
An Analysis of Monte Carlo Tree Search

Steven James,∗ George Konidaris,† Benjamin Rosman∗‡
∗University of the Witwatersrand, Johannesburg, South Africa

†Brown University, Providence RI 02912, USA
‡Council for Scientific and Industrial Research, Pretoria, South Africa

steven.james@students.wits.ac.za, gdk@cs.brown.edu, brosman@csir.co.za

Abstract

Monte Carlo Tree Search (MCTS) is a family of directed
search algorithms that has gained widespread attention in re-
cent years. Despite the vast amount of research into MCTS,
the effect of modifications on the algorithm, as well as the
manner in which it performs in various domains, is still not
yet fully known. In particular, the effect of using knowledge-
heavy rollouts in MCTS still remains poorly understood, with
surprising results demonstrating that better-informed rollouts
often result in worse-performing agents. We present exper-
imental evidence suggesting that, under certain smoothness
conditions, uniformly random simulation policies preserve
the ordering over action preferences. This explains the suc-
cess of MCTS despite its common use of these rollouts to
evaluate states. We further analyse non-uniformly random
rollout policies and describe conditions under which they of-
fer improved performance.

Introduction

Monte Carlo Tree Search (MCTS) is a general-purpose plan-
ning algorithm that has found great success in a number
of seemingly unrelated applications, ranging from Bayesian
reinforcement learning (Guez, Silver, and Dayan 2013)
to General-Game Playing (Finnsson and Björnsson 2008).
Originally developed to tackle the game of Go (Coulom
2007), it is often applied to domains where it is difficult
to incorporate expert knowledge. MCTS combines a tree
search approach with Monte Carlo simulations (also known
as rollouts), and uses the outcome of these simulations to
evaluate states in a lookahead tree. It has also shown itself to
be a flexible planner, recently combining with deep neural
networks to achieve superhuman performance in Go (Silver
et al. 2016).

While many variants of MCTS exist, the Upper Confi-
dence bound applied to Trees (UCT) algorithm (Kocsis and
Szepesvári 2006) is widely used in practice, despite its short-
comings (Domshlak and Feldman 2013). A great deal of
analysis on UCT revolves around the tree-building phase of
the algorithm, which provides theoretical convergence guar-
antees and upper-bounds on the regret (Coquelin and Munos
2007). Less, however, is understood about the simulation
phase.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

UCT calls for rollouts to be performed by randomly se-
lecting actions until a terminal state is reached. The outcome
of the simulation is then propagated to the root of the tree.
Averaging these results over many iterations performs re-
markably well, despite the fact that actions during the sim-
ulation are executed completely at random. As the outcome
of the simulations directly affects the entire algorithm, one
might expect that the manner in which they are performed
has a major effect on the overall strength of the algorithm.

A natural assumption to make is that completely random
simulations are not ideal, since they do not map to realistic
actions. A different approach is that of so-called heavy roll-
outs, where moves are intelligently selected using domain-
specific rules or knowledge. Counterintuitively, some results
indicate that using these stronger rollouts can actually result
in a decrease in overall performance (Gelly and Silver 2007).

We propose that the key aspect of a rollout policy is the
way in which it ranks the available actions. We demonstrate
that under certain smoothness conditions, a uniformly ran-
dom rollout policy preserves the optimal action ranking,
which in turn allows UCT to select the correct action at the
root of the tree.

We also investigate the effect of heavy rollouts. Given that
both heavy and uniformly random policies are suboptimal,
we are interested in the reason these objectively stronger
rollouts can often negatively affect the performance of UCT.
We show that heavy rollouts can indeed improve perfor-
mance, but identify low-variance policies as potentially dan-
gerous choices, which can lead to worse performance.

There are a number of conflating factors that make
analysing UCT in the context of games difficult, espe-
cially in the multi-agent case: the strength of our opponents,
whether they adapt their policies in response to our own,
and the requirement of rollout policies for multiple play-
ers. Aside from Silver and Tesauro (2009) who propose the
concept of simulation balancing to learn a Go rollout pol-
icy that is weak but “fair” to both players, there is little
to indicate how best to simulate our opponents. Further-
more, the vagaries of the domain itself can often add to the
complexity—Nau (1983) demonstrates how making better
decisions throughout a game does not necessarily result in
the expected increase in winning rate. Given all of the above,
we simplify matters by restricting our investigation to the
single-agent case.

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

3576

Background

In this paper we consider only environments that can be
modelled by a finite Markov Decision Process (MDP). An
MDP is defined by the tuple 〈S,A, T, R, γ〉 over states S,
actions A, transition function T : S × A × S → [0, 1], re-
ward function R : S × A × S → R, and discount factor
γ ∈ (0, 1) (Sutton and Barto 1998).

Our aim is to learn a policy π : S × A → [0, 1]
that specifies the probability of executing an action in a
given state so as to maximise our expected return. Sup-
pose that after time step t we observe the sequence of
rewards rt+1, rt+2, rt+3, . . . Our expected return E[Rt] is
then simply the discounted sum of rewards, where Rt =∑∞

i=0 γ
irt+i+1.

For a given policy π, we can calculate the value of any
state s as the expected reward gained by following π:

V π(s) = Eπ[Rt | st = s].

A policy π∗ is said to be optimal if it achieves the maxi-
mum possible value in all states. That is, ∀s ∈ S ,

V π∗
(s) = V ∗(s) = max

π
V π(s).

One final related concept is that of the Q-value function
which assigns a value to an action in a given state under
policy π:

Qπ(s, a) = Eπ[Rt | st = s, at = a].

Similarly, the optimal Q-value function is given by

Qπ∗
(s, a) = Q∗(s, a) = max

π
Qπ(s, a).

Monte Carlo Tree Search

MCTS iteratively builds a search tree by executing four
phases (Figure 1). Each node in the tree represents a single
state, while the tree’s edges correspond to actions. In the se-
lection phase, a child-selection policy is recursively applied
until a leaf node1 is reached.

(a) Selection (b) Expansion (c) Simulation (d) Backpropagation

Figure 1: Phases of the Monte Carlo tree search algorithm.
A search tree, rooted at the current state, is grown through
repeated application of the above four phases.

UCT uses a policy known as UCB1, a solution to the
multi-armed bandit problem (Auer, Cesa-Bianchi, and Fis-
cher 2002). At each state s, we store the visitation count ns

1A leaf node is not to be confused with a terminal state: the for-
mer represents a state at the agent’s current search horizon, while
the latter is any state that does not admit further action by the agent.

and average return Xs. For a given node s, the policy then
selects child i that maximises the upper confidence bound

Xi + Cp

√
2 ln(ns)

ni
,

where Cp is an exploration parameter.
Once a leaf node is reached, the expansion phase adds a

new node to the tree. A simulation is then run from this node
according to the rollout policy, with the outcome being back-
propagated up through the tree, updating the nodes’ average
scores and visitation counts.

This cycle of selection, expansion, simulation and back-
propagation is repeated until some halting criteria is met, at
which point the best action is selected. There are numerous
strategies for the final action selection, such as choosing the
action that leads to the most visited state (robust child), or
the one that leads to the highest valued state (max child). We
adopt the robust child strategy throughout this paper, noting
that previous results have shown little difference between the
two (Chaslot et al. 2008).

Smoothness

There is some evidence to suggest that the key property
of a domain is the smoothness of its underlying value
function. The phenomenon of game tree pathology (Nau
1982), as well as work by Ramanujan, Sabharwal, and Sel-
man (2011), advance the notion of trap states, which occur
when the value of two sibling nodes differs greatly—the lat-
ter argue that UCT is unsuited to domains possessing many
such states. Furthermore, in the context of X -armed bandits
(where X is some measurable space), UCT can be seen as
a specific instance of the Hierarchical Optimistic Optimisa-
tion algorithm, which attempts to find the global maximum
of the expected payoff function using MCTS. Its selection
policy is similar to UCB1, but contains an additional term
that depends on the smoothness of the function. For an in-
finitely smooth function, this term goes to 0 and the algo-
rithm becomes UCT (Bubeck et al. 2011).

In defining what is meant by smoothness, one notion that
can be employed is that of Lipschitz continuity, which limits
the rate of change of a function. Formally, a value function
V is M -Lipschitz continuous if ∀s, t ∈ S ,

|V (s)− V (t)| ≤ Md(s, t),

where M ≥ 0 is a constant, d(s, t) = ‖k(s)− k(t)‖ and k
is a mapping from state-space to some normed vector space
(Pazis and Parr 2011).

UCT in Smooth Domains

We tackle the analysis of UCT by first considering only the
role of the simulation policy in evaluating states (ignoring
the selection and iterative tree-building phase of UCT), and
then discussing the full algorithm.

The simulation policy of UCT replaces the classical eval-
uation function of algorithms such as minimax, which as-
signs a value to each state. The ultimate purpose of evalu-
ating states is not to calculate their values as accurately as

3577

possible, but rather to compute the correct action to select.
Thus the choice of simulation policy need not be optimal,
as long as it preserves the correct preferences over possible
actions.

The key idea here is that if we have any value function
that is a positive affine transformation of V ∗, then the ac-
tion rankings remain correct and the optimal policy follows.
In particular, notice that the optimal policy depends only on
the most highly ranked action of the optimal Q-value func-
tion Q∗, and not on the actual values of Q∗. Any simulation
policy π thus induces the optimal policy if ∀s ∈ S ,

argmax
a∈A

Qπ(s, a) = argmax
a∈A

Q∗(s, a). (1)

Under an assumption of a sufficiently smooth optimal
value function, we can show that Equation 1 holds for a uni-
formly random policy. Assume a domain in which rewards
are only assigned at terminal states, and whose optimal value
function is M -Lipschitz. Furthermore, assume that for some
state s, we have ε = Q∗(s, a) − Q∗(s, b) > 0 for actions a
and b. Let dmax be the largest distance between any pair of
states and assume there are N reachable terminal states from
the states we transition into after taking either action. Then
the Q-value function under the random policy Q̃ is bounded
below, viz.:

Q∗(s, a)−
(
N − 1

N

)
Mdmax ≤ Q̃(s, a).

As Q̃(s, b) is bounded above by Q∗(s, b), we can preserve

the correct action ranking by setting M <
Nε

dmax(N − 1)
,

which ensures that Q̃(s, a) > Q̃(s, b).

Chain walk

As a simple example, consider a deterministic 1-
dimensional chain walk problem with the following dynam-
ics: states are indexed as integers from 0 to N , and the ac-
tions available to the agent are LEFT and RIGHT. Executing
these actions decrements or increments the agent’s state re-
spectively unless it is at a boundary, in which case it does not
move. The task is undiscounted and episodic, with rewards
of −1 on all transitions. The episode ends when the agent
enters the goal state at index N .

It is clear that the optimal value function is given by
V ∗(s) = (s−N), and by solving a second-order recurrence
relation we have that for the uniformly random policy π̃:

V π̃(s) = (N + s+ 1)(s−N).

Since V π̃ is simply a positive affine transform of V ∗, it
follows that greedily selecting an action according to V π̃ by
performing a one-step lookahead will produce the optimal
policy. In other words, policy iteration (Howard 1960) start-
ing from a uniformly random policy converges in one step.

Grid world

We are interested in the effect of the smoothness of a do-
main on the efficacy of a uniformly random policy. To this

end, we consider grid world—the 2-dimensional generali-
sation of the above. The dynamics of the environment re-
main the same, but states are indexed by integer coordinates
(x, y), while the agent has an additional two actions which
we nominally term UP and DOWN.

To control the smoothness of the domain, we generate ran-
dom transition functions to be Lipschitz continuous. A tran-
sition function T is M -Lipschitz if ∀s, s′, t ∈ S, a ∈ A,

|T (s, a, t)− T (s′, a, t)| ≤ M ‖s− s′‖1 .
This is achieved by first randomly assigning transitions

for state-action pairs, and then altering them to ensure the
above equation is satisfied. The probabilities are finally nor-
malised to ensure they sum to 1.

Beginning with a uniformly random policy, we perform
one step of policy iteration (γ = 0.95) on a 10×10 grid. The
resulting policy can then be used to measure how accurately
the initial policy evaluated states. As we are only interested
in selecting the correct action (and not, say, the values of
states), we judge its correctness by the percentage of states
in which the policy suggests an optimal action. The results of
this experiment are illustrated by Figure 2, and demonstrate
that as the bound on the Lipschitz condition increases, the
uniformly random policy becomes less and less effective in
suggesting the correct action.

0.5 1.0 1.5
0.70

0.75

0.80

0.85

0.90

0.95

1.00

Lipschitz Constant

C
or

re
ct

ne
ss

Figure 2: The strength of the policy calculated by a single
step of policy iteration as the smoothness in the transition
function decreases. Results were averaged over 100 runs.

Effect of Rollouts on UCT

Having investigated only the Monte Carlo evaluation of
states, we now focus on the full UCT procedure. It seems
intuitive that if the preferences over all leaf nodes across the
entire tree are computed correctly, then the algorithm will
produce a correct ordering of actions at the root.

To test this hypothesis, we construct a ternary tree of
height 10 which functions as an extensive form game. Re-
wards in the range [0, 1] are assigned to each leaf node such
that the optimal action for any node is to select the left child.

We execute UCT on different instantiations of the domain,
allowing 5000 iterations per move. However, instead of sim-
ulating actions until a terminal state is reached, our rollout

3578

phase directly samples the reward from a Gaussian distri-
bution centred about the true value with varying standard
deviation σ. For small values of σ, the “simulation” returns
a near-optimal estimate for states and actions, and thus pre-
serves the correct action preferences with high probability.
With larger standard deviations, the probability of the cor-
rect ordering decreases.

Figure 3 plots the percentage of times UCT selects the
correct action, as well as how often it maintained the correct
action ordering at the root. For illustrative purposes, we plot
the probability that a random variable drawn from N (1, σ)
is greater than one drawn from N (12 , σ) in order to show
that an increase in standard deviation leads to an increase in
the probability of an incorrect ranking (dotted orange line).

P((1,) > (1
2 ,))

Correct Action

Correct Ordering

0.0 0.2 0.4 0.6 0.8 1.0
0.5

0.6

0.7

0.8

0.9

1.0

C
or

re
ct

ne
ss

Figure 3: The probability that UCT maintains the correct ac-
tion ranking at the root node in a ternary tree, averaged over
2000 runs.

Function Optimisation

Reasoning about the smoothness (or lack thereof) of an
MDP is difficult for all but the simplest of domains. To
develop some method of controlling and visualising the
smoothness, we consider the task of finding the global max-
imum of a function. Simple, monotonic functions can be
seen as representing smooth environments, while compli-
cated ones represent non-smooth domains.

For simplicity, we constrain the domain and range of the
functions to be in the interval [0, 1]. Each state represents
some interval [a, b] within this unit square, with the start-
ing state representing [0, 1]. We assume that there are two
available actions at each state: the first results in a transi-
tion to the new state [a, a+b

2], while the second transitions to
[a+b

2 , b]. This approach forms a binary tree that covers the
entire state-space. As this partitioning could continue ad in-
finitum, we truncate the tree at a fixed height by considering
a state to be terminal when b− a ≤ 10−5.

In the simulation phase, actions are executed uniformly
randomly until a terminal state is encountered, at which
point some reward is received. Let f be the function and c be
the midpoint of the state reached by the rollout. At iteration

t, a binary reward rt, drawn from a Bernoulli distribution
rt ∼ Bern (f(c)), is generated.

At the completion of the algorithm, we calculate the score
by descending the lookahead tree from root to leaf (where
a leaf node is a node that has not yet been fully expanded),
selecting at each state its most visited child. The centre of the
leaf node’s interval represents UCT’s belief of the location
of the global maximum.

To illustrate UCT’s response to smoothness, consider two
functions: f(x) = |sin 1

x5 | and

g(x) =

{
1
2 + 1

2 |sin 1
x5 | if x < 1

2
7
20 + 1

2 |sin 1
x5 | if x ≥ 1

2

.

Notice that the frequency of the function f decreases as x
increases (see Figure 4). Since the function attains a maxi-
mum at many points, we can expect UCT to return the cor-
rect answer frequently. Visiting an incorrect region of the
domain here is not too detrimental, since there is most likely
still a state that attains the maximum in the interval.

With that said, there is clearly a smoother region of the
space that can be searched. In some sense this is the more
conservative space, since a small perturbation does not re-
sult in too great a change in value. Indeed, UCT prefers this
region, with the leaf nodes concentrating around this smooth
area despite there being many optima at x ≤ 0.5.

0.0 0.2 0.4 0.6 0.8 1.0
0.000

0.005

0.010

0.015

0.020

0.025

0.030

Leaf Nodes

V
is

it
Pe

rc
en

ta
ge

Figure 4: Percentage of visits to leaves after 50 000 iterations
of UCT for the function f .

On the other hand, the function g is a tougher proposition,
despite having the same number of critical points as f . Here
the “safer” interval of the function’s domain (at x ≥ 0.5)
preferred by UCT is now suboptimal. In this case, UCT finds
it difficult to make the transition to the true optimal value,
since it prefers to exploit the smoother, incorrect region.

After a sufficient number of simulations, however, UCT
does indeed start to visit the optimal region of the graph
(Figure 5). Since the value of nearby states in this region
changes rapidly, robust estimates are required to find the true
optimum. For the function g, UCT achieves an average score
of 0.67± 0.002—lower than even that of the local maxima.
This suggests that the search spends time at the suboptimal
maxima before switching to the region x < 0.5. However,
because most of the search had not focused on this space pre-

3579

viously, its estimates are inadequate, resulting in very poor
returns.

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.01

0.02

0.03

0.04

Leaf Nodes

V
is

it
Pe

rc
en

ta
ge

Figure 5: Percentage of visits to leaves after 50 000 iterations
of UCT for the function g.

These results also suggest that, in practice, a globally
smooth assumption is not completely necessary. Instead, a
value function that is locally Lipschitz about the optima ap-
pears to be sufficient for good performance.

Bias in the Simulation Phase

Having demonstrated the effect of smoothness on the uni-
formly random rollouts of UCT, we now turn our attention
to heavy rollouts. Oftentimes rollouts that are not uniformly
random are referred to as biased rollouts. Since the simu-
lation phase is a substitute for the value function of an as-
yet-unknown future policy, almost all policies suffer from
some bias, even uniformly random ones. As this applies to
both deterministic and random rollouts—policies at oppo-
site ends of the spectrum—it is important to differentiate
between the two.

To draw an analogy, consider Bayesian inference. Here a
prior distribution, which represents the knowledge injected
into the system, is modified by the evidence received from
the environment to produce a posterior distribution. Argu-
ments can be made for selecting a maximal entropy prior—
that is, a prior that encodes the minimum amount of infor-
mation. Based on this principle of indifference, the posterior
that is produced is directly proportional to the likelihood of
the data.

Selecting a prior distribution that has small variance, for
instance, has the opposite effect. In this case, far more data
will be required to change it significantly. Thus, a low-
entropy prior can effectively overwhelm the evidence re-
ceived from the environment. If such a prior is incorrect, this
can result in a posterior with a large degree of bias.

Uncertainty in a domain arises from the fact that we are
unaware of the policy that the agent will utilise in the fu-
ture. This is especially true beyond the search tree’s hori-
zon, where there exist no value estimates. The simulation
phase is thus responsible for managing this uncertainty. The
choice of rollout policy can therefore be viewed as a kind of
prior distribution over the policy space—one which encodes

the user’s knowledge of the domain, with uniformly random
rollouts representing maximal entropy priors, and determin-
istic rollouts minimal ones.

To illustrate the advantage of selecting a high-entropy
simulation policy, we consider adding knowledge to the sim-
ulations for the function optimisation task by performing a
one-step lookahead and selecting an action proportional to
the value of the next state. We also consider an inversely-
biased policy which selects an action in inverse proportion
to the successor state’s value.

The choice of rollout policy affects the initial view
MCTS has of the function to be optimised. Figure 6
demonstrates this phenomenon for the random, biased
and inversely-biased policies when optimising the function

y(x) =
|sin(5πx) + cos(x))|

2
.

Random rollouts perfectly represent the function, since
their expected values depend only on the function’s value
itself, while the biased policy assigns greater importance
to the region about the true maximum, but does not accu-
rately represent the underlying function. This serves to fo-
cus the search in the correct region of the space, as well
as effectively prune some of the suboptimal regions. This is
not detrimental here since the underestimated regions do not
contain the global maximum. Were the optimal value to ex-
ist as an extreme outlier in the range [0.5, 1], then the policy
would hinder the ability of MCTS to find the true answer,
as it would require a large number of iterations to correct
this error. A sufficiently smooth domain would preclude this
event from occurring.

Finally, the rightmost figure demonstrates how an incor-
rectly biased policy can cause MCTS to focus initially on a
completely suboptimal region. Many iterations would thus
be required to redress the serious bias injected into the sys-
tem. Thus while heavy rollouts can offer performance ad-
vantages, they can also degrade the accuracy of UCT.

To demonstrate the possible risk in selecting the incorrect
simulation policy, consider a perfect k-ary tree which repre-
sents a generic extensive-form game of perfect information.
Vertices represent the states, and edges the actions, so that
A(s) = {0, 1, . . . , k−1}. Rewards in the range [0, 1] are as-
signed to each leaf node such that ∀s ∈ S, π∗(s, �k

2 �) = 1.
For non-optimal actions, rewards are distributed randomly.
A k-ary tree of height h is referred to as a [k, h] tree hence-
forth.

A uniformly random rollout policy πrand acts as a base-
line with which to compare the performance of other simu-
lation policies. These policies sample an action from normal
distributions with varying mean and standard deviation—
that is, policies are parameterised by β ∼ N (μ, σ) such that

πβ(s, a) =

{
1 if a = �β
 mod k

0 otherwise,

where the operator �·
 rounds to the nearest integer, away
from zero.

Figure 7 presents the results of an experiment conducted
on a [5, 5] instance of the domain. We limit the MCTS al-
gorithm to 30 iterations per move to simulate an environ-
ment in which the state-space is far greater than what would

3580

0.0 0.2 0.4 0.6 0.8 1.0
0.000

0.001

0.002

0.003

0.004

0.005

Leaf Nodes

Ex
pe

ct
ed

V
al

ue

(a) Expected value under a uniformly ran-
dom policy.

0.0 0.2 0.4 0.6 0.8 1.0
0.000

0.001

0.002

0.003

0.004

0.005

Leaf Nodes

Ex
pe

ct
ed

V
al

ue

(b) Expected value under a biased policy.

0.0 0.2 0.4 0.6 0.8 1.0
0.000

0.001

0.002

0.003

0.004

0.005

Leaf Nodes

Ex
pe

ct
ed

V
al

ue

(c) Expected value under an inversely-
biased policy.

Figure 6: The view of the overlaid function under the different policies, with the expected value calculated by multiplying the
probability of reaching each leaf by its value.

be computable given the available resources. Both the mean
and standard deviation are incrementally varied from 0 to 4,
and are used to parameterise a UCT agent. The agent is then
tested on 10 000 different instances of the tree.

0
1

2

3

4

Mean ()

0

2

4
Standard Deviation ()

0.2

0.4

0.6

C
or

re
ct

A
ct

io
n

Se
le

ct
ed

0
1

2

3

4

Mean ()

0

2

4
Standard Deviation ()

0.2

0.4

0.6

C
or

re
ct

A
ct

io
n

Se
le

ct
ed

Figure 7: Results of rollout policies averaged over 10 000
[5, 5] games. The x and y axes represent the mean and stan-
dard deviation of the rollout policy used by the UCT agent,
while the z-axis denotes the percentage of times the correct
action was returned. The performance of a uniformly ran-
dom rollout policy is represented by the plane, while the red
region indicates policies whose means are more than one
standard deviation from the optimal policy.

The results demonstrate that there is room for bettering
random rollouts. Quite naturally, the performance of the
UCT agent is best when the distribution from which rollout
policies are sampled are peaked about the optimal action.
However, the worst performance occurs when the rollouts
have incorrect bias and are over-confident in their estimation
(that is, with small standard deviations), their performance
dropping below even that of random. When the rollouts have
too great a variance, however, their performance degenerates
to that of random. There is thus only a small window for im-
provement, which requires the correct bias and low variance.
Similar results have been demonstrated by Veness, Lanctot,
and Bowling (2011), where a reduction in variance can dra-
matically decrease the overall error when the bias is not too
great. One should be certain of the correct bias, however, as

the major risk of failure occurs for low-variance, high-bias
distributions.

While the k-ary tree is fairly synthetic—the same bias oc-
curs throughout the state-space—we have observed a similar
phenomenon in more realistic domains where this is not the
case (James, Rosman, and Konidaris 2016).

The above results suggest that the best course of action
may be to select uniformly random rollouts and forego the
associated risks that come with executing heavy playouts.
However, the large variance of uniformly random rollouts
renders them ineffective in domains with extremely large
state-spaces, which may be as a result of stochasticity or hid-
den information in the game. In these domains, random tra-
jectories can practically cover only a vanishingly small part
of the overall state-space. With so large a variance, these
rollouts provide almost no information, and performing a
sufficient number of them is simply infeasible. Informed
rollouts are therefore sometimes unavoidable.

To show that heavy rollouts can indeed be of great benefit
in the correct situation, consider a [5, 10] tree. We compare
the uniformly random and optimal rollout policies with a
heavy rollout policy, which selects the optimal action with
probability 0.6, and all others with probability 0.1. The
percentage of times UCT returned the optimal action was
recorded, with the results given by Figure 8.

Viewing policies as distributions over actions, the heavy
rollout biases the uniform distribution by placing greater
weight on the optimal action. This leads to performance
greater than that of the uniformly random policy for any
number of simulations, and convergence to optimal play in
a shorter timespan. Thus as long as the error due to the bias
of a heavy rollout is less than that of uniformly random, the
heavy rollout will offer improved performance.

Conclusion and Future Work

We have demonstrated that a key consideration of perform-
ing rollouts in UCT is not in how accurately it evaluates
states, but how well it preserves the correct action ranking.
In smooth domains, this preservation often appears to be the
case. This explains UCT’s remarkably strong performance,
despite its use of uninformed simulations to evaluate states.

We have also described how both uniformly random and

3581

Uniformly Random

Heavy Rollout

Optimal

0 10 000 20 000 30 000 40 000 50 000
0.2

0.4

0.6

0.8

1.0

Simulations per Move

C
or

re
ct

A
ct

io
n

Se
le

ct
ed

Figure 8: The percentage of correct action decisions made
by a UCT agent with various rollout policies in a 5-ary game
tree averaged over 400 runs.

heavy rollouts are biased, and identified high-bias, low-
variance rollouts as dangerous choices which can result in
extremely poor performance. In situations of uncertainty, a
higher-variance rollout policy may thus be the better, less-
risky choice.

Future work should focus on extending this work to adver-
sarial settings, as well as investigating methods and heuris-
tics for quantifying the smoothness of a particular domain.
This would allow us to decide on the type of rollout policy
to employ, or even whether UCT is at all appropriate.

Acknowledgements
The authors wish to thank the anonymous reviewers for their
thorough feedback and helpful comments.

References
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time analysis of the multiarmed bandit problem. Machine
Learning 47(2-3):235 – 256.
Bubeck, S.; Munos, R.; Stoltz, G.; and Szepesvári, C. 2011.
X -armed bandits. The Journal of Machine Learning Re-
search 12:1655–1695.
Chaslot, G.; Winands, M.; Herik, H. v. d.; Uiterwijk, J.; and
Bouzy, B. 2008. Progressive strategies for Monte-Carlo
tree search. New Mathematics and Natural Computation
4(3):343 – 357.
Coquelin, P., and Munos, R. 2007. Bandit algorithms for
tree search. In Uncertainty in Artificial Intelligence.
Coulom, R. 2007. Efficient selectivity and backup opera-
tors in Monte-Carlo tree search. In Proceedings of the 5th
International Conference on Computers and Games, 72–93.
Turin, Italy: Springer.
Domshlak, C., and Feldman, Z. 2013. To UCT, or not to
UCT? (position paper). In Sixth Annual Symposium on Com-
binatorial Search.
Finnsson, H., and Björnsson, Y. 2008. Simulation-based
approach to general game playing. Association for the Ad-
vancement of Artificial Intelligence 8:259 – 264.

Gelly, S., and Silver, D. 2007. Combining online and offline
knowledge in UCT. In Proceedings of the 24th International
Conference on Machine Learning, 273 – 280. ACM.
Guez, A.; Silver, D.; and Dayan, P. 2013. Scalable and
efficient Bayes-adaptive reinforcement learning based on
Monte-Carlo tree search. Journal of Artificial Intelligence
Research 48:841–883.
Howard, R. 1960. Dynamic programming and Markov pro-
cesses.
James, S.; Rosman, B.; and Konidaris, G. 2016. An inves-
tigation into the effectiveness of heavy rollouts in UCT. In
The IJCAI-16 Workshop on General Game Playing, 55–61.
Kocsis, L., and Szepesvári, C. 2006. Bandit based
Monte-Carlo planning. In Machine Learning: ECML 2006.
Springer. 282 – 293.
Nau, D. 1982. An investigation of the causes of pathology
in games. Artificial Intelligence 19(3):257–278.
Nau, D. 1983. Pathology on game trees revisited, and an al-
ternative to minimaxing. Artificial intelligence 21(1-2):221–
244.
Pazis, J., and Parr, R. 2011. Non-parametric approxi-
mate linear programming for MDPs. In Proceedings of
the Twenty-Fifth AAAI Conference on Artificial Intelligence,
459–464. AAAI Press.
Ramanujan, R.; Sabharwal, A.; and Selman, B. 2011. On the
behavior of UCT in synthetic search spaces. In Proceedings
of the 21st International Conference on Automated Planning
and Scheduling, Freiburg, Germany.
Silver, D., and Tesauro, G. 2009. Monte-Carlo simulation
balancing. In Proceedings of the 26th Annual International
Conference on Machine Learning, 945–952.
Silver, D.; Huang, A.; Maddison, C.; Guez, A.; Sifre, L.; Van
Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Pan-
neershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
game of Go with deep neural networks and tree search. Na-
ture 529(7587):484–489.
Sutton, R., and Barto, A. 1998. Reinforcement Learning: An
Introduction. MIT Press.
Veness, J.; Lanctot, M.; and Bowling, M. 2011. Variance
reduction in Monte-Carlo tree search. In Advances in Neural
Information Processing Systems, 1836–1844.

3582

