
Logical Filtering and Smoothing:
State Estimation in Partially Observable Domains

Brent Mombourquette,† Christian Muise,∗ Sheila A. McIlraith†
†Department of Computer Science, University of Toronto

∗CSAIL, Massachusetts Institute of Technology
†{bgmomb,sheila}@cs.toronto.edu, ∗cjmuise@mit.edu

Abstract

State estimation is the task of estimating the state of a par-
tially observable dynamical system given a sequence of exe-
cuted actions and observations. In logical settings, state es-
timation can be realized via logical filtering, which is exact
but can be intractable. We propose logical smoothing, a form
of backwards reasoning that works in concert with approxi-
mated logical filtering to refine past beliefs in light of new ob-
servations. We characterize the notion of logical smoothing
together with an algorithm for backwards-forwards state esti-
mation. We also present an approximation of our smoothing
algorithm that is space efficient. We prove properties of our
algorithms, and experimentally demonstrate their behaviour,
contrasting them with state estimation methods for planning.
Smoothing and backwards-forwards reasoning are important
techniques for reasoning about partially observable dynam-
ical systems, introducing the logical analogue of effective
techniques from control theory and dynamic programming.

Introduction

Many applications of artificial intelligence from automated
planning and diagnosis to activity recognition require rea-
soning about dynamical systems that are only partially ob-
servable. A necessary component of such systems is state
estimation – the task of estimating the state of the sys-
tems given a sequence of executed actions and observa-
tions. With stochastic transition systems, state estimation
is commonly realized via filtering, of which Kalman filter-
ing (Kalman 1960) is a well-known example. In logical set-
tings, an analogous form of logical filtering was proposed
by Amir and Russell [2003] in which an agent’s belief state
– the set of possible world states – can be compactly rep-
resented as a formula, and filtering is a form of belief up-
date. While logical filtering is intractable in the general case
(Eiter and Gottlob 1992), there are tractable subclasses of-
ten involving restricted transition systems or compact en-
codings of the belief state (e.g., (Shahaf and Amir 2007;
Shirazi and Amir 2011)). Unfortunately, typical belief state
representations often require further inference to ascertain
beliefs about individual fluents – a frequent and time critical
component of many decision-making systems.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Our concern is with logical state estimation in service
of tasks such as planning, execution monitoring, diagnosis,
and activity recognition. We are particularly concerned with
systems that include a rich characterization of how the ac-
tions of an agent indirectly affect their environment. These
are typically captured by causal or ramification constraints
(e.g., a causal constraint might say that if the battery and radio
are ok and the radio is on then sound is emitted.). We assume
that such constraints are compiled into the transition system
as additional effects of actions following, e.g., (Pinto 1999;
Strass and Thielscher 2013; Baier, Mombourquette, and
McIlraith 2014). In planning such constraints tend to create
problems with large conformant width (Palacios and Geffner
2009).

We exploit the observation that only a subset of the state
is necessary to track. Planning systems need to know when
actions are applicable, and when the goal is reached (Bonet
and Geffner 2014). Execution monitoring systems need only
track the conditions under which a plan remains valid (e.g.,
(Fikes, Hart, and Nilsson 1972; Fritz and McIlraith 2007)).
Diagnosis systems track the confirmation and refutation of
candidate diagnoses. These observations motivate the devel-
opment of state estimation techniques tailored to the task of
tracking the truth of (conjunctions of) fluent literals. In Sec-
tion we formalize state estimation as semantic logical filter-
ing and propose a sound under-approximation that is compu-
tationally appealing. Motivated by the technique of smooth-
ing for stochastic systems (e.g., (Einicke 2012)), in Section
, we introduce the notion of logical smoothing, which al-
lows for the updating of beliefs about the past in light of
observations about the present. In Section 7, we propose
an algorithm for backwards-forwards reasoning that com-
bines smoothing and filtering in order to perform state es-
timation. The application of (approximate) logical smooth-
ing mitigates for the incompleteness of approximate logical
filtering, while preserving many of its computational advan-
tages. We evaluate our approach and discuss related work.

The Problem: State Estimation
State estimation is a core task in reasoning about dynami-
cal systems with partial observability. Informally, the state
estimation task we address is:

Given a dynamical system, a belief state, and a se-
quence of executed actions and observations, infer the

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

3613

resulting belief state of the system.
For logical theories, state estimation is captured by logical
filtering (Amir and Russell 2003).

Example: Consider the simplified action-observation
sequence in support of diagnosing a car. For simplicity
of exposition, we assume that actions have no precondi-
tions – they are always executable – and only ¬sound
known in the initial state. The action turn ignition,
results in ignition turned. If ignition turned,
battery ok and gas ok hold, then so will car started.
You turn ignition and observe (¬car started), and
so, under the assumption that the characterization
of the vehicle functioning is complete, you can infer
¬battery ok ∨ ¬gas ok. You turn on radio, causing
radio on as well as sound if battery ok ∧ radio ok. You
observe (sound). Under completeness and frame assump-
tions, you are now able to infer radio ok, battery ok and
¬gas ok. So following the action-observation sequence
(turn ignition,¬car started,turn on radio,sound),
your estimated belief state comprises just one state here
represented by the set of fluents {ignition turned,
¬car started, radio on, battery ok, radio ok, ¬gas ok,
sound}.

We appeal to standard finite domain planning language
syntax. A dynamical system is a tuple Σ = 〈F ,S,A,R, I〉,
where F is a finite set of propositional fluent symbols such
that if p ∈ F , then p and ¬p are fluent literals, S = Pow(F)
is the set of possible world states, A is a set of actions in-
cluding sensing actions, R ⊆ S × A × S is the transition
relation (equivalently we use the notation (s, a, s′) ∈ R or
s′ = R(s, a)), and I is a set of clauses over F that defines
a set of possible initial states, collectively – the initial belief
state. As noted in the introduction, we assume that causal
constraints are compiled into our transition system as ex-
tra effects of actions (e.g., following (Pinto 1999)). For the
purposes of this paper, non-sensing actions a ∈ A are as-
sumed to be deterministic and are defined by a precondition
prec(a), which is a conjunction of fluent literals, and eff (a),
a set of conditional effects of the form C → L, where C is
a conjunction of fluent literals and L is a fluent literal. We
write the unconditional effect true → L as simply L, and
use true to denote an empty precondition. Each sensing ac-
tion is defined solely by its precondition prec(a), which is a
conjunction of fluent literals, and obs(a), which is the fluent
literal that is observed by the sensing action, following in
the spirit of sensing actions in the situation calculus (Reiter
2001). Note that our account of logical filtering and smooth-
ing supports both the use of explicit sensing actions, and the
scenario where observations are automatically returned fol-
lowing an action to create an action-observation sequence.
Finally, we assume there are no exogenous actions.

Throughout this paper we take the viewpoint that the state
of Σ represents the belief state of the agent. The semantics
of logical filtering is defined by considering the belief state
to be a set of possible world states ρ ⊆ S. Since there are
22

|F|
belief states, algorithms for logical filtering typically

represent the belief state (henceforth simply state), ρ, com-

pactly as a logical formula φ, called a belief-state formula or
state formula. Later we will be restricting φ to a conjunction
of fluent literals, sometimes denoted as a set of fluent liter-
als and referred to as a conjunctive state formula. Following
Amir and Russell (2003):

Definition 1 (Logical Filtering Semantics (Amir, Russell))
Given belief state ρ ⊆ S of dynamical system Σ, the
filtering of a sequence of actions and observations
〈a1, o1, . . . , at, ot〉 with respect to ρ is defined as:
1. Filter[〈〉](ρ) = ρ

2. Filter[a](ρ) = {s′ | s′ = R(s, a), s ∈ ρ}
3. Filter[o](ρ) = {s | s ∈ ρ and o is true in s}
4. Filter[〈ai, oi, . . . , at, ot〉](ρ) =

Filter[〈ai+1, oi+1, . . . , at, ot〉](Filter[oi](Filter[ai](ρ)))
We call step 2 progression with a and step 3 filtering with o.

When action a is filtered, every state s ∈ ρ is updated via
transition system R(s, a). When an observation o is filtered,
every state inconsistent with the observation is eliminated.
This results in an interleaving of action progression and ob-
servation filtering (e.g., (Vassos and Levesque 2013)).

Logical filtering can cause fundamental inference oper-
ations to be intractable, such as inferring beliefs about in-
dividual fluents (Shahaf and Amir 2007). A core compo-
nent of automated planning is determining the applicability
of actions during the search for a plan, as well as determin-
ing whether the goal condition has been achieved. Similarly
dynamical diagnosis requires determination of the refuta-
tion or confirmation of candidate diagnoses as the result of
(treatment) actions and sensing (e.g., (McIlraith and Reiter
1992)). Diagnoses, action preconditions, and planning goals
are typically represented as conjunctions of fluents, moti-
vating us to propose approximate logical filtering which de-
scribes the belief state in terms of the subset of the fluent
literals entailed by the belief state:

Definition 2 (Approximate Logical Filtering)
Given belief-state formula φ of dynamical system Σ, the ap-
proximate filtering of a sequence of actions and observations
〈a1, o1, . . . , at, ot〉 with respect to φ is defined as:

1. Filtera[〈〉](φ) = φ;
2. Filtera[a](φ) =

∧{L | (C → L) ∈ eff(a) ∧ φ |= C}∧{L | φ |= L ∧ ∀(C → ¬L) ∈ eff(a), φ |= ¬C};
3. Filtera[o](φ) = φ ∧ o;
4. Filtera[〈ai, oi, . . . , at, ot〉](φ) =

Filtera[〈ai+1, oi+1, . . . , at, ot〉](Filtera[oi](Filtera[ai](φ)))
One can see from line 2 that progressing a state φ through

an action a produces a state consisting of what was known to
be caused (directly or indirectly) by a and what was known
to persist through a.

Example: Returning to our car example, we see how ap-
proximate logical filtering provides a weak approximation.
After the previously noted sequence of actions and observ-
ing (¬car started) and (sound) the resulting approximated
belief state is {ignition turned, radio on, ¬car started,

3614

sound} missing radio ok, battery ok and ¬gas ok which
full logical filtering would produce.

Theorem 1 (Sound Under Approximation) Given dy-
namical system, Σ, belief-state formula φ representing
possible belief state ρ ⊆ S, and action-observation se-
quence 〈a1, o1, . . . , at, ot〉, Filter[〈a1, o1, . . . , at, ot〉](ρ) |=
Filtera[〈a1, o1, . . . , at, ot〉](φ).

This follows from Definitions 1 and 2. Approximate Log-
ical Filtering is not complete with respect to logical filtering
semantics.

Proposition 1 (Conjunctive State Formula Preservation)
Given dynamical system, Σ, conjunctive state
formula φ, and action-observation sequence
〈a1, o1, . . . , at, ot〉, where each oi is a conjunctive for-
mula, Filtera[〈a1, o1, . . . , at, ot〉](φ) is a conjunctive
formula.

The above proposition follows naturally from lines 2 and
3 of Definition 2 and is key to our complexity results and
tractable approximate representations.

Theorem 2 (Complexity) Given dynamical system, Σ,
conjunctive state formula φ, and action-observation se-
quence 〈a1, o1, . . . , at, ot〉, where each oi is a conjunc-
tive formula, Filtera[〈a1, o1, . . . , at, ot〉](φ) is computable in
time O(t · c · |F|) where c is the maximum number of condi-
tional effects over actions in the sequence.

This follows from fluent entailment of a conjunctive for-
mula and the limit of |F| fluents per consistent conditional
effect. For the many tasks, including planning, where ob-
servations are conjunctive formulae, approximate logical
filtering enables state estimation to reduce to set opera-
tions. While computationally appealing, the approximation
is weak and thus of limited use on its own for AI planning,
dynamical diagnosis, and similar tasks. In the next section,
we combine approximate logical filtering with a new ap-
proach for reasoning over the past – logical smoothing.

Logical Smoothing

Filtering with a stochastic transition system involves esti-
mating the marginal posterior probability distribution of the
system conditioned on data that was received prior to the
current state. There is an analogous concept for estimating
not the current state but instead a previous state. This is
called smoothing – refining a previous state estimation (e.g.,
(Einicke 2012)). For stochastic models, this amounts to a
re-computation of the marginal posterior probability distri-
bution. We can carry this idea to the logical setting and show
how observations can be used to refine estimates of past
states. The notion of logical smoothing is only of interest
if the belief state is approximated in some way. For exam-
ple, in later sections, we show how logical smoothing can
be used to improve weak approximations of logical filtering
and thus produce a refined estimate of the current state.

We begin our treatment of logical smoothing by defining
the semantics of logical smoothing with respect to a belief

state. Given a representation of the sequence of actions, ob-
servations, and intermediate state estimates, logical smooth-
ing recursively refines previous state estimates through a
backwards update procedure. To this end, we store previous
state estimates, coupled with the actions executed to con-
struct successor states in a so-called history. Note that while
we use a set of possible worlds to represent a belief state,
histories can be defined with any sort of state representa-
tion (logical formulae, sets of fluents understood as a logical
conjunction, etc.), which we exploit later in this section.

Definition 3 (Belief State History) Given dynamical sys-
tem, Σ, a belief state history over Σ is a sequence of tu-
ples (ρ0, a0),(ρ1, a1),. . . (ρn, an) such that each ρi is a be-
lief state, a set of possible world states ρi ⊆ S and each ai
is an action of Σ.

The intent of a history is to capture the evolution of the
system starting from some designated initial belief state ρ0.
Tuple (ρ, a) records the belief state, ρ, prior to the execution
of action a. The observations are not modeled as separate
entities. Rather, they reside in the intermediate belief states,
presumably as part of an original filtering process.

Definition 4 (Logical Smoothing Semantics) Given belief
state ρ ⊆ S of dynamical system Σ, the smoothing of a belief
state history (ρ0, a0),(ρ1, a1),. . . (ρn, an) with respect to ρ
is defined as:

1. Smooth[〈〉](ρ) = ρ

2. Smooth[o](ρ) = Filter[o](ρ)
= {s | s ∈ ρ and o is true in s}

3. Smooth[(ρ′, a′)](ρ) =
ρ′ ∩ {s | s ∈ PreImage(s′, a′), s′ ∈ ρ}

4. Smooth[〈(ρ0, a0), (ρ1, a1), . . . (ρn, an)〉](ρ) =
Smooth[〈(ρ0, a0), . . . (ρn−1, an−1)〉]

(Smooth[(ρn, an)](ρ))

where PreImage(s′, a) = {s | s′ = R(s, a)}

Logical smoothing works by propagating acquired in-
formation (typically an observation or the resultant filtered
state-action pair) back through a given history and updating
its constituent state estimates. Note that this is more akin to
belief updating than to belief revision. Each smoothing step
refines previous state estimates in that the smoothed state’s
set of possible world states are always a (non-strict) subset
of the state’s original set of possible world states.

With our semantics in hand, Definition 6 provides a for-
mal characterization of logical smoothing with respect to a
compact belief-state formula representation of the history.

Definition 5 (History) Given dynamical system,
Σ, a history H over Σ is a sequence of tuples
(σ0, a0), (σ1, a1), . . . (σn, an) such that each σi is a
belief-state formula over F and each ai is an action of Σ.

When there are no active sensing actions and the system
instead just returns observations, a dummy sensing action,

3615

obs, can be added to the history tuple and correspondingly
defined in the domain to have no preconditions or effects.

Definition 6 employs regression (e.g., (Reiter 2001))
to propagate updates back through the history. Denoted
R[φ, a], regression takes a logical formula φ and action
a and rewrites the formula in terms of the weakest con-
ditions necessary for φ to hold after executing a. I.e., if
s′ = R(s, a), the result of applying a in s, then

s′ |= φ if and only if s |= R[φ, a]

We appeal to Reiter’s definition of regression in the situ-
ation calculus with syntactic notation suitably modified, and
readers are referred to (Reiter 2001) for further details. The
one modification we make is to include an action’s precon-
dition in the regression: i.e., R[φ, a] |= prec(a). We do
so because we are regressing solely over actions we know
to have been executed, so it follows that their preconditions
hold in the state in which they were executed.

When the history comprises a single state-action pair, φ
is regressed through the action and conjoined to the state
formula. Otherwise, if the history is a sequence of state-
action pairs, then φ is regressed step by step through the
history, and new information garnered from the regression,
φNEW , is conjoined to the associated state formula. PI(φ)
refers to the prime implicates of formula φ.

Definition 6 (Logical Smoothing) Given dynamical sys-
tem Σ, history H = (σ0, a0), . . . (σn, an) and formula φ, the
logical smoothing of H with respect to φ is defined as:

1. Smooth[(σ, a)](φ) = (σ ∧R[φ, a], a)

2. Smooth[(σ0, a0), . . . , (σn, an)](φ) =
Smooth[(σ0, a0), . . . , (σn−1, an−1)](φNEW),

Smooth[(σn, an)](φ)

where φNEW =
∧{ϕ ∈ PI(R[φ, an−1]) | σn−1 � ϕ}

The soundness and completeness of Logical Smoothing
(Definition 6) relative to the semantic account in Definition
4 follow straightforwardly from the correspondence between
PreImage and regression.

Example: We return to our car example, this time with
explicit sensing actions included to help with the exposition.
Approximate logical filtering the initial state, σ0, with action
turn ignition yields state σ1 as σ0 ∧ ignition turned.
car started is unknown in σ1 as it’s outcome is predi-
cated on fluents whose truth values are unknown. Action
obs car started yields observation (¬car started). The
smoothed history is Smooth[h0, h1](¬car started) where
h0=(σ0, turn ignition) and h1=(σ1, obs car started).
Following Definition 6, this is equal to
Smooth[(h0)](φNEW), Smooth[(h1)](¬car started) (line
2). σ1 of h1 is smoothed to σ1 ∧ ¬car started (line
1). Action obs car started has no effects, so obser-
vation (¬car started) must hold in the previous state.
φNEW hinges on R[¬car started, turn ignition]. By
the regression rewriting and frame axioms, this gives
φ = ¬car started ∧ (¬battery ok ∨ ¬gas ok). Since

σ0 |= ¬car started, φNEW = ¬battery ok ∨ ¬gas ok
after restricting to prime implicates, the intuitive refinement
of the initial state given the observation.

Algorithm 1: LSmooth(H, φ, i) Perform logical
smoothing on history H given that φ holds at σi in H.
Returns updated H and the index of termination.

1 σi = σi ∧ φ
2 if i > 0 then
3 ψ = R[φ, ai−1]
4 ψNEW =

∧{ϕ ∈ PI(ψ) | σi−1 � ϕ}
5 if ψNEW is not empty then
6 return LSmooth(H, ψNEW , i− 1)

7 return (H, i)

Algorithm 1 realizes Logical Smoothing together with an
optimization to support early termination of the regression.
Included in its input is a state index parameter, identifying
the location within history H where φ is to be integrated.
Logical smoothing can thus acquire information about a past
state and smooth the preceding state estimates in light of it,
as well as smoothing from the most recent state. The heart
of the smoothing procedure lies within R[φ, ai−1] (line 3)
as explained above. Line 4 identifies those aspects of ψ that
are new to state σi−1 by identifying prime implicates of ψ
not entailed by σi−1. This is an optimization as it allows for
early termination (line 5) when further smoothing would be
unnecessary and it minimizes the subsequent formula to be
regressed in the next iteration. The process then repeats on
the newly computed ψNEW formula at index i− 1. Finally,
LSmooth returns a tuple of the refined history and the index
of termination i. The purpose of returning i will become
apparent in Section 7 when we leverage logical smoothing
in a state estimation algorithm.

Proposition 2 (Early Termination Completeness) Given
a dynamical system Σ and a history H over Σ with at least
n state-action tuples and a formula φ over F , the updated
history returned by LSmooth(H, φ, n) is the updated history
returned by LSmooth(H, φ, n) with the early termination
condition of line 5 removed.

It follows straightforwardly from the close correspon-
dence between this observation and Definition 6 and Algo-
rithm 1, and Proposition 2 that the history computed in Al-
gorithm 1 is equivalent to the specification in Definition 6.

We say that H′ = (σ′
0, a

′
0), . . . , σ

′
n, a

′
n) is a sound and

complete refinement of H = (σ0, a0), . . . , (σn, an) with re-
spect to formula φ that holds at index i of H if for all
0 ≤ j ≤ n, (1) a′j = aj ; (2) σ′

j |= σj ; and (2) if j < i,
Filter[〈a′j , σ′

j+1, ..., a
′
i , σ

′
i 〉](σ′

j) |= φ. In other words, a sound
and complete refinement captures all of what must be known
based on the existing history and necessary conditions for φ.
Note that we substitute observations with belief states to en-
sure all knowledge from observation actions are accounted
for. With this definition in hand we have,

3616

Theorem 3 (Soundness and Completeness) Given a dy-
namical system Σ, history H over Σ, and formula φ over
F that must be true at σi of H, LSmooth(H, φ, i) produces
a sound and complete refinement of H.

Logical smoothing provides a sound, complete, and prin-
cipled approach to smoothing previous state estimations in
a logical system in light of additional observations or infor-
mation which must hold in the associated state. As this is
merely the general algorithmic structure of logical smooth-
ing, further optimizations are possible but omitted for clarity
of exposition of the core concepts.

Approximate Logical Smoothing

Unfortunately, as with unapproximated logical filtering, the
querying of belief states resulting from logical smoothing
may not be tractable. Further, while a single regression step
results in a linear increase in formula size with respect to
the input, recursive applications of regression result in an
exponential blow up (Fritz 2009). To remedy these issues,
we analogously define a procedure for approximate logical
smoothing, LSmootha. LSmootha is LSmooth outlined in
Algorithm 1, with the following modification:

Line 4: ψNEW =
∧

{f | ψ∧σi−1 |= f and σi−1 � f} (1)

where f is restricted to fluent literals. This approximation
limits the updating of the history to fluent literals entailed
by these regressed additions, and not already present in the
history. Note that this is but one way to deal with the for-
mula size increase from repeated regression. Alternatives
that preserve completeness include adding new fluents in
place of certain sub-formulae of the regressed formula (van
Ditmarsch, Herzig, and Lima 2007) or representing formu-
lae as circuits (Rintanen 2008).

Example: In the previous example, smoothing with respect
to the observation (¬car started) refined the initial state
with ¬battery ok ∨ ¬gas ok. In contrast, if we perform
approximate smoothing of (¬car started), captured by the
LSmootha algorithm, there is no refinement as disjunctive
information is lost. Continuing with the sequence of ac-
tions, turn on radio is executed and (sound) is observed.
Since the previous state entails ¬sound, the regression as
part of the approximate smoothing would produce the infer-
ence battery ok ∧ radio ok. Therefore, even with the ap-
proximation, we refine the estimate of the prior state, and all
states back to the initial state, with battery ok ∧ radio ok.

Proposition 3 (Soundness) Let Σ be a dynamical system,
H be a history over Σ of n state-action tuples, and φ be a
formula over F that must be true at the state at index i of
H. If LSmooth(H, φ, i) = (H′, j) and LSmootha(H, φ, i) =
(H′′, k) then for all 0 ≤ i ≤ n, if σ′

i is the i-th state of H′
and σ′′

i is the i-th state of H′′ then σ′
i |= σ′′

i .

By Proposition 3, LSmootha is an under-approximation
of LSmooth. It amounts to a version that smooths only with
respect to conjunctive formulae. Moreover, analogously to

approximate logical filtering (Proposition 1), approximate
logical smoothing is conjunctive state formula preserving.

Note that LSmootha maintains the restriction to conjunc-
tive formulae avoiding the potential blowup of formulae, re-
sulting from repeated regression rewriting.

Theorem 4 (Complexity) Given a history H over a dynam-
ical system Σ of n state-action tuples such that all states are
conjunctive formulae, a conjunctive formula φ over F , and
an index i of H, LSmootha(H, φ, i) can be computed in time
O(n ·2|F|) with propositional entailment or O(n · |F|2) with
unit propagation entailment.

While the worst case complexity is exponential, in prac-
tice this is not the case. Actions typically trigger few in-
direct effects (ramifications) relative to the size of the do-
main. This results in a compact regressed formula with unit
entailments computable through unit propagation in most
cases. Since we place no restrictions on the syntactic form
of regressed formulae (e.g., Horn clauses) unit propagation
may not produce all entailments, resulting in a sound under-
approximation.

Backwards-Forwards Algorithm

Logical smoothing refines previous state estimates by rea-
soning backwards (regressing) over the history of actions
and states, with respect to some acquired information, re-
moving some uncertainty about the past, particularly in dy-
namical systems where actions have causal ramifications.
This information can then be propagated forwards (pro-
gressed) through the state-action history to potentially pro-
duce further refinements.

Example: As we last left the car example from Section
7, each state in the history, including the initial state, was
smoothed with battery ok ∧ radio ok after observing
(sound). While it is obvious that this should be propagated
forward to the current state, as it stands it is not so obvious
how and why, in general, this should be done. Consider the
case where the action turn ignition actually had an addi-
tional effect battery charging if battery ok. Propagating
battery ok forward from the initial state given the actions
and intermediate states in the history further refines the
post-turn ignition state estimates (including the current
state) with battery charging.

We can realize the forward phase outlined above via
filtering. Note that when operating on a history, sim-
ulating the forwards reasoning phase by filtering works
on the corresponding sequence of actions with observa-
tion formulae being the state formula. For notational
convenience, we define subseq(H, i) of a history H =
(σ0, a0), (σ1, a1), . . . , (σn, an) and index 0 ≤ i ≤ n as the
sub-sequence 〈ai, σi+1, ai+1, ..., σn, an〉.

Algorithm 2 outlines our backwards-forwards state es-
timation algorithm, BF, which uses approximate logical
smoothing and approximate logical filtering. BF maintains
conjunctive state formulae while computing sound state es-
timates. Although it may appear excessive to filter with re-

3617

Algorithm 2: BF(H, φ, i) Perform backwards-forwards
state estimation on history H given that formula φ holds
at σi in H.

1 (H′, term-idx) = LSmootha(H, φ, i)
2 return Filtera[(subseq(H

′, term-idx)](σterm-idx)

spect to state formulae, it is efficiently realized because of
the restriction to conjunctive formulae. Logical smooth-
ing allows us to encode complex information about any
state of the system into the history, keeping each individ-
ual state estimate in a compact and computationally man-
ageable form, maintained through a simple logical filtering
procedure. Towards tractability, BF leverages approximate
logical smoothing with unit propagation entailment. When
combined, the result is an intuitive reasoning mechanism for
dynamical states with partial observability.

Proposition 4 (Complexity) Given a history H over a dy-
namical system Σ of n state-action tuples such that all states
are conjunctive formulae, a conjunctive formula φ over F ,
and an index i of H, BF(H, φ, i) can be computed in time
O(n ·c ·2|F|) with propositional entailment or O(n ·c · |F|2)
with unit propagation entailment, where c is the maximum
number of conditional effects over actions of Σ.

This follows from the previous complexity results.

Space Optimization for Smoothing

State Relevance Minimization. The smoothing process
only relies on a subset of the state. Given a history H with
tuple (σ, a), it is sufficient for σ to only include the fluents
f that are involved in the conditional effects of a. This is
due to the regression formula being purely over these fluents
plus fluents of φ which have no positive or negative effects
with respect to a. Such an optimization of the state fluents
would greatly reduce the memory overhead as actions typi-
cally involve and effect a small fraction of the domain. The
downside is that the ψNEW may contain old inferences and
thus the early termination becomes less robust.
Sliding Window History. A second optimization is to
smooth over a fixed window size of the History tuples in-
stead of always smoothing back to the initial state. This
is called fixed-lag smoothing (Einicke 2012) in stochastic
systems. Such windowed smoothing is routinely used and
greatly improves the memory footprint, at the potential ex-
pense of the quality of the state estimation.

Experimental Evaluation

We investigate three questions: (1) how effective is our ap-
proach in capturing the necessary fluent literals to determine
action preconditions and the goal; (2) how does our state rel-
evance minimization impact the system; and (3) how does
our approach perform in light of different manifestations of
a domain’s dynamics. Unfortunately, logical filtering code
was unavailable for comparison. We also forgo direct empir-
ical comparison with the belief state estimation of Bonet and
Geffner (2014), as their implementation is domain specific
(see further discussion below regarding the complementary

nature of our methods). Instead, we study algorithm be-
haviour using existing and new benchmark domains for au-
tomated planning with partial observability and sensing.

We ran the BF algorithm on valid plans produced by the
offline contingent planner POPRP (Muise, Belle, and McIl-
raith 2014) and present statistics on the proportion of action
traces (plan branches) for which all action preconditions and
goal conditions were correctly inferred by BF. That is, for
each action a in the trace, running BF from the initial state
through all actions preceding a and iteratively building the
history H results in a final belief state formula of H that en-
tails prec(a) at the point where a is to be executed. Fur-
thermore, after the last action in the trace, the final belief
state formula of H must entail the goal. We compare with
statistics for BF with those when we only use Approximate
Logical Filtering (ALF). Average history state sizes over the
action traces are reported for the BF algorithm and with the
state relevance minimization optimization (BF+SRM) from
Section 2. Problem statistics and running times are also re-
ported.

Table 1 shows the results of evaluating the BF algorithm
on plans for each of the benchmarks (See (Muise, Belle, and
McIlraith 2014) for descriptions of the domains Wumpus,
Doors, Colored Balls, and CTP (Canadian Traveler’s Prob-
lem).). First, consider the Precondition / Goal Coverage sec-
tion. Even with a judicious under-approximation, the BF al-
gorithm is capable of inferring every relevant fluent for ev-
ery action trace of all plans for the above problems. This is
due in part to the fact that these problems belong to the class
of width-1 simple contingent problems, which has the prop-
erty that once a fluent becomes known it stays known (Bonet
and Geffner 2011). For problems like Colored Balls, ALF is
capable of solving a significant portion of the action traces.
This is to be expected; the domain has very little dynamics.
Domains like Wumpus and CTP, require heavy reasoning,
causing ALF to fail in most cases.

Table 1 also reports the average history state size as a per-
centage of the total number of fluents in the problem. The
large reduction in state size from SRM is due to the fact that
only sensing actions have relevant information: no action
affects observable fluents.

Lastly, Table 1 reports how much time it takes to solve
every action trace of the plan for the associated problem.
There are two main take-aways here. First, the SRM opti-
mization creates a space vs time trade off. It significantly re-
duces the memory footprint of the history but has an impact
on computation time. Note that the SRM implementation
was itself not optimized for efficiency. One might antici-
pate that a smaller history could result in reduced time to
solve. We expect that a well-engineered SRM implementa-
tion would better reflect this. Second, as one would expect,
the time to solve a given instance correlates with the number
of branches (action traces) in the plan as well as their aver-
age length in terms of the number of actions. This is why
large problems like Wumpus05 can be solved much quicker
than a smaller problem like Balls4-2.

For further evaluation, we introduce two new domains
that specifically involve system dynamics and hidden state
information that must be inferred – the types of problems

3618

Problem Problem Statistics Precondition / Goal
Coverage (% of runs)

Avg History State Size
(% of total fluents)

Time to Solve
(seconds)

|F| #-BR max-BR avg-BR BF ALF BF BF+SRM BF BF+SRM

Wumpus05 802 35 43 32.9 100 0 17.4 0.02 0.91 1.69
Doors05 100 25 26 16.0 100 64.0 43.5 0.3 0.01 0.17
Doors07 196 343 60 33.2 100 62.9 43.2 0.1 9.02 16.52
CTP05 76 32 10 10.0 100 3.1 43.4 0.6 0.06 0.10
CTP07 134 128 13 14.0 100 0.7 34.3 0.3 0.57 1.01
CTP09 205 512 18 18.0 100 0.2 28.3 0.2 4.34 7.73

Balls4-1 374 48 46 26.1 100 81.2 21.3 0.1 0.83 1.54
Balls4-2 396 2304 90 51.4 100 66.0 25.1 0.09 166.85 324.69

Table 1: BF Algorithm - Planning Benchmarks Performance. (#-BR) number of branches; (max-BR) max branch depth; (avg-
BR) average branch depth; (Coverage) percentage of runs where all preconditions and goal fluents are captured; (History State
Size) average percentage of all fluents that must be tracked; (Time to Solve) time for each technique to process and verify each
branch of the plan.

that motivated this work.
Password. n switches may be flipped by the agent. Each
has an unobservable correct position. There are n+ 1 lights
such that the i-th light signifies that exactly i switches are in
the wrong position. The goal is for the 0-th light to be on and
for the agent to know the correct position of each switch.
Lights. n lights are connected in series and each may po-
tentially be broken. A light may be off if it or a light down-
stream is broken. The agent must fix lights that are known
to be broken and reach a state where all lights are no longer
broken. This domain has cascading effects as fixing a single
light may change the “lit” status of all lights upstream.

Note that the contingent width (as defined by (Bonet and
Geffner 2014)) for these problems is precisely n.

These problems represent two orthogonal classes of dy-
namic domains with their differences best summarized by
Figure 1a. As the problem size grows, the average number
of conditional effects in the Password domain grows dra-
matically compared to Lights. Conversely, the Lights do-
main sees a dramatic increase in effect size as the problem
size grows compared to Password. By the parametrization
of the Password domain, each conditional effect of flipping
a switch depends only on the correctness of the switch and
the light that is currently on. For the Lights domain, as more
lights are added, fixing any single light has a longer chain of
potential ramifications given the status of the lights both up-
stream and downstream. Therefore, these problems allow us
to compare how BF scales with respect to these two impor-
tant domain characteristics. Many examples of real-world
problems whose models include causal constraints or ram-
ifications – typical of electro-mechanical systems that are
controlled by a discrete event controller – manifest in one of
these two ways.

Finally, we evaluate using simulations that create a ran-
domized hidden state and produce a sequence of actions re-
sulting in a goal state. Figure 1b shows how the BF algo-
rithm performs (averaged over 100 simulations per prob-
lem) as the problem size increases, and Figure 1c shows
the growth in problem size. As with the standard bench-
marks, BF correctly deduces all action preconditions and
goal states. The main point of comparison here is not pure

performance, but instead performance of problem type as
per the preceding discussion of Figure 1a. The Password
domain scales slightly better; partially due to the general do-
main growth with respect to problem size being lower than
the Lights domain as per Figure 1c. As Figures 1a and 1c
show, an increase in a simple notion of problem size can
have a large impact on multiple facets of the problem repre-
sentation. Figure 1b shows that the BF algorithm scales sim-
ilarly; regardless of how the dynamics of the system mani-
fest when compiled into conditional effects.

Related Works and Discussion

In this paper we propose an approach to logical state esti-
mation for dynamical systems that is tailored to address the
tracking of individual fluents in a computationally efficient
manner. Similar to Amir and Russell’s original work on logi-
cal filtering, we elected not to perform our analysis in the sit-
uation calculus, but rather to use a dynamical system model
that is employed by those who develop efficient algorithms
for AI automated planning and diagnosis. Nevertheless, it
is important to note that various work on belief update and
progression, much of it done in the situation calculus, is re-
lated to logical filtering and thus to state estimation and to
his work. Lin and Reiter’s (1997) study of progression ar-
guably culminated in Vassos and Levesque’s (2013) treat-
ment of first-order progression, which appears to subsume
Shirazi and Amir’s (2011) first-order logical filtering. Re-
lated to approximate filtering, and in small degree smooth-
ing, is the work by Liu and Levesque (2005) that studies
progression in dynamical systems with respect to so-called
Proper Knowledge Bases. This work shares motivation with
our conjunctive formulae restriction in attempting to avoid
disjunction in favor of tractability. The authors also present
a limited integration of sensing via regression to determine
the context of actions to be performed, building on a simi-
lar idea for projection by De Giacomo and Levesque (1999).
Finally, Ewin, Pearce, and Vassos (2014) study the problem
of query projection for long-living agents by combining re-
gression and progression in a manner similar in spirit to the
work presented here.

3619

0 10 20 30 40 50 60

Problem Size (# of lights/switches)

0

50

100

150

200
A

v
g
 #

 o
f

C
o
n
d
it

io
n
a
l
E
ff

e
c
ts

 (
S
o
li
d
-L
in
e
s
)

Password

Lights

0

5

10

15

20

25

30

35

40

A
v
g
 #

 o
f

F
lu

e
n
ts

 p
e
r

E
ff

e
c
t

(D
o
tt

e
d
-L

in
e
s
)

(a) Differences in Password and Lights

0 10 20 30 40 50 60

Problem Size (# of lights/switches)

0

5

10

15

20

25

30

35

40

A
v
g
 R

u
n
ti

m
e
 (

s
e
c
s
)

p
e
r

s
im

u
la

ti
o
n

Password

Lights

(b) Runtime Performance of BF

0 10 20 30 40 50 60

Problem Size (# of lights/switches)

0

500

1000

1500

2000

2500

3000

3500

4000

T
o
ta

l
#

 o
f

F
lu

e
n
ts

 i
n
 D

o
m

a
in

 (
S
o
li
d
-L

in
e
s
)

Password

Lights

0

50

100

150

200

250

300

A
v
g
 #

 o
f

A
c
ti

o
n
s
 i
n
 S

im
u
la

ti
o
n
 (

D
o
tt

e
d
-L

in
e
s
)

(c) Password and Lights domain growth

Figure 1: Comparison of the Password and Lights domains: size, performance of BF, and instance growth.

One of the first works on the approximation of logical be-
lief states in dynamical systems was the 0-approximation
semantics proposed by Baral and Son (1997). It also ap-
proximates states to conjunctions of fluents, but does no
backward-forward reasoning. The ALF results in Table
1 provide a sense of how 0-approximation might compare
with our BF approach. The field of automated planning
has spawned numerous systems which necessarily have a
sub-component to perform state estimation. For example,
the systems CNFct, DNFct, and PIct (To, Son, and Pon-
telli 2011; To, Pontelli, and Son 2011) explicitly maintain
sets of the possible belief states but in a minimal and partial
fashion given the sequence of actions. This facilitates exact
estimation of the state over multiple branches of possibili-
ties in compact forms for most problem structures but in the
worst case has exponential space complexity. Palacios and
Geffner realize a form of approximate state estimation via
a compilation process that introduces additional fluents and
actions corresponding to possible initial worlds (2009). This
approach provides efficient state querying but the number of
additional fluents required for completeness grows exponen-
tially in problem’s contingent width.

The SDR Planner (Brafman and Shani 2012) maintains a
history of actions similar to our history of state-action pairs
but for a slightly different purpose. The planner samples a
possible complete initial state then assumes it is correct and
plans appropriately. When information is gained through
sensing that refutes the correctness of the initial state sam-
ple, re-planning is performed and a new state sampled. To
ensure action preconditions are respected, precondition flu-
ents are regressed through the history to the initial state to
ensure satisfiability. This aspect of the algorithm is similar,
at a high level, to the fundamental idea of logical smoothing
- that understanding of the evolution of the past can produce
new information about the present. In 2014, Brafman and
Shani also exploit regression for effective state estimation
(2014). While we use newly discovered information about
past states to reduce the uncertainty of more recent states and
approximate for efficiency, they only perform full regression
on the history of actions and observations.

As noted previously, Bonet and Geffner (2014) recently
developed algorithms for belief tracking for so-called sim-
ple planning problems. As previously noted, we were un-

able to perform an experimental comparison with their work
because their implementation is domain-specific. Neverthe-
less, it is interesting to consider when one approach works
well and the other does not. As width-n problems, both the
Password and Lights domains would cause an exponential
blowup for their technique. Conversely, there are width-1
problems where our approximation does not capture simple
entailments, such as conformant-like conditions where rea-
soning by cases plays a role. The complementary nature of
the two approaches makes their combination an obvious step
for future research.

Finally, although this approach is described in the con-
text of deterministic actions, it extends to non-deterministic
actions quite easily by employing the modeling trick that de-
terministic actions can be modeled as deterministic actions
whose outcomes are predicated on an unobservable condi-
tion. E.g., if foo is true then action flip will result in heads,
if false then the outcome is tails.

Concluding Remarks

We examine the task of approximated logical belief state
estimation of partially observable dynamical systems with
causal constraints that yield indirect actions effects. In plan-
ning, such constraints tend to create problems with large
conformant width. Approximations to logical belief state
estimation are often necessary for tractability of state esti-
mation and fluent querying, and are adequate for many ap-
plications. Inspired by stochastic smoothing techniques, we
propose logical smoothing and backwards-forward reason-
ing which work in concert with approximated logical filter-
ing to produce sound and sometimes complete estimates of
fluents relative to full logical filtering. Experiments demon-
strate flawless recall on state estimation for the precondi-
tions and goal conditions in plans for existing partially ob-
servable planning problems, and a dramatic reduction in the
number of fluent literals that must be monitored. Our ap-
proach complements existing techniques for logical belief
state estimation, unifying the notions of logical smoothing
and logical filtering and capturing the logical analogue of
commonly used techniques in control theory and other dy-
namic programming settings.
Acknowledgements: The authors gratefully acknowledge

3620

funding from the Natural Sciences and Engineering Re-
search Council of Canada (NSERC). We also thank the re-
viewers for their insightful comments.

References

Amir, E., and Russell, S. J. 2003. Logical filtering. In Pro-
ceedings of the Eighteenth International Joint Conference
on Artificial Intelligence (IJCAI-03), 75–82.
Baier, J. A.; Mombourquette, B.; and McIlraith, S. A. 2014.
Diagnostic problem solving via planning with ontic and
epistemic goals. In Principles of Knowledge Representation
and Reasoning: Proceedings of the Fourteenth International
Conference (KR 2014).
Baral, C., and Son, T. C. 1997. Approximate reasoning
about actions in presence of sensing and incomplete infor-
mation. In Proceedngs of the 1997 International Symposium
on Logic Programming, 387–401.
Bonet, B., and Geffner, H. 2011. Planning under partial ob-
servability by classical replanning: Theory and experiments.
In IJCAI 2011, Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, Barcelona, Catalonia,
Spain, July 16-22, 2011, 1936–1941.
Bonet, B., and Geffner, H. 2014. Belief tracking for plan-
ning with sensing: Width, complexity and approximations.
Journal of Artificial Intelligence Research 923–970.
Brafman, R. I., and Shani, G. 2012. Replanning in domains
with partial information and sensing actions. Journal of Ar-
tificial Intelligence. (JAIR) 45:565–600.
Brafman, R. I., and Shani, G. 2014. On the properties of
belief tracking for online contingent planning using regres-
sion. In Proceedings of the 21st European Conference on
Artificial Intelligence (ECAI), 147–152.
De Giacomo, G., and Levesque, H. J. 1999. Projection us-
ing regression and sensors. In Proceedings of the 16th Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
160–165.
Einicke, G. A. 2012. Smoothing, Filtering and Prediction -
Estimating The Past, Present and Future. InTech.
Eiter, T., and Gottlob, G. 1992. On the complexity of propo-
sitional knowledge base revision, updates, and counterfactu-
als. Artificial Intelligence 57(2-3):227–270.
Ewin, C. J.; Pearce, A. R.; and Vassos, S. 2014. Transform-
ing situation calculus action theories for optimised reason-
ing. In Proceedings of the 14th International Conference on
the Principles of Knowledge Representation and Reasoning
(KR).
Fikes, R.; Hart, P.; and Nilsson, N. 1972. Learning and exe-
cuting generalized robot plans. Artificial Intelligence 3:251–
288.
Fritz, C., and McIlraith, S. A. 2007. Monitoring plan opti-
mality during execution. In Proceedings of the 17th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 144–151.
Fritz, C. 2009. Monitoring the Generation and Execution of
Optimal Plans. Ph.D. Dissertation, University of Toronto.

Kalman, R. E. 1960. A new approach to linear filtering
and prediction problems. Transactions of ASM E. J. of Basic
Engineering 82(Ser. D):35–45.
Lin, F., and Reiter, R. 1997. How to progress a database.
Artificial Intelligence 92:131–167.
Liu, Y., and Levesque, H. J. 2005. Tractable reasoning with
incomplete first-order knowledge in dynamic systems with
context-dependent actions. In Proceedings of the 19th Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
522–527.
McIlraith, S. A., and Reiter, R. 1992. On tests for hypo-
thetical reasoning. In Hamschers, W.; de Kleer, J.; and Con-
sole, L., eds., Readings in Model-Based Diagnosis. Morgan
Kaufmann. 89–95.
Muise, C.; Belle, V.; and McIlraith, S. A. 2014. Comput-
ing contingent plans via fully observable non-deterministic
planning. In The 28th AAAI Conference on Artificial Intelli-
gence.
Palacios, H., and Geffner, H. 2009. Compiling uncertainty
away in conformant planning problems with bounded width.
Journal of Artificial Intelligence Research 35:623–675.
Pinto, J. 1999. Compiling ramification constraints into effect
axioms. Computational Intelligence 15:280–307.
Reiter, R. 2001. Knowledge in Action: Logical Founda-
tions for Specifying and Implementing Dynamical Systems.
Cambridge, MA: MIT Press.
Rintanen, J. 2008. Regression for classical and nondeter-
ministic planning. In Proceedings of the 18th European
Conference on Artificial Intelligence, 568–572.
Shahaf, D., and Amir, E. 2007. Logical circuit filtering. In
Proceedings of the 20th International Joint Conference on
Artificial Intelligence (IJCAI-07), 2611–2618.
Shirazi, A., and Amir, E. 2011. First-order logical filtering.
Artificial Intelligence 175(1):193–219.
Strass, H., and Thielscher, M. 2013. A general first-order
solution to the ramification problem with cycles. Journal of
Applied Logic 11(3):289–308.
To, S. T.; Pontelli, E.; and Son, T. C. 2011. On the ef-
fectiveness of CNF and DNF representations in contingent
planning. In Proceedings of the 22nd International Joint
Conference on Artificial Intelligence (IJCAI), 2033–2038.
To, S. T.; Son, T. C.; and Pontelli, E. 2011. Contingent
planning as AND/OR forward search with disjunctive rep-
resentation. In Bacchus, F.; Domshlak, C.; Edelkamp, S.;
and Helmert, M., eds., Proceedings of the 21st International
Conference on Automated Planning and Scheduling, ICAPS
2011, Freiburg, Germany June 11-16, 2011. AAAI.
van Ditmarsch, H. P.; Herzig, A.; and Lima, T. D. 2007. Op-
timal regression for reasoning about knowledge and actions.
In Proceedings of the 22nd AAAI Conference on Artificial
Intelligence, 1070–1076.
Vassos, S., and Levesque, H. J. 2013. How to progress a
database III. Artificial Intelligence 195:203–221.

3621

