arm
has not been eliminated before stage mi, and Bi the event
that every arm j ∈ {1, 2, ..., i} has been eliminated in stage
mj or before. We have A1 ⊇ A2 · · · ⊇ AK−1 and B1 ⊇
B2 · · · ⊇ BK−1. Let Ci = Ai ∩ Bi for i ∈ {1, 2, ...,K −
1}. Under the event Ci, let Ui denote the contribution to
the regret from arms {1, 2, ..., i} and Vi the contribution to
the regret from arms {i + 1, ...,K − 1}. We observe that
Vi ≤ TΔi+1. Let C0 denote the sample space. We then have

RT =

K−1∑
i=1

P(Ci−1\Ci)(Ui + Vi)

≤
K−1∑
i=1

UiP(Ci−1\Ci) +

K−1∑
i=1

TΔiP(Ci−1\Ci)

≤
K−1∑
i=1

UiP(Ci−1\Ci) +

K−1∑
i=1

TΔiP(B
c
i ∩Bi−1 ∩Ai)

+
K−1∑
i=1

TΔiP(A
c
i ∩ Ci−1) (6)

We bound each of the three terms in (6) as follows:
First term in (6): Under the event Ci, each suboptimal arm
j ∈ {1, 2, ..., i} is eliminated on or before round nmj

=⌈
2γmj

log(T (K+1)Δ̃2
mj

)

Δ̃2
mj

⌉
. Among these arms, let j1, j2, ..., jk

denote the sequence of suboptimal arms played where xj1 >
... > xjk , and arm ji is eliminated in stage m′ji ≤ mji . Let

B � 2γ log
(
T (K + 1)

Δ2
max

4

)
. We then have

Ui ≤ Δj1nm′
j1

+

k∑
i=2

Δji(nm′
ji
− nm′

ji−1
)

≤Δj1nm′
j1

+

k∑
i=2

Δji

(
1 +

2γ log(T (K + 1)Δ̃2
mji

)

Δ̃2
mji

−
2γ log(T (K + 1)Δ̃2

mji−1
)

Δ̃2
mji−1

)

≤Δj1nm′
j1

+

k∑
i=2

Δji + 4B

k∑
i=2

Δ̃mji

(
1

Δ̃2
mji

− 1

Δ̃2
mji−1

)

≤Δj1nm′
j1

+

k∑
i=2

Δji + 4B

k∑
i=2

1.5Δ̃mji−1
(Δ̃mji−1

− Δ̃mji
)

Δ̃mji
Δ̃2

mji−1

=Δj1nm′
j1

+

k∑
i=2

Δji + 6B

k∑
i=2

(
1

Δ̃mji

− 1

Δ̃mji−1

)

≤
k∑

i=1

Δji + 6B
1

Δ̃mjk

≤
k∑

i=1

Δji + 24B
1

Δjk

Therefore,
∑K−1

i=1 UiP(Ci−1\Ci) ≤∑K−1
i=1 Δi + 24B 1

Δmin
.

Second term in (6): Under the event Bc
i ∩Bi−1 ∩Ai, the optimal

arm is not eliminated by mi, neither does arm i. We first note that
if li ≥ li − cmi and lK ≤ lK + cmi hold, then arm i will be
eliminated in round mi. Indeed, from the definitions of cm and

nm, we have cmi ≤ Δ̃mi
2
√
γmi

=
Δ̃mi+1√

γmi
< Δi

4
√
γmi

. Then from
Lemma 2, we have

li − xiλmi ≥li − xi(λ
∗ + 2cmi/xK)

≥li − xi(λ
∗ + 2cmi/xK)− cmi

=lK − xKλ∗ +Δi − 2
xi

xK
cmi − cmi

>lK − xKλ∗ + 4
√
γmicmi − 2

xi

xK
cmi − cmi

≥lK − xKλ∗ + 2

(
1 +

xK

x(1)

)
cmi

≥lK − xKλmi + 2

(
1 +

xK

x(1)

)
cmi

where x(1) is the minimum active period in stage mi. It follows
that arm i is eliminated in stage mi as claimed.

It follows that P(Bc
i ∩ Bi−1 ∩ Ai) ≤ P(li < li − cmi) +

P(li∗ > li∗ + cmi) ≤ 1

T (K+1)Δ̃2
mi

+ 1

T (K+1)Δ̃2
mi

≤ 1

T Δ̃2
mi

by

the Chernoff-Hoeffding bound. Therefore, the second term in (6)
can be bounded by

∑
i TΔi

1

T Δ̃2
mi

≤∑i
16
Δi

.

Third term in (6): Under the event Ac
i ∩ Ci−1, every arm j ∈

{1, 2, ...i−1} has been eliminated by stage mj and the optimal arm
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is eliminated by some arm k ≥ i in some stage m∗ where mi−1 <
m∗ ≤ mi. We first claim that if lk ≥ lk−cm∗ and lK ≤ lK+cm∗
hold, then the optimal arm is not eliminated by arm k in stage m∗.
To see this, assume that the optimal arm is eliminated, which hap-
pens only when lK−xKλm∗ ≥ lk−xkλm∗ +2

(
1 + xk

x(1)

)
cm∗ .

From Lemma 2, we have:

lk − xkλ
∗ ≤lk + cm∗ − xk(λm∗ − 2cm∗/xK)

≤lk − xkλm∗ + cm∗ + 2
xk

xK
cm∗

≤lk − xkλm∗ + 2

(
1 +

xk

x(1)

)
cm∗ − cm∗

≤lK − xKλm∗ − cm∗

≤lK − xKλ∗

which contradicts the fact that k is suboptimal. It follows that the
probability that the optimal arm is eliminated by a fixed arm k ≥ i
in a fixed stage m∗ ≤ mi is bounded by P(lk < lk − cm∗) +

P(lK > lK + cm∗) ≤ 1

T Δ̃2
m∗

by the Chernoff-Hoeffding bound.

Therefore, the third term in (6) is bounded by

K−1∑
i=1

mi∑
m∗=mi−1+1

K−1∑
k=i

1

T Δ̃2
m∗

TΔi

=

maxi mi∑
m∗=0

∑
k:mk≥m∗

1

T Δ̃2
m∗

T max
h:mh≥m∗

Δh

≤
maxi mi∑
m∗=0

∑
k:mk≥m∗

1

Δ̃2
m∗

4Δ̃m∗

=

K−1∑
i=1

mi∑
m∗=0

4

Δ̃m∗
≤

K−1∑
i=1

4 · 2mi+1 ≤
K−1∑
i=1

32

Δi

Putting all the three cases together, we get the desired regret
bound.

Remark 1. Our algorithm achieves a regret where the
coefficient of the log(T ) term is independent of K, the
number of arms. This is obtained by utilizing the side
observations among arms. In contrast, a direct applica-
tion of the UCB based policy for time-associative bandits
in (György et al. 2007) to our problem leads to a regret of
O
(∑K

i=1
γ log(T (K+1))

Δ2
i

)
, where the log(T ) term has a co-

efficient that is linear of K.

Remark 2. In our numerical study, we also consider a vari-
ant of Algorithm 1 where in arm elimination phase, we de-
late all the periods xi ∈ Xm such that li − xiλm ≥
minxj∈Xm

lj −xjλm+4cm. By using a smaller confidence
interval, this variant eliminates suboptimal arms more ag-
gressively than Algorithm 1. Although we are not able to
prove a regret bound for this variant, it exhibits even better
performance than Algorithm 1 in our numerical study.

Continuous Defense Periods

We next consider the case where the defense periods can
take any real value in X = [xmin, xmax]. Note that in this
case, the bound given in Theorem 1 can be very poor due
to the large K and small Δi. Built upon Algorithm 1, we
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Figure 2: Numerical Results.

propose a new policy with a regret that is independent of
K and Δi under the following assumption. Let l(x) =
Ea1

(l(x, a1)) denote the expected loss when a period x is
played. We assume that l(x) is Lipschitz continuous: there
exists a constant L ≥ 0 such that for any x1, x2 ∈ X ,
|l(x1) − l(x2)| ≤ L|x1 − x2|. For instance, when the at-
tack time follows a uniform distribution in [a1, a2], and f(·)
is binary, we have |l(x1)− l(x2)| ≤ 1

a2−a1
|x1−x2|, and we

can take L = 1
a2−a1

.
Our algorithm is inspired by UCB for continuous bandits

(UCBC) (Auer, Ortner, and Szepesvári 2007). We first di-
vide X into n subintervals of equal length, where n is a
parameter to be determined (see Algorithm 2). Let xk �
xmin + k xmax−xmin

n denote the longest period in the k-
th interval. We then apply Algorithm 1 to the set of arms
I � {x1, ..., xn}.

Algorithm 2 Improved UCB based optimal timing with con-
tinuous periods

Input: A set of periods X = [xmin, xmax], the number of
rounds T , the number of subintervals n.
Initialization: For k = 1, 2, ..., n, xk = xmin +
k xmax−xmin

n .
Apply Algorithm 1 to I = {x1, x2..., xn}.

Define I1 � [xmin, x1] and Ik � (xk−1, xk] for 1 < k ≤
n. For any x ∈ X , let Δ(x) � l(x)−xλ∗ denote the relative
loss of x. Among xk ∈ I , assume xk∗ has the minimum
λ(xk). Let Δ′(x) � l(x)− xλ(xk∗) denote the relative loss
of arm x with respect to xk∗ . It is clear that Δ′(x) ≤ Δ(x).
We further have the following property about Δ and Δ′.

Lemma 3. Δ(xk∗) ≤ L′n−1 and Δ(x)−Δ′(x) ≤ L′n−1,
where L′ = Lxmax(xmax−xmin)

xmin
.

From the lemma, we can establish the following perfor-
mance bound for Algorithm 2.

Theorem 2. The expected regret of the variant of the im-
proved UCB policy for continuous bandits described in Al-
gorithm 2 is at most 3L′n−1T + 48γ log(T (n+1))

L′n−1 + 48n2

L′ +

nΔmax. By taking n = T 1/3, we have RT ≤ O(T 2/3).

Proofs of Lemma 3 and Theorem 2 are provided in
(Zheng, Shroff, and Mohapatra 2016).
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Numerical Results

In this section, we demonstrate the advantages of our learn-
ing algorithms through numerical study. We use the follow-
ing synthetic dataset. We assume that the attack time at
follows an i.i.d. Weibull Distribution with CDF F (a) =

1 − e−(a/λ)k for a ≥ 0 and F (a) = 0 for a < 0. This
model has been used in reliability engineering (Mazzuchi
and Soyer 1996) and cybersecurity (Tan and Xia 2016) to
model failure times. Note that when b = 1, the Weibull Dis-
tribution becomes the exponential distribution. By setting
b > 1, the model indicates that the failure rate increases with
time. We set b = 2 in experiments. In each trial, λ is chosen
from the interval [1, 20] uniformly at random. We consider
a 19 arm setting with xi evenly distributed in [1, 10] with a
step size of 0.5. We consider both the binary loss function
and the linear loss function mentioned in the model section.
In both cases, we fix the defense cost to cd = 0.1. With these
parameter settings, we observe that the best arm varies over
the feasible defense periods when we vary λ.

We focus on the case where side observations are avail-
able (without attack cost) and compare our algorithms with
the UCB based time-associative bandit algorithm in (György
et al. 2007) (TUCB) that do not consider side observations.
We further consider a variant of TUCB that uses the TUCB
policy to choose the arm to play in each round and obtains
side-observations after each play (TUCB-side). This algo-
rithm can be considered as the application of the UCB-N
policy and the UCB-MaxN policy in (Caron et al. 2012) to
the time associative bandit model (UCB-N and UCB-MaxN
give the same policy under the dependence structure we
consider.) For our algorithms, we evaluate both Algorithm
1 (TUCB-improved-side) and its variant discussed above
(TUCB-improved-side-2). The results are averaged over 100
independent trials and are given in Figure 2. We note that
the linear loss setting represents the harder case since it in-
troduces smaller variances across arms. We observe that for
both loss functions, our algorithms can significantly reduce
long-term regrets compared to TUCB and TUCB-side by
carefully incorporating side observations. Moreover, TUCB-
improved-side-2 achieves the best performance among the
four algorithms.
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