
Plan Reordering and Parallel Execution
— A Parameterized Complexity View

Meysam Aghighi, Christer Bäckström
Department of Computer and Information Science

Linköping University
Linköping, Sweden

{meysam.aghighi, christer.backstrom} at liu.se

Abstract

Bäckström has previously studied a number of optimization
problems for partial-order plans, like finding a minimum de-
ordering (MCD) or reordering (MCR), and finding the min-
imum parallel execution length (PPL), which are all NP-
complete. We revisit these problems, but applying parame-
terized complexity analysis rather than standard complexity
analysis. We consider various parameters, including both the
original and desired size of the plan order, as well as its width
and height. Our findings include that MCD and MCR are
W[2]-hard and in W[P] when parameterized with the desired
order size, and MCD is fixed-parameter tractable (fpt) when
parameterized with the original order size. Problem PPL is fpt
if parameterized with the size of the non-concurrency rela-
tion, but para-NP-hard in most other cases. We also consider
this problem when the number (k) of agents, or processors, is
restricted, finding that this number is a crucial parameter; this
problem is fixed-parameter tractable with the order size, the
parallel execution length and k as parameter, but para-NP-
hard without k as parameter.

1 Introduction
A total-order (t.o.) plan specifies one single total order for
executing its actions, while a partial-order (p.o.) plan spec-
ifies a partial order on its actions and allows for executing
them in any order that is a linearization of the partial or-
der. A p.o. plan is more flexible than a t.o. plan, since the
decision on an exact action order can be postponed until
runtime, possibly subject to constraints not known at plan-
ning time. A p.o. plan may also be interpreted as a parallel
plan, where mutually unordered actions can be executed si-
multaneously, possibly subject to further concurrency con-
straints. Planners may also be divided into total-order plan-
ners and partial-order planners, depending on whether they
work on and produce a t.o. plan or a p.o. plan. Furthermore,
one may use a p.o. planner and then linearize the result into
a t.o. plan, or one may use a t.o. planner and then convert
the result into a p.o. plan. A number of greedy algorithms
for the latter appeared in the literature in the early 1990’s
(Régnier and Fade 1991; Veloso, Pérez, and Carbonell 1990;
Kambhampati and Kedar 1994). Bäckström (1998) consid-
ered this from a computational point of view, defining de-
ordering of a plan, a subset of the plan order such that the

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

plan is still valid, and reordering of a plan, any partial order
such that the plan is still valid. The optimization problems of
finding a minimum size deordering or reordering of a plan
were both found NP-complete. Hence, neither of the previ-
ous greedy deordering algorithms could produce a minimum
deordering. However, one of the greedy algorithms has later
been found to often produce optimal solutions in practice
(Muise, McIlraith, and Beck 2011). Also other methods to
solve these problems in practice have been proposed, e.g. us-
ing MaxSAT encodings and solvers (Muise, McIlraith, and
Beck 2012).

The method of first generating a t.o. plan and then de-
ordering this into a p.o. plan, usually by a non-optimal
greedy algorithm, has since been applied to a number of
diverse planning domains, including workflow planning in
business process reengineering (Rodrı́guez-Moreno et al.
2007), automatic generation of narratives (Haslum 2012),
composition of web services (Madhusudan and Uttamsingh
2006), flexible plan execution and monitoring (Muise, McIl-
raith, and Beck 2011) and plan repair (Scala and Torasso
2015) of numeric plans. The deordering concept can also
be found in distributed control systems (Pannek 2013). Fur-
thermore, Cimatti, Micheli, and Roveri (2015) presented a
strong temporal planner for actions with uncontrollable du-
rations, based on constructing a t.o. plan and then consider
the reorederings of it.

One may also consider other optimality criteria for p.o.
plans than minimum order size. One alternative is to maxi-
mize the number of linearizations. Since this is also a diffi-
cult problem, one often considers various proxy functions
in practice, cf. Say, Ciré, and Beck (2016). Siddiqui and
Haslum (2015) take a slightly different approach, consider-
ing blocks of actions that can be unordered with respect to
each other, and use this to construct an anytime algorithm
for deordering plans.

While finding a (usually non-optimal) de- or reordering
of a t.o. plan has proven sufficient in practice in many ap-
plications, this is not always the case. For instance, Kvarn-
ström (2011) considers multi-agent UAV planning and gen-
erate p.o. plans directly, claiming that post-relaxation of a
t.o. plan is not sufficient for achieving optimality in this do-
main. Another case where the method seems to be problem-
atic is planning for multiple agents that have both private
and public actions (Maliah, Shani, and Stern 2016). Fur-

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

3540

thermore, when studying this from a computational point of
view, Bäckström and Jonsson (2011) have conjectured that if
all scheduling constraints are known at planning time, then it
is more efficient to generate a plan together with an optimal
parallel schedule as one computation, instead of first gener-
ating a p.o. plan that allows for an optimal schedule and then
find this schedule.

Since the approach of first finding a plan and then improv-
ing its order has proven feasible and attractive in practice,
despite these latter cases and arguments, it is desirable to
gain a better understanding of this approach. One way to do
that is to use more fine-grained analysis tools than standard
complexity theory. In this paper, we will thus make a pre-
liminary investigation into applying parameterized complex-
ity analysis to the problems defined by Bäckström (1998).
This allows for sharper and more detailed results and distinc-
tions, and parameterized analysis has recently been used to
achieve such refined pictures of planning (Kronegger, Pfan-
dler, and Pichler 2013; de Haan, Roubı́cková, and Szeider
2013; Bäckström et al. 2015; Aghighi and Bäckström 2015;
Kronegger, Ordyniak, and Pfandler 2015).

We primarily study the problems defined by
Bäckström (1998), but using parameterized complex-
ity instead. The following are some of our results. Finding
a minimum deordering (MCD) and a minimum reordering
(MCR) are previously known to be NP-complete. We show
that both are W[2]-hard and in W[P] if parameterized
with the size of the resulting order. Parameterized with the
original order, MCD is fixed-parameter tractable, while we
could only prove that MCR is in W[P]. We also find that
the size of the non-concurrency relation is a very useful
parameter for finding minimum parallel executions of plans;
the problem is fixed-parameter tractable with this parameter,
but para-NP-hard for most other parameters. We also study
the case of a restricted number of agents, or processors,
finding this number to be a crucial parameter in this case.

2 Parameterized Complexity
Parameterized complexity provides a more fine-grained
complexity analysis compared to the traditional complexity
analysis, and it is intended to give results that are more com-
patible with practical experience.

A parameterized problem is a language L ⊆ Σ∗ × Z0,
where Σ is a finite alphabet and Z0 is the set of non-negative
integers. An instance of the problem is a pair 〈I, k〉, where I

is a string over Σ∗ and k is the parameter. For a combination
of more parameters k1, . . . , kp, the second component of the
instance is considered as their sum k = k1 + . . . + kp. A
parameterized problem is fixed-parameter tractable (fpt) if
there exists an algorithm that solves every instance 〈I, k〉 in
time f(k) · |I|c where f is a computable function and c is
a constant. FPT is the class of all fixed-parameter tractable
decision problems. An fpt reduction from a parameterized
language L1 ⊆ Σ∗1 × Z0 to another parameterized language
L2 ⊆ Σ∗2 × Z0 is a mapping R : Σ∗1 × Z0 → Σ∗2 × Z0 such
that: (1) 〈I, k〉 ∈ L1 iff 〈I′, k′〉 = R(I, k) ∈ L2; (2) there is
a computable function f and a constant c such that R can be
computed in time f(k) · |I|c; and (3) there is a computable
function g such that k′ ≤ g(k).

In addition to FPT, there are other classes defined for
fixed-parameter intractability. The W[i] classes are de-
fined by the WEIGHTED SATISFIABILITY PROBLEM for re-
stricted circuits, where W[P] is the case of arbitrary circuits.
The class para-NP consists of all parameterized problems
that can be solved in non-deterministic time f(k) · |I|c, for
some computable function f and a constant c. The follow-
ing relation between the parameterized complexity classes
is known: FPT ⊆ W[1] ⊆ W[2] ⊆ W[3] ⊆ · · · ⊆ W[P] ⊆
para-NP. On the other hand, the only known relation be-
tween parameterized and the standard complexity classes
is P ⊆ FPT. To show para-NP-hardness in the paper, we
use Theorem 2.14 in Flum and Grohe (2006): A parame-
terized problem is para-NP-hard if it has an NP-hard slice,
i.e. if setting all parameters to constant values result in a
non-parameterized problem that is NP-hard. To show W[P]-
membership, we use Def 3.1 of Flum and Grohe (2006):
A parameterized problem is in W[P] if it can be solved by
some NTM in f(k).nc steps of which at most h(k) · log(n)
steps are non-deterministic, where f and h are computable
functions, c is a constant and n is the instance size. For a
detailed account of parameterized complexity, see Downey
and Fellows (1999) or Flum and Grohe (2006).

3 Planning Framework
We follow Bäckström (1998) and use an axiomatic plan-
ning framework for membership results. We assume there
is a planning problem instance (ppi) Π and that Π includes a
specification of some set of operators. A partial-order (p.o.)
plan for Π is a tuple P = 〈A,≺〉, where A is a set of actions
and ≺ is an order on A such that its transitive closure ≺+ is
a partial order. An action is an occurrence of an operator in
Π, inheriting its definition. All actions in A are unique, but
two or more actions can be occurrences of the same opera-
tor, i.e. they have the same behavior. We further say that P
is a total-order (t.o.) plan if ≺+ is also a total order. A t.o.
plan corresponds to a unique sequence of the actions in A,
i.e. a unique execution order. We further assume there is a
validity test for Π that decides if a total-order plan is a valid
solution for Π or not, and we say that a t.o. plan is Π-valid
if it is a solution for Π. A p.o. plan is implicitly defined as
Π-valid if all of its topological sortings are Π-valid. Just like
Bäckström (1998), we will assume that validity of p.o. plans
can be decided in polynomial time.

For hardness proofs, we will use propositional STRIPS in
order to make the results as strong as possible. This formal-
ism satisfies that p.o. plans can be validated in polynomial
time (Nebel and Bäckström 1994, Corollary 11). We will
use the notation a : p → e to define that a is an action with
precondition p and effect e.

The size of a plan order, |≺|, is defined as the number
of relation tuples in it. Bäckström (1998) suggested that it
may be beneficial to standardize the plan order to be either a
transitive closure or a reductive closure. However, just as in
his case, neither is a necessary assumption for our results. A
chain is a subset {a0, a1, a2, . . . , al} of A such that for every
1 ≤ i ≤ l we have ai−1 ≺ ai. In other words, a chain is a set
of actions every two of which are comparable. An antichain
is a set of actions no two of which are comparable.

3541

4 Least-constrained Plans

For any two partial-order plans P = 〈A,≺〉 and Q =
〈A,≺′〉, and a PPI Π, we say Q is a reordering of P wrt.
Π if and only if both P and Q are Π-valid. The MINIMUM-
CONSTRAINED REORDERING (MCR) is defined as follows:

INSTANCE: A PPI Π, a Π-valid partial order plan P =
〈A,≺〉 and a positive integer k.
QUESTION: Does P have a Π-valid reordering Q =
〈A,≺′〉 such that |≺′| ≤ k?

Deordering of a p.o. plan is a special case of reordering
where we require that ≺′⊆≺. The problem MINIMUM-
CONSTRAINED DEORDERING (MCD) is defined analo-
gously to MCR. Bäckström (1998) showed that both MCD
and MCR are NP-complete for planning formalisms that
have a polynomial-time validity test for p.o. plans.

In this paper we will study both these problems using pa-
rameterized complexity, and we will consider the following
parameters of the instance:

n≺ |≺|, i.e. the size of the plan order
h≺ Height of ≺ (size of its longest chain)
w≺ Width of ≺ (size of the largest antichain)

We analogously define the solution parameters n≺′ , h≺′ and
w≺′ , which are the desired values of the new order in the so-
lution. Note that the instance parameters can be determined
from the instance, while the solution parameters are values
to optimize. Let π be a set of parameters. Then the notation
π-MCR refers to the variant of MCR parameterized with the
parameters in π. This notation is used analogously also for
other problems. Note that we generally want as few parame-
ters as possible for membership results and as many as pos-
sible for hardness results. If π-MCR is in a complexity class
C and π ⊆ π′, then also π′-MCR is in C, i.e. adding pa-
rameters does not make the problem harder. Conversely, if
π-MCR is C-hard and π′ ⊆ π, then π′-MCR is also C-hard,
i.e. removing parameters will not make the problem easier,
so more parameters means a stronger result here.

Theorem 1. {n≺}-MCD is in FPT.

Proof. Let Π be a ppi, P = 〈A,≺〉 be a Π-valid p.o. plan
and k be an integer. We ask for a deordering of size k. Let
p = n≺ be the parameter. There are at most

(
p
0

)
+

(
p
1

)
+

. . . +
(
p
k

)
< (k + 1)pk different deorderings of P with size

at most k. Since k ≤ p we have (k + 1)pk ≤ (p + 1)pp

which is a function of p. By general assumption, Π-validity
of each deordering can be verified in polynomial time, so the
algorithm runs in time f(p) · q(n), where n is the instance
size, f is some function and q is some polynomial.

We will use the following version of Dilworth’s Theorem
(Hall 1998)[Thm.7.2.1]:

Dilworth’s Theorem. In any finite partially ordered
set, the maximum number of elements in any antichain
equals the minimum number of chains in any partition
of the set into chains.

Observation 1. The parameter combinations {h≺, w≺}
and {h≺′ , w≺′} are degenerate cases.

Proof. Let P = 〈A,≺〉 be a p.o. plan. According to Dil-
worth’s Theorem there exists a partition of A into w≺ num-
ber of chains. On the other hand, the size of each chain is at
most h≺, therefore we have |A| ≤ w≺h≺. So n≺ ≤ (|A|

2

) ≤(
w≺h≺

2

)
. The same is true for the reordered/deordered par-

tial order ≺′. If |A| > w≺′h≺′ there is no solution and if
|A| ≤ w≺′h≺′ every possible reordering/deordering can be
checked in polynomial time.

Now, every reordering/deordering of P can be generated
and checked in time f(w≺, h≺) for some function f , which
means they would lie in FPT for any parameter combina-
tion that includes {w≺, h≺}. Although, in this paper we do
not consider this as an FPT result, but rather a degenerate
case and not a useful parameter combination. This also re-
mains correct for all problems discussed in this paper. Note
that in every deordering we have h≺′ ≤ h≺ and w≺′ ≥ w≺,
whereas in reordering, none of these inequalities are guaran-
teed. This means that the parameter combination {h≺, w≺′}
also has this property, but only for plan deordering.
Theorem 2. {n≺′}-MCR is in W[P].

Proof. Let P = 〈A,≺〉 be a partial order Π-valid plan for
some PPI Π. Let n be the instance size. Nondeterministically
guess a reordering ≺′ of P wrt. Π such that n≺′ ≤ k. We
need to guess at most 2k log n bits because every action can
be indexed in log n bits. Π-validity of 〈A,≺′〉 is polynomial
time by assumption.

The following corollary is straightforward since in MCR
we always have n≺′ ≤ n≺:
Corollary 1. {n≺}-MCR and {n≺′}-MCD are in W[P].

Next we will use the DOMINATING SET problem which
is W[2]-complete when parameterized with the set size
(Downey and Fellows 1995):

INSTANCE: A graph G = (V,E) and an integer k.
PARAMETER: k.
QUESTION: Is there a set of k vertices V ′ ⊆ V such
that every vertex of G either belongs to V ′ or has a
neighbor in V ′?

Construction 1. Let G = (V,E) be an arbitrary graph such
that V = {v1, . . . , vn} and let N(v) denote the set of neigh-
bors of vertex v. Construct a PPI Π = 〈V ∪ {g}, A,∅, {g}〉
and a Π-valid partial order plan P = 〈A,≺〉 where A =
{a1, a2, . . . , an, a} and for every i ∈ {1, . . . , n}, ai ≺ a.
Define ai : ∅ → N(vi) ∪ {vi} and a : V → g.

The following construction is similar to Construction 1 with
the difference that P is defined as a total order plan.
Construction 2. Let G, V , N , Π and A be defined the same
as Construction 1. Construct P = 〈A,≺〉, a Π-valid total
order plan such that for each i ∈ {1, . . . , n− 1}, ai ≺ ai+1

and an ≺ a.

Theorem 3. The following problems are W[2]-hard:
1. {n≺′ , h≺, h≺′}-MCD

2. {n≺′ , w≺, h≺′}-MCD

3. {n≺′ , h≺, h≺′}-MCR

4. {n≺′ , w≺, h≺′}-MCR

3542

Proof. 1. By a reduction from DOMINATING SET using
Construction 1. Each action ai corresponds to adding ver-
tex vi to the dominating set and action a is a validity check
on the set. Thus, it is easy to observe that G has a dominating
set of size k if and only if P has a deordering P ′ = 〈A,≺′〉
of size k. It can also be seen that h≺ = h≺′ = 2.
2. Similar to part (1) but instead use Construction 2. Note
that w≺ = 1 and h≺′ ≤ k + 1.
3. By using Construction 1. Similar to part (1), if G has a
dominating set of size k, then P has a reordering of size k.
For the other direction, assume P ′ = 〈A,≺′〉 be a Π-valid
reordering of size k. Since a is the only action that sets g, ev-
ery topological sorting of P ′ must be of the form 〈Ω, a,Ω′〉
where {Ω,Ω′} is a partition of {a1, . . . , an}. Among all
topological sortings of P ′, let 〈ω, a, ω′〉 be the one with
fewest number of actions preceding a (ω = arg min|Ω|) and
let ω = 〈aπ1

, aπ2
, . . . , aπl

〉. For every 1 ≤ i ≤ l we must
have a list of actions {x1, . . . , xj} such that aπi

≺′ x1 ≺′
. . . ≺′ xj ≺′ a, otherwise ω did not contain aπi

. Therefore
l ≤ n≺′ ≤ k. Now since the preconditions of a must be sat-
isfied by actions in ω, V ⊆ ⋃

1≤i≤l(N(vπi)∪ {vπi}) which
means that {vπ1

, vπ2
, . . . , vπl

} is dominating set for G. We
have h≺ = 2 and h≺′ ≤ k + 1.
4. Similar to part (3) but instead use Construction 2. Also,
w≺ = 1 and h≺′ ≤ k + 1.

Note that the parameter h≺′ is always redundant in case 1,
since we always have h≺′ ≤ h≺ in a deordering. By remov-
ing the non-constant parameters from the above theorem, we
get the following corollary:

Corollary 2. The following problems are para-NP-hard:

1. {h≺, h≺′}-MCD

2. {w≺}-MCD

3. {h≺}-MCR

4. {w≺}-MCR

5 Parallel Plans

A parallel plan (pplan) is a tuple P = 〈A,≺,#〉 where
〈A,≺〉 is a p.o. plan and # is an irreflexive and symmet-
ric relation on A. # is called the non-concurrency rela-
tion. For every two actions a and b, a#b indicates that
they cannot be executed in parallel. We define the size of
the non-concurrency relation n# as the number of pairs
a, b ∈ A s.t. a#b. We also define the non-concurrency graph
G# = (A,E) where (a, b) ∈ E if and only if a#b. Let
d : A �→ N denote the duration of each action. A parallel
execution of a pplan P is a function r : A �→ N, denot-
ing the release time for every action in A, such that: 1) If
a ≺ b then r(a) + d(a) ≤ r(b), and 2) If a#b then either
r(a) + d(a) ≤ r(b) or r(b) + d(b) ≤ r(a). The length of
a parallel execution or maxa∈A{r(a) + d(a)} denotes the
latest finishing time of any action. We define the parallel
length of a pplan P to be the minimum length over all possi-
ble parallel executions of P . In this paper, for simplicity, we
assume that the duration of every action is one.

The problem PARALLEL PLAN LENGTH (PPL) is defined
as follows:

INSTANCE: A PPI Π, a Π-valid parallel plan P =
〈A,≺,#〉 and a positive integer lp.

QUESTION: Does P have a parallel execution of length
at most lp?
PPL is NP-complete (Bäckström 1998). We will now an-

alyze the parameterized complexity of PPL considering the
following parameters:

lp Length of the parallel plan
n# Size of the non-concurrency relation
Δ# Maximum degree of G#

Lemma 1. The parallel length of the pplan P = 〈A,≺,∅〉
is equal to h≺.

Proof. Let k be the parallel length of P . Trivially, h≺ ≤ k.
On the other hand, a greedy execution of actions (at each
iteration, execute all actions a s.t. every action b that b ≺ a
is already executed) shows that k ≤ h≺ so, k = h≺.

Lemma 2. h≺ can be computed in polynomial time.

Proof. The plan order is a DAG and computing h≺ is equiv-
alent to finding the longest path in it.

Theorem 4. {n#}-PPL is in FPT.

Proof. Let Π be a PPI and P = 〈A,≺,#〉 a Π-valid pplan.
Let a and b be two actions such that a#b. Without loss of
generality, assume in the optimal parallel execution of P , a
is executed earlier than b, i.e. r(a) + d(a) ≤ r(b). If we
remove a#b from the non-concurrency relation and instead,
add a ≺ b to the partial order, the minimum parallel length
of the new pplan will be the same. Therefore, for every a#b
it is enough to check both a ≺ b and b ≺ a and then the
minimum parallel length of P will be the minimum length
over all 2n# generated pplans. Each one of these pplans has
an empty non-concurrency relation. Therefore, with respect
to Lemmas 1 and 2 this is an fpt algorithm.

We will continue by showing that PPL and graph coloring
are highly connected. GRAPH K-COLORING (CHROMATIC
NUMBER) is defined as follows:

INSTANCE: Graph G = (V,E) and a positive integer
k ≤ |V |.
QUESTION: Is G k-colorable, i.e. does there exist a
function f : V → {1, 2, . . . , k} such that f(v) �= f(u)
whenever (v, u) ∈ E?

GRAPH K-COLORING is NP-complete even for k = 3 and
planar graphs having no vertex degree exceeding 4 (Garey
and Johnson 1979)[GT4]. Let χ# denote the chromatic
number of G#.
Lemma 3. The parallel length of the pplan P = 〈A,∅,#〉
is equal to χ#.

Proof. Let Π be a PPI and let P = 〈A,∅,#〉 be a Π-
valid pplan. Let lp be the parallel length of P . Also let
f : A → {1, 2, . . . , k} be a k-coloring for G#. If we
define the release time of every action equal to its color
(r(a) = f(a)), then clearly this is a valid parallel execu-
tion of P because no two actions a#b have the same color
(= release time). So, lp ≤ k. Similarly, by assigning the re-
lease time of actions as colors, every parallel execution gives
a valid coloring. Therefore, lp ≥ k and hence, lp = k.

3543

Theorem 5. Let lp denote be the parallel length of the pplan
P = 〈A,≺,#〉. Then

max{h≺, χ#} ≤ lp ≤ h≺ + n#

Proof. By ignoring # we get h≺ ≤ lp and by ignoring ≺
we get χ# ≤ lp (Lemmas 1 and 3). So, max{h≺, χ#} ≤
lp. To prove the upper bound, first assume that the non-
concurrency relation is empty, then using Lemma 1, P has
a parallel execution of length h≺. Now in the current par-
allel execution, for every two actions a and b that a#b and
r(a) = r(b), we add a new iteration to the parallel execution
and shift action a and every action with a later release time
one unit forward, i.e. r(a) := r(a) + 1 and also for every x
such that r(x) > r(a), r(x) := r(x) + 1. By repeating this
process at most n# times it is guaranteed that no two such
a and b actions will be found. Therefore, we always have
lp ≤ h≺ + n#.

The upper bound in the above theorem is achievable: let
Π be a PPI, P = 〈A,≺,#〉 a Π-valid pplan and A =⋃

1≤i≤n{ai, bi}. For each i, let ai ≺ ai+1, ai ≺ bi+1,
bi ≺ ai+1, bi ≺ bi+1 and ai#bi. For every two actions
ai and aj where i < j we have ai ≺ aj ; and for every
two actions ai and bj where i ≤ j, we either have ai ≺ bj
(i < j) or ai#bj (i = j). Therefore no two actions in A
can be executed in parallel and hence the parallel length for
this pplan is |A| = 2n. On the other hand, the partial order
contains two chains (a1 ≺ . . . ≺ an and b1 ≺ . . . ≺ bn) of
length n. So, the parallel length is equal to the upper bound
in Theorem 5, h≺ + n# = n+ n = 2n.

Theorem 6. {n≺, lp,Δ#, h≺}-PPL is para-NP-hard.

Proof. By a reduction from the NP-complete
problem GRAPH 3-COLORING to the slice
{n≺ = 0, lp = 3,Δ# = 4, h≺ = 1}-PPL. Let G# = (V,E)
be an arbitrary planar graph with vertex degree at
most 4 and let V = {v1, v2, . . . , vn}. Construct a PPI
Π = 〈V,A,∅, V 〉 and a parallel plan P = 〈A,∅,#〉 where
A = {a1, a2, . . . , an} and ai : vi → vi. Define ai#aj
if and only if (vi, vj) ∈ E. It is easy to see that P is a
Π-valid plan and that G has a 3-coloring if and only if P
has a parallel execution of size 3 or less. Note that if two
actions can be executed in the same iteration of the parallel
execution, their corresponding vertices can be colored with
the same color and vice versa. We finally note that n≺ = 0
and h≺ = 1 since the plan order is empty.

6 Reordering Parallel Plans

In this section we investigate the optimization of pplans by
reordering and deordering. To do so, we define MINIMUM
PARALLEL REORDERING (MPR):

INSTANCE: A PPI Π, a Π-valid parallel plan P =
〈A,≺,#〉 and a positive integer lp.
QUESTION: Does P have a Π-valid reordering with a
parallel execution of length at most lp?

MINIMUM PARALLEL DEORDERING (MPD) is defined
similarly. Both problems are NP-complete if p.o. plans can
be validated in polynomial time (Bäckström 1998).

Theorem 7. {n≺, n#}-MPD is in FPT.

Proof. A combination of Theorems 1 and 4: We check
2n# new partial orders gained from removing the non-
concurrency relation. Each new partial order has size at most
p = n≺+n#. There are at most f(p) = (p+1)pp different
deorderings of each partial order and Π-validity check can
be done in polynomial time for each of them. So, the final
algorithm runs in time g(n≺, n#)q(n) for some function g,
some polynomial q and instance size n.

Theorem 8. {n≺′ , n#}-MPR is in W[P].

Proof. Let (Π, P, lp) be an instance of MPR where Π is a PPI
and P = 〈A,≺,#〉 is a partial order Π-valid plan. Let n be
the instance size. Nondeterministically, guess a reordering
≺′ of P wrt. Π. Since every action can be indexed in log n
bits, we need to guess at most 2n≺′ log n bits. To check the
optimal parallel execution length of 〈A,≺′,#〉, similar to
the proof of Theorem 4 we check all possibilities for each
pair of actions a#b. This can be done in time O(2n#p(n))
for some polynomial p.

Corollary 3. {n≺′ , n#}-MPD is in W[P].
Theorem 9. For every set of partial order parameters δ that
contains n≺′ , the following fpt reduction holds

δ-MCD ≤fpt δ ∪ {n#, lp}-MPD

Proof. Let P = 〈A,≺〉 be a Π-valid p.o. plan for some
PPI Π, and let δ be a set of parameters including n≺′ . Let
Q = 〈A,≺′〉 be any deordering of P . Define the Π-valid
pplan Q′ = 〈A,≺′,∅〉. Q′ is a deordering of P of size
n≺′ . According to Lemma 1, the parallel length of Q′ is
lp = h≺′ ≤ n≺′ + 1. This proves an fpt reduction from
δ-MCD to δ ∪ {n#, lp}-MPD.

Similarly, we can have a reduction for reordering and then
combined with Theorem 3:
Corollary 4. For δ = {n#, lp, n≺′}, the following problems
are W[2]-hard:

1. δ∪{h≺, h≺′}-MPD

2. δ∪{w≺, h≺′}-MPD

3. δ∪{h≺, h≺′}-MPR

4. δ∪{w≺, h≺′}-MPR

Theorem 10. δ-MPR and δ-MPD are para-NP-hard for δ =
{n≺, n≺′ , lp,Δ#, h≺, h≺′}.

Proof. Similar to proof of Theorem 6 by a reduction from
GRAPH 3-COLORING to a slice of MPR with n≺ = n≺′ =
0, h≺ = h≺′ = 1, lp = 3 and Δ# = 4.

7 Parallel k-Processor Plans

PPL presumes the access to an infinite number of processors,
or agents. However, this is not a realistic assumption. For in-
stance, in multi-agent planning there may be fewer agents
available than the number of actions that can be executed in
parallel. A similar case may arise in web service composi-
tion, where the number of processors is limited. In this sec-
tion we define PPLk, a variation of PPL limited to k proces-
sors (or agents). But we need to first, define the k-processor
parallel execution of a pplan.

3544

Let k be an integer. A k-processor parallel execution
of a pplan is a parallel execution such that for each time
t ∈ N there are at most k actions a such that r(a) ≤ t <
r(a) + d(a). The k-processor parallel length of a pplan is
the minimum length over all possible k-processor parallel
executions of it. PARALLEL K-PROCESSOR PLAN LENGTH
(PPLk) has the following definition:

INSTANCE: A PPI Π, a Π-valid parallel plan P =
〈A,≺,#〉, a positive integer lp and a number of pro-
cessors k.
QUESTION: Does P have a k-processor parallel execu-
tion of length at most lp?

The parameters we consider for PPLk are the same param-
eters we used for PPL, i.e. n≺, h≺, w≺, lp, n# and Δ#, plus
k, the number of processors.
Theorem 11. {lp, n#, k}-PPLk is in FPT.

Proof. For every pair of actions a and b such that a#b, we
check both a ≺ b and b ≺ a which leads to checking all
2n# different cases. There are at most lp · k slots avail-
able for each action to be executed. Therefore, if |A| > lpk
there is no solution. So, |A| ≤ lpk and there are at most
O((lpk)

|A|) = O((lpk)
lpk) different schedules. Checking

each schedule can be done in time O(|A|+ |≺|) = O(|A|2).
In total we need time O(2n#(lpk)

lpk).

A special case of PPLk where each action has the same
duration and the non-concurrency relation is an empty set,
is usually referred to as Precedence Constrained Schedul-
ing. PRECEDENCE CONSTRAINED SCHEDULING (PCS) is
an NP-complete problem (Garey and Johnson 1979)[SS9]
and it becomes W[2]-hard if parameterized by the number
of processors (k) (Bodlaender and Fellows 1995):

INSTANCE: A set T of unit-length tasks, a partial order
≺ on T , a positive integer deadline D and a number of
processors k.
PARAMETER: k.
QUESTION: Does there exist a k-processor schedule
for T that meets the deadline D and obeys the prece-
dence constraints, i.e., Does there exist a map f : T �→
{1, 2, . . . , D} such that for all t, t′ ∈ T , t ≺ t′ implies
f(t) < f(t′), and for all i, 1 ≤ i ≤ D, |f−1(i)| ≤ k?

PCS remains NP-complete for D = 3. (Lenstra and Kan
1978)
Theorem 12. {k}-PPLk is W[2]-hard.

Proof. Proof by reduction from PRECEDENCE CON-
STRAINED SCHEDULING. Let 〈T,≺, D, k〉 be a schedul-
ing instance and let T = {t1, . . . , tn}. Construct a PPI
Π = 〈T,A,∅, T 〉 and a parallel plan P = 〈A,≺,∅〉 where
A = {a1, . . . , an} and for every i, ai : ∅ → ti, and let
lp = D. Trivially, P is a Π-valid plan, otherwise ≺ would
not be a valid partial order. It is easy to see that there exists a
k-processor parallel execution of P of length lp if and only
if there exists a k-processor schedule for T that meets the
deadline D = lp.

Theorem 13. {n#,Δ#, lp}-PPLk is para-NP-hard.

Proof. By a reduction from the NP-complete prob-
lem PRECEDENCE CONSTRAINED SCHEDULING to the
slice {n# = 0,Δ# = 0, lp = 3}-PPLk. From an arbitrary
scheduling instance (T,≺, D = 3, k), build a PPI Π and
a Π-valid pplan P = 〈A,≺,∅〉 similar to the proof of The-
orem 12 and let lp = D = 3. Then P has a k-processor
parallel execution of length lp = 3 if and only if T has a
k-processor schedule that meets the deadline D = 3.

The above result is very interesting in comparison to The-
orem 4 and also complies well with the intuition that PPL
bounded to a certain number of processors is much harder
than the unbounded case.

8 Discussion

While {n≺, n#}-MPD is in FPT, we only know that
{n≺, n#}-MPR is in W[P] (it follows from Theorem 8). It
remains an open question to find a more precise complexity
classification of the latter problem. It is, however, not ob-
viously as easy as {n≺, n#}-MPD, since this problem has
a much more restricted set of potential solutions; the num-
ber of deorderings is bounded in n≺, while the number of
reorderings is not bounded in n≺ in the general case.

We can consider other parameters for PPL, like the clique
number (c#) or the chromatic number (χ#). But since

c# ≤ χ# ≤ Δ# + 1 ≤ n# + 1

the hardness results for Δ# are stronger than for both c# and
χ#. We could also consider parameters that capture more
structure of the graph G#, for instance its treewidth, a prop-
erty that has been recurringly successful as a parameter for
many other problems. It is probably even more interesting
to identify structural properties of both ≺ and # considered
together.

In deordering we always have n≺′ ≤ n≺, whether if we
optimize n≺′ or lp. However, in reordering it is different.
When we optimize n≺′ (MCR) we must have n≺′ ≤ n≺,
otherwise the answer is automatically yes; and when we op-
timize lp (MPR), n≺′ > n≺ is also allowed.

There is a high correlation between PPL, PPLk and
scheduling problems, specially in the absence of the non-
concurrency relation. Finding h≺ is similar to critical path
scheduling. Ullman (1975) showed that PCS remains NP-
hard even on 2 processors if tasks of length 1 and 2 are
allowed. This means we can add parameter k to the re-
sult in Theorem 13 if we allow task lengths 1 and 2.
Mnich and Wiese (2015) applied parameterized complex-
ity on scheduling problems and discovered several areas of
fixed-parameter tractability. van Bevern et al. (2016) showed
that PCS parameterized by partial-order width is W[2]-hard
even on 2 processors if tasks of length 1 and 2 are allowed.
One obvious way to continue the work is to consider the k-
processor parallel length as a criterion for plan optimization.

Acknowledgments

Aghighi is partially supported by the National Graduate
School in Computer Science (CUGS), Sweden. Bäckström
is partially supported by the Swedish Research Council
(VR) under grant 621-2014-4086.

3545

References

Aghighi, M., and Bäckström, C. 2015. Cost-optimal and
net-benefit planning - A parameterised complexity view.
In Proc. 24th Int’l Joint Conf. Artif. Intell. (IJCAI 2015),
Buenos Aires, Argentina, 1487–1493.
Bäckström, C., and Jonsson, P. 2011. All PSPACE-complete
planning problems are equal but some are more equal than
others. In Proc. 4th Ann. Symp. Combinatorial Search
(SOCS 2011), Castell de Cardona, Barcelona, Spain.
Bäckström, C.; Jonsson, P.; Ordyniak, S.; and Szeider, S.
2015. A complete parameterized complexity analysis of
bounded planning. J. Comput. Syst. Sci. 81(7):1311–1332.
Bäckström, C. 1998. Computational aspects of reordering
plans. J. Artif. Intell. Res. 9:99–137.
Bodlaender, H. L., and Fellows, M. R. 1995. W[2]-hardness
of precedence constrained k-processor scheduling. Oper.
Res. Lett. 18(2):93–97.
Cimatti, A.; Micheli, A.; and Roveri, M. 2015. Strong tem-
poral planning with uncontrollable durations: A state-space
approach. In Proc. 29th AAAI Conf. Artif. Intell., Austin,
Texas, USA., 3254–3260.
de Haan, R.; Roubı́cková, A.; and Szeider, S. 2013. Parame-
terized complexity results for plan reuse. In Proc. 27th AAAI
Conf. Artif. Intell. (AAAI-2013), Bellevue, WA, USA.
Downey, R. G., and Fellows, M. R. 1995. Fixed-parameter
tractability and completeness i: Basic results. SIAM Journal
on Computing 24(4):873–921.
Downey, R. G., and Fellows, M. R. 1999. Parameterized
Complexity. Monographs in Computer Science. Springer.
Flum, J., and Grohe, M. 2006. Parameterized Complexity
Theory. Texts in Theoretical Computer Science. An EATCS
Series. Springer.
Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman.
Hall, M. 1998. Combinatorial theory, volume 71. John
Wiley & Sons.
Haslum, P. 2012. Narrative planning: Compilations to clas-
sical planning. J. Artif. Intell. Res. 44:383–395.
Kambhampati, S., and Kedar, S. 1994. A unified framework
for explanation-based generalization of partially ordered and
partially instantiated plans. Artif. Intell. 67(1):29–70.
Kronegger, M.; Ordyniak, S.; and Pfandler, A. 2015.
Variable-deletion backdoors to planning. In Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intel-
ligence, January 25-30, 2015, Austin, Texas, USA., 3305–
3312.
Kronegger, M.; Pfandler, A.; and Pichler, R. 2013. Parame-
terized complexity of optimal planning: A detailed map. In
Proc. 23rd Int’l Joint Conf. Artif. Intell. (IJCAI 2013), Bei-
jing, China, 954–961.
Kvarnström, J. 2011. Planning for loosely coupled agents
using partial order forward-chaining. In Proc. 21st Int’l
Conf. Automated Planning and Scheduling (ICAPS 2011),
Freiburg, Germany.

Lenstra, J. K., and Kan, A. H. G. R. 1978. Complexity
of scheduling under precedence constraints. Operations Re-
search 26(1):22–35.
Madhusudan, T., and Uttamsingh, N. 2006. A declarative
approach to composing web services in dynamic environ-
ments. Decision Support Systems 41(2):325–357.
Maliah, S.; Shani, G.; and Stern, R. 2016. Collaborative pri-
vacy preserving multi-agent planning. Auton. Agent. Multi-
Agent Syst. 1–38.
Mnich, M., and Wiese, A. 2015. Scheduling and fixed-
parameter tractability. Math. Program. 154(1-2):533–562.
Muise, C. J.; McIlraith, S. A.; and Beck, J. C. 2011. Mon-
itoring the execution of partial-order plans via regression.
In Proc. 22nd Int’l Joint Conf. Artif. Intell. (IJCAI 2015),
Barcelona, Catalonia, Spain, 1975–1982.
Muise, C. J.; McIlraith, S. A.; and Beck, J. C. 2012.
Optimally relaxing partial-order plans with maxsat. In
Proc. 22nd Int’l Conf. Automated Planning and Scheduling,
(ICAPS 2012), Atibaia, São Paulo, Brazil.
Nebel, B., and Bäckström, C. 1994. On the computational
complexity of temporal projection, planning, and plan vali-
dation. Artif. Intell. 66(1):125–160.
Pannek, J. 2013. Parallelizing a state exchange strategy
for noncooperative distributed NMPC. Systems & Control
Letters 62(1):29–36.
Régnier, P., and Fade, B. 1991. Complete determination of
parallel actions and temporal optimization in linear plans of
action. In Proc. European Workshop on Planning, (EWSP
’91), Sankt Augustin, FRG, 100–111.
Rodrı́guez-Moreno, M. D.; Borrajo, D.; Cesta, A.; and Oddi,
A. 2007. Integrating planning and scheduling in workflow
domains. Expert Syst. Appl. 33(2):389–406.
Say, B.; Ciré, A. A.; and Beck, J. C. 2016. Mathematical
programming models for optimizing partial-order plan flex-
ibility. In Proc. 22nd European Conf. Artif. Intell. (ECAI
2016), The Hague, The Netherlands, 1044–1052.
Scala, E., and Torasso, P. 2015. Deordering and numeric
macro actions for plan repair. In Proc. 24th Int’l Joint Conf.
Arfif. Intell. (IJCAI-2015), Buenos Aires, Argentina, 1673–
1681.
Siddiqui, F. H., and Haslum, P. 2015. Continuing plan qual-
ity optimisation. J. Artif. Intell. Res. 54:369–435.
Ullman, J. D. 1975. Np-complete scheduling problems. J.
Comput. Syst. Sci. 10(3):384–393.
van Bevern, R.; Bredereck, R.; Bulteau, L.; Komusiewicz,
C.; Talmon, N.; and Woeginger, G. J. 2016. Precedence-
constrained scheduling problems parameterized by partial
order width. In Discrete Optimization and Operations Re-
search - 9th International Conference, DOOR 2016, Vladi-
vostok, Russia, September 19-23, 2016, Proceedings, 105–
120.
Veloso, M.; Pérez, A.; and Carbonell, J. 1990. Nonlinear
planning with parallel resource allocation. In Workshop on
Innovative Approches to Planning, Scheduling and Control,
San Diego, CA, USA, 1990, 207–212.

3546

