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Abstract

In the Markov decision process model, policies are usually
evaluated by expected cumulative rewards. As this decision
criterion is not always suitable, we propose in this paper an al-
gorithm for computing a policy optimal for the quantile crite-
rion. Both finite and infinite horizons are considered. Finally
we experimentally evaluate our approach on random MDPs
and on a data center control problem.

1 Introduction
Sequential decision-making in uncertain environments is an
important task in artificial intelligence. Such problems can
be modeled as Markov Decision Processes (MDPs). In an
MDP, an agent chooses at every time step actions to per-
form according to the current state of the world in order
to optimize a criterion in the long run. In standard MDPs,
uncertainty is described by probabilities over the possible
action outcomes, preferences are represented by numeric re-
wards and the expectation of future cumulated rewards is
used as the decision criterion. And yet, for numerous ap-
plications, the expectation of cumulated rewards may not
be the most appropriate criterion. For instance, in one-shot
decision-making problems an alternative and well motivated
objective for the agent is to insure a certain level of satisfac-
tion with high probability.

In this paper we focus on the decision criterion that con-
sists in maximizing a quantile. Intuitively, the τ th quantile
of a population is the value x such that 100 · τ percent of the
population is equal or lower than x and 100 · (1− τ) percent
of the population is equal or greater than x. Optimizing a
quantile criterion offers nice properties: i) no assumption is
made about the commensurability between preferences and
uncertainty, ii) preferences over actions or trajectories can be
expressed on a purely ordinal scale, iii) preferences induced
over policies are more robust than with the standard criterion
of maximizing the expectation of cumulated rewards.

As a result, maximizing a quantile is used in many ap-
plications. For instance, the Value-at-Risk criterion (Jorion
2006) widely used in finance is in fact a quantile. More-
over, in the Web industry (Wolski and Brevik 2014; De-
Candia et al. 2007), decisions about performance or Quality-
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Of-Service are often made based on quantiles. For instance,
Amazon reports (DeCandia et al. 2007) that they optimize
the 99.9% quantile for their cloud services. More gener-
ally, in the service industry, because of skewed distributions
(Benoit and Van den Poel 2009), one generally does not want
that customers are satisfied on average, but rather that most
customers (e.g., 99% of them) to be as satisfied as possible.

Our contribution: We show that optimizing the quantile
criterion amounts to solving a sequence of MDP problems
using an Expected Utility criterion with a target utility func-
tion. We provide a binary search algorithm using functional
backward induction (Liu and Koenig 2006) as a subroutine
for computing an optimal policy. Moreover, we investigate
some properties of the optimal policies in the finite and in-
finite cases. Finally, we provide the results of experiments
testing our algorithm in a variety of settings.

The paper is organized as follows. Section 2 introduces
the necessary background to present our approach and state
formally our problem. Section 3 presents the details of our
solving algorithm for the finite horizon case. Section 4 pro-
vides some theoretical results in the infinite horizon case. In
Section 5, we experimentally evaluate our proposition. Sec-
tion 6 discusses the related work and Section 7 concludes.

2 Background
In this section, we provide the background information nec-
essary for the sequel.

2.1 Markov Decision Process
Markov Decision Processes (MDPs) offer a general and
powerful formalism to model and solve sequential decision-
making problems (Puterman 1994). An MDP is formally de-
fined as a tuple MT = (S,A,P, r, s0) where T is a time
horizon, S is a finite set of states, A is a finite set of actions,
P : S ×A×S → R is a transition function with P(s, a, s′)
being the probability of reaching state s′ when action a is
performed in state s, r : S × A → R is a bounded reward
function and s0 ∈ S is a particular state called initial state.

In a nutshell, at each time step t, the agent knows her
current state st. According to this state, she decides to
perform an action at. This action results in a new state
st+1 ∈ S according to probability distribution P(st, at, .),
and a reward signal r(st, at) which penalizes or reinforces
the choice of this action. At time step t = 0, the agent
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is in the initial state s0. We will call t-history ht a suc-
cession of t state-action pairs starting from state s0 (e.g.,
ht = (s0, a0, s1, . . . , st−1, at−1, st)). We call episode a T -
history and denote E the set of episodes.

The goal of the agent is to determine a policy, i.e., a proce-
dure to select an action in a state, that is optimal for a given
criterion. More formally, a policy π at an horizon T is a se-
quence of T decision rules (δ1, . . . , δT ). Decision rules are
functions which prescribe the actions that the agent should
perform. They are Markovian if they only depend on the
current state. Moreover, a decision rule is either determin-
istic if it always selects the same action in a given state or
randomized if it can prescribe a probability distribution over
possible actions. A policy can be Markovian, deterministic
or randomized according to the type of its decision rules.
Lastly, a policy is stationary if it uses the same decision rule
at every time step, i.e., π = (δ, δ, . . .).

Different criteria can be defined in order to compare
policies. One standard criterion is expected cumulated re-
ward, for which it is known that an optimal deterministic
Markovian policy exists at any horizon T . This criterion
is defined as follows. First, the value of a history ht =
(s0, a0, s1, . . . , st−1, at−1, st) is described as the sum of re-
wards obtained along it, i.e., r(ht) =

∑t−1
i=0 r(si, ai). Then,

the value of a policy π = (δ1, . . . , δT ) in a state s is set to be
the expected value of the histories that can be generated by π
from s. This value, given by the value function vπ1 : S → R

can be computed iteratively as follows:

vπT+1(s) = 0

vπt (s) = r(s, δt(s)) +
∑

s′∈S
P(s, δt(s), s′)vπt+1(s

′) (1)

The value vπt (s) is the expectation of cumulated rewards
obtained by the agent if she performs action δt(s) in state s
at time step t and continues to follow policy π thereafter. The
higher the values of vπt (s) are, the better. Therefore, value
functions induce a preference relation �π over policies in
the following way:

π �π π′ ⇔ ∀s ∈ S, ∀t = 1, . . . , T, vπt (s) ≥ vπ
′

t (s)

A solution to an MDP is a policy, called optimal policy,
that ranks the highest with respect to �π . Such a policy can
be found by solving the Bellman equations.

v∗T+1(s) = 0

v∗t (s) = max
a∈A

r(s, a) +
∑

s′∈S
P(s, a, s′)v∗t+1(s

′)

As can be seen, the preference relation �π over policies is
directly induced by the reward function r.

The decision criterion, based on the expectation of cumu-
lated rewards, may not always be suitable. Firstly, unfortu-
nately, in many cases, the reward function r is not known.
One can therefore try to uncover the reward function by in-
teracting with an expert of the domain considered (Regan
and Boutilier 2009; Weng and Zanuttini 2013). However,
even for an expert user, the elicitation of the reward func-
tion can be burdensome. Indeed, this process can be cogni-
tively very complex as it requires to balance several criteria

in a complex manner and as it can imply a large number of
parameters. In this paper, we address this problem by only
assuming that we have a strict weak ordering on episodes.

Secondly, for numerous applications, the expectation of
cumulated reward, as used in Equation 1, may not be the
most appropriate criterion (even when a numeric reward
function is defined). For instance, in the Web industry, most
decisions about performance are based on the minimal qual-
ity of 99% of the possible outcomes. Therefore, in this arti-
cle we aim at using a quantile (defined in Section 2.3) as a
decision criterion to solve an MDP.

2.2 Preferences over Histories
For generality’s sake, contrary to standard MDPs, we define
in this work the reward function to take values in a set R.
Moreover, we assume that the values of histories take values
in a set W , called the wealth level space, and that the value
of a history ht = (s0, a0, s1, . . . , st) is defined by:

w(h0) = w0 w(ht) = w(ht−1) ◦ r(st−1, at−1)

where ht−1 = (s0, a0, s1, . . . , st−1), ◦ is a binary operation
from W ×R to W and w0 ∈ W is the left identity element
of ◦. LetWT ⊂ W be the set of wealth levels of T -histories.
We make three assumptions aboutWT :

• It is ordered by a total order 	W , which defines how T -
histories are compared,

• It admits a lowest element, denoted wmin and a greatest
element, denoted wmax for order 	W .

• A distance consistent with 	W is defined over WT . It is
denoted d(w,w′) for any pair (w,w′) ∈ WT ×WT .

Note that when a distance is defined, for any pair (w,w′),
its set of mid-elements is also defined mid(w,w′) =
arg inf{max(d(w,w′′), d(w′, w′′)) |w′′ ∈ WT }.

In a numerical context, the possible wealth levels of a state
are the possible sums (resp. γ-discounted sums) of rewards
that can be obtained during an episode. We have wmax =

RmaxT (resp. wmax = Rmax
(1−γ)T

1−γ ) with Rmax being the
highest reward and mid(w,w′) = {(w+w′)/2}. In the most
general case, the possible wealth levels of a state are the pos-
sible histories (or more precisely their equivalent classes)
that can be obtained during an episode. Here, if the equiv-
alence classes are known and denoted by w1 ≺W w2 ≺W
. . . ≺W wm and if d(wi, wj) = |j − i|, then wmin = w1,
wmax = wm and mid(wi, wj) = {w�(i+j)/2�, w�(i+j)/2�}
(where �x�is the greatest integer smaller than x and 
x� is
the smallest integer greater than x).

The goal of the agent is then to make sure that most of
the time, it will generate episodes that have the highest pos-
sible wealth levels. This can be implemented by optimizing
a quantile criterion as explained in the next subsection.

2.3 Quantile Criterion
Intuitively, the τ -quantile of a population of ordered ele-
ments, for τ ∈ [0, 1], is the value q such that 100 · τ% of the
population is equal or lower than q and 100 · (1− τ)% of the
population is equal or greater than q. The 0.5-quantile, also
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known as the median, can be seen as the ordinal counter-
part of the mean. More generally, quantiles define decision
criteria that have the nice property of not requiring numeric
valuations, but only an order. They have been axiomatically
studied as decision criteria by Rostek (2010).

We now give a formal definition of quantiles. For this pur-
pose we define the probability distribution pπ over wealth
levels induced by a policy π, i.e., pπ(w) is the probability of
getting a wealth level w ∈ WT when applying policy π from
the initial state. The cumulative distribution induced by pπ is
then defined as Fπ where Fπ(w) =

∑
w′	Ww pπ(w′) is the

probability of getting a wealth level not preferred to w when
applying policy π. Similarly, the decumulative distribution
induced by pπ is defined as Gπ(w) =

∑
w	Ww′ pπ(w′) is

the probability of getting a wealth level “not lower” than w.
These two notions of cumulative and decumulative enable

us to define two kinds of criteria. First, given a policy π, we
define the lower τ -quantile for τ ∈ (0, 1] as:

qπ
τ
= min{w ∈ WT |Fπ(w) ≥ τ} (2)

where the min operator is with respect to ≺W .
Then, given a policy π, we define the upper τ -quantile for

τ ∈ [0, 1) as:

qπτ = max{w ∈ WT |Gπ(w) ≥ 1− τ} (3)

where the max operator is with respect to ≺W .
If τ = 0 or τ = 1 only one of qπ

τ
or qπτ is defined and

we define the τ -quantile qπτ as that value. When both are
defined, by construction, we have qπ

τ
	W qπτ . If those two

values are equal, qπτ is defined as equal to them. For instance,
this is always the case in continuous settings for continuous
distributions. However, in our discrete setting, it could hap-
pen that those values differ, as shown by Example 1.
Example 1. Consider an MDP where WT = {w1 ≺W
w2 ≺W w3}. Now assume a policy π attains each wealth
level with probabilities 0.5, 0.2 and 0.3 respectively. Then it
is easy to see that qπ

0.5
= w1 whereas qπ0.5 = w2.

When the lower and upper quantiles differ, one may define
the quantile as a function of the lower and upper quantiles
(Weng 2012). For simplicity, we show in this paper how to
optimize (approximately) the lower and the upper quantiles.
Definition 1. A policy π∗ is optimal for the lower (resp.
upper) τ -quantile criterion if:

qπ
∗

τ
= max

π
qπ
τ

(resp. qπ
∗

τ = max
π

qπτ ) (4)

where the max operator is with respect to ≺W and taken
over all policies π at horizon T .

Even in a numerical context where a numerical reward
function is given and the quality of an episode is defined as
the cumulative of rewards received along the episode, this
criterion is difficult to optimize, notably due to the two fol-
lowing related points:
• It is non-linear meaning for instance that the τ -quantile
qπ̃τ of the mixed policy π̃ that generates an episode using
policy π with probability p and π′ with probability 1 − p

is not given by pqπτ + (1− p)qπ
′

τ .

• It is non-dynamically consistent meaning that at time step
t, an optimal policy computed in s0 with horizon T might
not prescribe in state st to follow a policy optimal in st
for horizon T − t.

Three solutions are then possible (McClennen 1990): 1)
adopting a consequentialist approach, i.e., at each time step
t we follow an optimal policy for the problem with hori-
zon T − t and initial state st even if the resulting policy
is not optimal at horizon T ; 2) adopting a resolute choice
approach, i.e., at time step t = 0 we apply an optimal pol-
icy for the problem with horizon T and initial state s0 and
do not deviate from it; 3) adopting a sophisticated resolute
choice approach (Jaffray 1998; Fargier, Jeantet, and Span-
jaard 2011), i.e., we apply a policy π (chosen at the begin-
ning) that trades off between how much π is optimal for all
horizons T, T − 1, . . . , 1.

With non-dynamically consistent preferences, it is debat-
able to adopt a consequentialist approach, as the sequence
of decisions may lead to dominated results. In this paper,
we adopt a resolute choice point of view. We leave the third
approach for future work.

As optimizing exactly a (lower or upper) quantile is hard,
we aim at finding an approximate solution. Let q∗

τ
and q∗τ be

equal to the optimal lower and upper quantile respectively.
Definition 2. Let ε > 0. A policy π∗

ε is said to be ε-
optimal for the lower (resp. upper) τ -quantile criterion if
d(qπ

∗
ε

τ
, q∗

τ
) ≤ ε (resp. d(qπ

∗
ε

τ , q∗τ ) ≤ ε).

3 Solving Algorithm
In this section, we present a technique for computing an
ε-optimal policy for the quantile criterion. Our approach
amounts to solving a sequence of MDPs optimizing EU with
target utility functions (see Section 3.2).

3.1 Binary Search
In order to justify our algorithm, we introduce two lemmas
that characterize the optimal lower and upper quantiles1:
Lemma 1. The optimal lower τ -quantile q∗ satisfies:

q∗ = min{w : F ∗(w) ≥ τ} (5)

F ∗(w) = min
π

Fπ(w) ∀w ∈ W (6)

Note the last two equations can be equivalently rewritten:

q∗ = min{w : G∗
≺(w) ≤ 1− τ} (7)

G∗
≺(w) = max

π
Gπ

≺(w) ∀w ∈ W (8)

where Gπ
≺(w) = 1− Fπ(w) =

∑
w≺Ww′ pπ(w′).

Lemma 2. The optimal upper τ -quantile q∗ satisfies:

q∗ = max{w : G∗(w) ≥ 1− τ} (9)
G∗(w) = max

π
Gπ(w) ∀w ∈ W (10)

1For lack of space, all proofs are in the supplementary material
which can be found at hugogilbert.pythonanywhere.com
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Algorithm 1: Binary Search for the Lower Quantile
(resp. Upper Quantile)

Data: MDP M, τ , ε
Result: an ε-optimal policy π

1 w ← wmax; w ← wmin; w ← mid(w,w)
2 while d(w,w) > ε do
3 (π, p) = solve(M, w);
4 if p > 1− τ (resp. p ≥ 1− τ ) then
5 w ← w; w ← max(mid(w,w)); π∗ ← π;
6 else
7 w ← w; w ← min(mid(w,w));

8 return π∗

Given Lemmas 1 and 2 the problem now reduces to find-
ing the right value of w ∈ W that solves the problems
defined by Equation 7 or 9. Our solving method is based
on binary search (see Algorithm 1) and on the function
solve(M, w) that returns a pair (π, p), the solution of the
problems defined by Equation 8 or 10 for a fixed w, i.e.,
the max is equal to p and attained at π. Note that while for
the upper quantile criterion, solve(M, qπ

∗
τ ) returns an opti-

mal policy, for the lower quantile, solve(M, qπ
∗

τ
) may not if

qπ
∗

τ
�W min(WT ). However, solve(M, prec(qπ

∗

τ
)) returns

an optimal policy where prec(w) is the most preferred ele-
ment such that prec(w)≺W w (see supplementary material).

In the next subsection, we show how function solve can
be computed for the lower and upper quantile.

Note that whenWT is defined on the real line, Algorithm
1 needs only 
log2 d(wmax, wmin)/ε� iterations to terminate
by using [wmin, wmax] as WT . In the case where WT is fi-
nite, binary search can of course determine the optimal pol-
icy with ε = 1 and needs 
log2(|WT |)� iterations.

The next proposition asserts that Algorithm 1 is correct:

Proposition 1. Algorithm 1 returns an ε-optimal policy for
the lower (or upper) quantile criterion.

3.2 Dynamic Programming
For � ∈ {≺W ,	W}, we denote by U�

w : W → R the func-
tion, called target utility function, defined as follows:

U�
w(x) = 1 if w � x and 0 else. (11)

When optimizing the lower (resp. upper) quantile, func-
tion solve(M, w) can be computed by solving MDPM us-
ing EU as a decision criterion with U≺W

w (resp. U	W
w ) as a

utility function. Indeed, we have:

Eπ[U
�
w

(
w(HT )

)
] = P[w � w(HT ) |π]

where HT is a random variable representing a T -history and
P[w � w(HT ) |π] denotes the probability that π generates a
history whose wealth is strictly better (resp. at least better)
than w when � =≺W (resp. � =	W ).

Following (Liu and Koenig 2006), this problem can be
solved with a functional backward induction (Algorithm 2).
For each state s, it maintains a function Vt(s, .) which as-
sociates to each possible wealth level w the expected utility

Algorithm 2: FunctionalBackwardInduction
Data: MDP M, wealth w
Result: an optimal policy π

1 for all s ∈ S do
2 VT+1(s, .) ← U�

w(.)

3 for t = T to 1 do
4 for all s ∈ S do
5 Vt(s, ·) ← max

a

∑

s′∈S

P(s, a, s′)Vt+1(s
′, · ◦ r(s, a))

6 return (πV1 , V1(s0, w0)) \\ πV1= policy corresponding to V1

obtained by applying an optimal policy in state s for the re-
maining T − t time steps with w as initial wealth level. At
each time step (t = T, . . . , 1) this function is updated simi-
larly as in backward induction except that operations are not
applied to scalars but to functions. The max and × opera-
tions are extended over functions as pointwise operations.
As utility functions defined by Equation 11 are piecewise-
linear, Vt(s, .) is also piecewise-linear because all the oper-
ations in Line 5 of Algorithm 2 preserve this property.

Policies returned by Algorithm 2 have a special structure.
They are deterministic and wealth-Markovian:

Definition 3. A policy is said to be wealth-Markovian if its
decision rules are functions of both the current state and the
current wealth level.

Besides, this is also the case for policies optimal with re-
spect to the quantile criterion.

Proposition 2. Optimal policies for the lower or upper
quantile at horizon T can be found as deterministic wealth-
Markovian policies.

4 Infinite Horizon
We present in this section some results regarding the infinite
horizon case. Similarly to the finite horizon setting, the sit-
uation for the quantile criterion is not as simple as for the
standard case. Indeed, in the infinite horizon case, it may
happen that there is no stationary deterministic Markovian
policy that is optimal (w.r.t. the quantile criterion) among all
policies, contrary to standard MDPs.

Example 2. Consider an MDP with two states s1 and s2
and two actions a1 and a2. In s1, the transition proba-
bilities are P(s1, a1, s1) = 0.1, P(s1, a1, s2) = 0.9 and
P(s1, a2, s2) = 1. To make this example shorter, we as-
sume that rewards depend on next states. The rewards are
r(s1, a1, s1) = 1, r(s1, a1, s2) = −1 and r(s1, a2, s2) =
1. In s2, the transition probabilities are P(s2, a1, s2) =
P(s2, a2, s2) = 1. Rewards are null for both actions in s2.
Among all decision rules, there are only two distinct rules:
δ1(s1) = a1 and δ2(s1) = a2. To ensure that the values of
histories are well-defined, we assume that they are defined as
discounted sum of rewards with a discount factor γ = 0.9.
One can then check that the 0.95-quantile of the stationary
policy using δ1 is 0.1, that of the stationary policy using δ2
is 1. Finally, the 0.95-quantile of the policy applying first

3572



Figure 1: Computation times vs state sizes for Functional
Backward Induction.

δ1 and then δ2 is 1.9. Therefore, no stationary deterministic
Markovian policy is optimal for the quantile criterion.

However, considering wealth-Markovian policies, some
results can be given when rewards are numeric and wealth
levels are undiscounted:
Proposition 3. Optimal policies for the lower or upper
quantile can be found as stationary deterministic wealth-
Markovian policies in the two following cases:
(i) ∀(s, a) ∈ S ×A, r(s, a) ≤ 0.
(ii) ∀(s, a) ∈ S × A, r(s, a) ≥ 0. Furthermore, we require

the existence of a finite upper bound on the optimal lower
and upper quantiles.
Then, a solving algorithm can be obtained from Algo-

rithm 1 by replacing functional backward induction (Alg. 2)
by functional value iteration (Liu and Koenig 2006) in the
binary search. This amounts to do the for loop over t (line
4) until convergence of Vt, i.e., ‖Vt − Vt−1‖∞ ≤ ε′. Binary
search will then return an (ε+ε′)-optimal for the τ -quantile.
However, note that in the first (resp. second) case, a lower
(resp. upper) bound on the optimal lower or upper quantile
is required to do the binary search.

5 Experimental Results
We experimentally evaluated our approach on a server
equipped with four Intel(R) Xeon(R) CPU E5-2640 v3 @
2.60GHz and 64Gb of RAM. The algorithms were imple-
mented in Matlab and ran only on one core. We expect the
running times to be improved with a more efficient program-
ming language and by exploiting a multicore architecture.

We designed three sets of experiments. Although our ap-
proach could be used in a preference-based setting, we per-
formed the experiments with numerical rewards for simplic-
ity. The first shows the running time of functional backward
induction for different varying state sizes on random MDPs.
The second set of experiments shows the running time of
functional backward induction for different horizons on a
data center control problem with various number of servers.
Finally, the third compares the cumulative distributions of a
policy optimal for the quantile criterion and a policy optimal
for the standard criterion on a fixed MDP.

Figure 2: Computation times vs horizon for Functional
Backward Induction.

The first set of experiments was conducted on Gar-
nets (McKinnon and Thomas 1995), which designate ran-
dom MDPs with a constrained branching factor. A Garnet
G(nS , nA, b) is characterized by nS a number of states,
nA a number of actions and b the number of succes-
sor states for every state and action. For our experiments,
nS ∈ {250, 500, 750, 1000, 1250, 1500, 1750, 2000, 2250}
and we set nA = 5 and b = 
log2 nS�. Rewards are ran-
domly chosen in [0, 1] and the values of histories are simply
cumulated rewards. The horizon of the problem was set to 5.
The results are presented in Figure 1 where the x-axis repre-
sents the state size and the y-axis the computation time. Each
point is the average over 10 runs. Naturally, computation
times increases with state sizes. In this setting, binary search
would call functional backward induction 
log2(1/ε)� = 10
times if ε = 10−3.

The second set of experiments was performed on a more
realistic domain, which is a data center control problem in-
spired by the model proposed by Yin and Sinopoli (2014). In
this problem, one needs to decide every time step how many
servers to switch on or off, while maximizing Quality-of-
Service and minimizing power consumption. In the model
proposed by Yin and Sinopoli, the two objectives are sim-
ply combined into one cost, which defines our reward sig-
nal. The state is defined as the number of servers that are
currently on and the number of jobs that needs to be pro-
cessed during a time step. The action represents the number
of servers that will be on at the next time step. We assume for
simplicity that the maximum number of jobs that can arrive
at one timestep is three times the total number of servers. For
instance, in a problem with n = 30 servers, the total number
of states is 30× 3× 30 = 2700. Besides, the distribution of
the next number of jobs is modeled as a Poisson distribution
whose parameter can be 
n/2�, 
3n/2� or 
5n/2� (to model
different regimes) depending on the current number of jobs.
Figure 2 shows the computation times of functional back-
ward induction for n ∈ {20, 30, 40} and different horizons.
We can see that for more structured problems, the computa-
tion time is much more reasonable than on random MDPs.

In the last set of experiments, to give an intuition of the
kind of policy obtained when optimizing a quantile, we
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Figure 3: Comparison of cumulative distributions under the
quantile criterion and standard criterion

compare the cumulative distribution of a policy optimal for
the quantile criterion and that of a policy optimal for the
standard criterion. This experiment is performed on an in-
stance of Garnet G(100, 5, 
log2 100�) whose rewards are
slightly modified to make the distribution of the optimal pol-
icy skewed, as it is often the case in some real applications
(Benoit and Van den Poel 2009). The horizon is set to 5
and we optimize the 0.1-quantile with ε = 0.001 in binary
search. The two cumulative distributions are plotted in Fig-
ure 3. We can observe that although the optimal policy for
the standard criterion maximizes the expectation, it may be
a risky policy to apply as the probability of obtaining a high
reward is low. On the contrary, the optimal policy for the τ -
quantile criterion will guarantee a reward as high as possible
with probability at least 1− τ .

6 Related Work
Much work in the MDP literature (Boussard et al. 2010) con-
sidered decision criteria different to the standard ones (i.e.,
expected discounted sum of rewards, expected total rewards
or expected average rewards). For instance, in the opera-
tions research community, White (1987) considered differ-
ent cases where preferences over policies only depend on
sums of rewards: Expected Utility (EU), probabilistic con-
straints and mean-variance formulations. In this context, he
showed the sufficiency of working in a state space aug-
mented with the sum of rewards obtained so far. Recently,
(Prashanth and Ghavamzadeh 2013) and (Mannor and Tsit-
siklis 2011) provided algorithms for this mean-variance for-
mulation. Filar, Kallenberg, and Lee (1989) investigated de-
cision criteria that are variance-penalized versions of the
standard ones. They formulated the obtained optimization
problem as a non-linear program. Several researchers (White
1993; Bouakiz and Kebir 1995; Yu, Lin, and Yan 1998;
Wu and Lin 1999; Ohtsubo and Toyonaga 2002; Hou, Yeoh,
and Varakantham 2014; Fan, Kalaba, and Moore II 2005)
worked on the problem of optimizing the probability that
the total (discounted) reward exceeds a given threshold.

Additionally, in the artificial intelligence community, (Liu
and Koenig 2005; 2006; Ermon et al. 2012) also investigated
the use of EU as a decision criterion in MDPs. In the contin-

uation of this work, Gilbert et al. (2015) investigated the use
of Skew-Symmetric Bilinear (SSB) utility (Fishburn 1981)
functions — a generalization of EU with stronger descriptive
abilities — as decision criteria in finite-horizon MDPs. Inter-
estingly, SSB also encompasses probabilistic dominance, a
decision criterion that can be employed in preference-based
sequential decision-making (Busa-Fekete et al. 2014).

Recent work in MDP and reinforcement learning consid-
ered conditional Value-at-risk (CVaR), a criterion related to
quantile, as a risk measure. Bäuerle and Ott (2011) proved
the existence of deterministic wealth-Markovian policies op-
timal with respect to CVaR. Chow and Ghavamzadeh (2014)
proposed gradient-based algorithms for CVaR optimization.
In contrast, Borkar and Jain (2014) used CVaR in inequality
constraints instead of as objective function.

Closer to our work, several quantile-based decision mod-
els have been investigated in different contexts. In uncer-
tain MDPs where the parameters of the transition and re-
ward functions are imprecisely known, Delage and Mannor
(2007) presented and investigated a quantile-like criterion
to capture the trade-off between optimistic and pessimistic
viewpoints on an uncertain MDP. The quantile criterion they
use is different to ours as it takes into account the uncer-
tainty present in the parameters of the MDP. Filar, Krass, and
Ross (1995) proposed an algorithm for optimizing the quan-
tile criterion when histories are valued by average rewards.
In that setting, they showed that an optimal stationary de-
terministic Markovian policy exists. In MDPs with ordinal
rewards (Weng 2011; 2012; Filar 1983), quantile-based de-
cision models were proposed to compute policies that max-
imize a quantile using linear programming. While quantiles
in those works are defined on distributions over ordinal re-
wards, we defined them as distributions over histories.

More recently, in the machine learning community, quan-
tile-based criteria have been proposed in the multi-armed
bandit (MAB) setting, a special case of reinforcement learn-
ing. Yu and Nikolova (2013) proposed an algorithm in the
pure exploration setting for different risk measures, includ-
ing Value-at-Risk. Carpentier and Valko (2014) studied the
problem of identifying arms with extreme payoffs, a partic-
ular case of quantiles. Finally, Szörenyi et al. (2015) investi-
gated MAB problems where a quantile is optimized instead
of the mean.

7 Conclusion

In this paper we have developed a framework to solve se-
quential decision problems in a very general setting ac-
cording to a quantile criterion. Modeling those problems as
MDPs we developed an offline algorithm in order to com-
pute an ε-optimal policy and investigated the properties of
the optimal policies in the finite and infinite horizon cases.
Lastly, we provided experimental results, testing those two
algorithms in a variety of settings.

As future work, we plan to investigate how this work can
be extended to the case of reinforcement learning, a frame-
work more involved than the one of MDPs where the dy-
namics of the problems are unknown and must be learned.
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