
On the Disruptive Effectiveness of Automated Planning
for LTLf -Based Trace Alignment

Giuseppe De Giacomo
Sapienza - Universitá di Roma, Italy

degiacomo@dis.uniroma1.it

Fabrizio Maria Maggi
University of Tartu, Estonia

f.m.maggi@ut.ee

Andrea Marrella
Sapienza - Universitá di Roma, Italy

marrella@dis.uniroma1.it

Fabio Patrizi
Sapienza - Universitá di Roma, Italy

patrizi@dis.uniroma1.it

Abstract

One major task in business process management is that of
aligning real process execution traces to a process model by
(minimally) introducing and eliminating steps. Here, we look
at declarative process specifications expressed in Linear Tem-
poral Logic on finite traces (LTLf). We provide a sound and
complete technique to synthesize the alignment instructions
relying on finite automata theoretic manipulations. Such a
technique can be effectively implemented by using planning
technology. Notably, the resulting planning-based alignment
system significantly outperforms all current state-of-the-art
ad-hoc alignment systems. We report an in-depth experimen-
tal study that supports this claim.

1 Introduction

In this paper, we introduce a planning approach to solve the
problem of trace alignment for business processes (BPs). A
BP defines the temporal (partial) ordering of some activi-
ties of interest. Some examples include insurance claim pro-
cessing, order handling, and hospital procedures. BPs can be
specified either procedurally or declaratively, depending on
the purpose of the specification: the former approach is well
suited for actual execution; the latter, which is the one we
deal with, is typically used to provide a description of the
process amenable to various forms of analysis.

BPs are supported by information systems that drive pro-
cess executions (e.g., guarantee that activity executions take
place in the expected order) and store the event data related
to the activities involved in each execution – e.g., in an insur-
ance claim process, the system might record, for each claim,
the sequence of activities executed. The resulting log con-
sists of a set of traces, each related to a distinct process ex-
ecution, and consisting of a sequence of events, which, in
turn, contain information about the executed activities.

Often, BP activities are human-based. For instance, in an
insurance claim process, a human operator might be respon-
sible for collecting all the documents related to the claim,

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

checking the information they contain and, if correct, start
the claim process (by initiating some activity, possibly de-
manded to another operator). As a result, the log traces can
be inconsistent with the expected process behavior. Thus, the
need arises for identifying and analyzing such traces with
the aim of preventing errors from occurring again. This is
the goal of trace alignment.

Trace alignment is the problem of: (i) checking whether
an actual trace stemmed from a BP execution conforms to
the expected process behavior and, if not, (ii) finding a “min-
imal set” of changes that “align” the trace to the process.
Such changes consist in adding or removing activities at
some points in the trace. In this paper, we focus on trace
alignment against declarative specifications. The input trace
is a sequence of activity names, while the process behav-
ior is specified in LTLf (Linear Temporal Logic on finite
traces (De Giacomo and Vardi 2013)). The goal of the prob-
lem is to make the trace satisfy the LTLf formula.

We address this problem by resorting to cost-optimal
planning, a form of deterministic planning where actions
have costs, and where a successful plan of minimal cost (de-
fined as the sum of the costs of the component actions) has
to be found. The intuition behind our solution is that ac-
tions capture additions and deletions to the input trace (hav-
ing non-zero costs), and the goal is to make the input trace
conform with the process behavior at a minimal cost. We re-
duce trace alignment to cost-optimal planning in two steps.
First, we provide a sound and complete technique, based on
automata-theoretic manipulations, to synthesize the align-
ment instructions. Then, we show how the technique can be
implemented with planning technology.

We validate our approach through an extensive ex-
perimentation showing that it impressively outperforms a
technique included in the PROM toolkit for BP analysis
(promtools.org) and based on an implementation of A*
specifically tailored for the alignment problem (de Leoni,
Maggi, and van der Aalst 2012; 2015), as well as previous
approaches based on classical planning (De Giacomo et al.
2016). We stress that process behaviors are typically spec-

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

3555

ified in DECLARE (van der Aalst, Pesic, and Schonenberg
2009), a well-established declarative process modeling lan-
guage, which can be seen as a dialect of LTLf , while our
technique deals with the whole LTLf . Thus, our approach is
more general than any other previous one.

2 The logic LTLf

Let LProp be the set of propositional formulas over a finite
set Prop of propositional symbols. The logic LTLf (LTL in-
terpreted on finite traces) is defined as follows :

ϕ ::= φ | ¬ϕ | ϕ1 ∧ ϕ2 | ◦ϕ | ϕ1 U ϕ2,

where φ ∈ LProp, and ◦ and U are, respectively, the next
and until operators. For syntactical convenience, we also use
the standard abbreviations ∨, • (weak next), ♦ (eventually),
� (always), and W (weak until), defined as follows: ϕ1 ∨
ϕ2 ≡ ¬(¬ϕ1∧¬ϕ2); •ϕ ≡ ¬◦¬ϕ; ♦ϕ ≡ true U ϕ; �ϕ ≡
¬♦¬ϕ; ϕ1W ϕ2 ≡ (ϕ1 U ϕ2) ∨�ϕ1.

Formulas of LTLf are interpreted on finite nonempty
words t from (2Prop)+, which we call traces. Given a trace
t, length(t) denotes its length and t(i), with 1 ≤ i ≤
length(t), the propositional interpretation of t at the i-th
position (represented, as standard, by the set of proposi-
tions that are true in the interpretation). We inductively de-
fine when an LTLf formula ϕ is true at step i of t, written
t, i |= ϕ, as follows:

• t, i |= φ iff t(i) |= φ (φ propositional);

• t, i |= ¬ϕ iff t, i �|= ϕ;

• t, i |= ϕ1 ∧ ϕ2 iff t, i |= ϕ1 and t, i |= ϕ2;

• t, i |= ◦ϕ iff i < length(t) and t, i+1 |= ϕ;

• t, i |= ϕ1 U ϕ2 iff for some j s.t. i ≤ j ≤ length(t),
we have t, j |= ϕ2, and for all k s.t. i ≤ k < j, we have
t, k |= ϕ1.

We say that t satisfies ϕ, written t |= ϕ, if t, 1 |= ϕ.
Every LTLf formula ϕ can be associated with a nondeter-

ministic finite-state automaton (NFA)A that accepts exactly
all traces satisfying ϕ (De Giacomo and Vardi 2015). For-
mally, such NFA is a tuple A = 〈Σ, Q, q0, ρ, F 〉, where:
1. Σ = Prop is the input alphabet; 2. Q is the finite set
of automaton states; 3. q0 ∈ Q is the initial state; 4. ρ ⊆
Q × LProp × Q is the transition relation; and 5. F ⊆ Q is
the set of final states.

Let t = e1 · · · en be a trace and A the NFA associ-
ated with an LTLf formula ϕ. A computation of A on t

is a sequence δ = q0
e1−→ q1 · · · qn−1

en−→ qn s.t., for

i = 0, . . . , n − 1, there exists a transition qi
ψi−→ qi+1 ∈ ρ

s.t. ei |= ψi. Since A is nondeterministic, there exist, in
general, many computations of A on a trace t. We say that
A accepts t if there exists a computation δ on t s.t. the last
state is final, i.e., belongs to F .

3 The Trace Alignment Problem

A log trace is a trace such that the propositional interpreta-
tion associated with each position contains only one propo-
sition (i.e., is a singleton). In this paper, we deal only with

log traces. This is not a restriction, as log traces represent the
natural input of the problem addressed here. For notational
convenience, we use single propositions (and not single-
tons). Thus, we write t = a b c, instead of t = {a}{b}{c}.

Consider a trace t and an LTLf formula ϕ s.t. t �|= ϕ. We
are interested in “repairing” t, i.e., to transform it into a new
trace t̂ s.t. t̂ |= ϕ. We consider two types of repair: addition
and deletion. Given a trace t = e1 · · · ek · · · en, a proposition
p can be added to t at position k only if 1 ≤ k ≤ n. After the
addition, the resulting trace is t̂ = e1 · · · ek−1 p ek · · · en. A
proposition ek, 1 ≤ k ≤ n, can also be deleted from t, with
resulting trace t̂′ = e1 · · · ek−1 ek+1 · · · en. For traces t and
t̂, we define the cost function cost s.t. cost(t, t̂) = c iff c is
the minimal number of repairs needed to obtain t̂ from t.

The trace alignment problem is defined as follows: given
a trace t and an LTLf formula ϕ s.t. t �|= ϕ, find a trace
t̂ s.t. t̂ |= ϕ and cost(t, t̂) is minimal. It is immediate to
see that if ϕ is satisfiable, a solution to the problem always
exists, as the repairs allow one to obtain any (log) trace, no
matter what the original trace is.

Trace alignment can be addressed by resorting to au-
tomata. To see this, let t = e1 · · · en be the log trace, ϕ
the constraint to check t against, and A = 〈Σ, Q, q0, ρ, F 〉
the corresponding NFA, which we call the constraint au-
tomaton. From t, we define a further automaton, called the
trace automaton, T = 〈Σt, Qt, q

t
0, ρt, Ft〉, where: 1. Σt =

{e1, . . . , en}; 2. Qt = {qt0, . . . , qtn} is a set of n+1 arbitrary
states; 3. ρt =

⋃
i=0,...,n−1〈qti , ei+1, q

t
i+1〉; 4. F t = {qtn}.

By construction, T is deterministic and accepts only t.
Next, we augment T and A to make them suitable for

trace alignment. From T , we generate the automaton T + =
〈Σ+

t , Qt, q
t
0, ρ

+
t , Ft〉, where:

• Σ+
t contains all the propositions in Σt, plus: one fresh

proposition del p, for all propositions p ∈ Σ; and one
fresh proposition add p, for all propositions p ∈ Σ ∪ Σt;

• ρ+t contains all the transitions in ρt, plus: a new transition
〈q, del p, q′〉, for all transitions 〈q, p, q′〉 ∈ ρt; and, for all
propositions p in Σt and states q ∈ Qt, a new transition
〈q, add p, q〉, if there is no transition 〈q, p, q′〉 ∈ ρt (for
all q′ ∈ Qt).

We call the newly introduced propositions repair proposi-
tions. Notice that, by construction, T + is deterministic. In-
tuitively, T + accepts all the traces over Σ obtained by re-
pairing t, with the repairs “marked” by repair propositions.
For instance, the automaton T + for t = a b accepts t but
also t′ = del a b but not t′′ = b, as in the latter, despite be-
ing obtained by repairing t, repairs are not marked (by repair
propositions).

Similarly from A, we obtain an automaton A+ =
〈Σ+, Q, q0, ρ

+, F 〉, s.t.:
• Σ+ = Σ+

t ; and
• ρ+ contains all the transitions in ρ, plus: one fresh transi-

tion 〈q, del p, q〉 for all q ∈ Q and p ∈ Σt; and one fresh
transition 〈q, add p, q′〉 for all transitions 〈q, ψ, q′〉 ∈ ρ
s.t. p |= ψ.

Intuitively, A+ accepts all traces t̂ that satisfy ϕ and have
been obtained by repairing t, with the repairs explicitly

3556

marked. For instance, let t = a b, let A be the automaton
for ϕ = �(b→ ♦c), and let A+ its augmented version. Ob-
viously, t �|= ϕ (because c does not occur after b). Therefore,
A andA+ do not accept t. However, if we repair t by adding
c at the end, and we explicitly mark the repair with add c,
then A+ accepts the new trace t̂ = a b add c.

The following result relates the trace alignment problem
to the automata defined above.
Theorem 1 Consider a log trace t and an LTLf formula ϕ,
both over Prop, s.t. t �|= ϕ. Let T + andA+ be the automata
obtained from t and ϕ, as described above. If t+ is a trace
accepted by both A+ and T + containing a minimal num-
ber of repair propositions (with respect to all other traces
accepted by A+ and T +), then a trace t̂ with minimal cost
cost(t, t̂) s.t. t̂ |= ϕ can be obtained from t+ by removing all
propositions of the form del p and replacing all propositions
of the form add p with p.

Thus, given t and ϕ, trace alignment is equivalent to search-
ing for a trace accepted by both A+ and T + with a minimal
number of repair propositions.

We close the section by observing that Th. 1 can be easily
extended to the case of many LTLf constraints ϕ1, . . . , ϕn.
One way to do so consists in taking the conjunction of such
constraints and then proceeding as shown above. Another
way, which is the one we use later on, consists in computing
the augmented constraint automata for all constraints, i.e.,
A+

1 , . . . ,A+
n , and then searching for a trace that is accepted

by T + and A+
1 , . . . ,A+

n . It is immediate to see that such
approaches are equivalent.

We next show how to take advantage of the planning tech-
nology to efficiently search for the desired repaired trace.

4 Trace Alignment as Planning

A (deterministic) planning domain with action costs (over
a set of propositions Prop) is a tuple D = 〈S, A, C, τ〉,
where: 1. S ⊆ 2Prop is the finite set of domain states,
seen as propositional interpretations; 2. A is the finite set
of domain actions; 3. C : A �→ N

+ is a cost function;
4. τ : S × A �→ S is the transition function. A plan for D
is a finite sequence π ∈ A∗ of actions. A plan π = a1 · · · an
is said to be executable from a state s0 ∈ S , if there exists a
sequence of states σ = s0 · · · sn s.t., for i = 0, . . . , n − 1,
si+1 = τ(si, ai+1). If it exists, σ (which is unique) is said
to be the (domain) trace induced by π. Finally, the cost of π
(on D) is C(π) .

=
∑

i=1,...,n C(ai).
A cost-optimal planning problem is a tuple P =

〈D, s0, G〉, where: 1. D is a planning domain with action
costs; 2. s0 ∈ S is the initial state of the problem; 3. G, the
problem goal, is a propositional formula over Prop. A plan
π is a solution to P if the last state sn of the trace induced
by π is such that sn |= G. A solution π to P is said to be
optimal if for all other solutions π′, we have C(π) ≤ C(π′).

Using Theorem 1, we can reduce trace alignment to cost-
optimal planning. To see this, consider an instance of trace
alignment, i.e., a trace t and an LTLf formula ϕ. To build
the planning problem, we first compute the automata T + =
〈Σ+

t , Qt, q
t
0, ρ

+
t , Ft〉 and A+ = 〈Σ+, Q, q0, ρ

+, F 〉, and
then define the planning domain D = 〈S, A, C, τ〉, s.t.:

• S ⊆ 2Qt∪Q (automata states are seen as propositions);

• A = {sync e, del e, add e | e ∈ Σ ∪ Σt}; (repair propo-
sitions are seen as actions);

• for all e ∈ Σ ∪ Σt, C(sync e) = 0 and C(del e) =
C(add e) = 1;

• τ is defined as follows, for all e ∈ Σ ∪ Σt, qt, q′t ∈ Qt,
and R,R′ ⊆ Q:

– τ({qt}∪R, sync e) = {q′t}∪R′ iff qt
e−→ q′t ∈ ρ+t and,

for all q ∈ R and q′ ∈ R′, there exists ψ s.t. e |= ψ and

q
ψ−→ q′ ∈ ρ+;

– τ({qt} ∪ R, del e) = {q′t} ∪ R′ iff qt
del e−−−→ q′t ∈ ρ+t

and, for all q ∈ R and q′ ∈ R′, q del e−−−→ q′ ∈ ρ+;

– τ({qt} ∪ R, add e) = {q′t} ∪ R′ iff qt
add e−−−→ q′t ∈ ρ+t

and, for all q ∈ R and q′ ∈ R′, q add e−−−→ q′ ∈ ρ+;

The domain is intended to represent the synchronous prod-
uct of T + and A+, that is, intuitively, the synchronous ex-
ecution of T + and A+ over the same input. Propositions
represent the states that each automaton is in. Since T + is
deterministic, every state of the planning domain contains
exactly one state from Qt; instead, A+ being nondetermin-
istic, many states from Q are included in each domain state.
Also, the transitions triggered by the actions take T + to ex-
actly one successor state but, in general, A+ to many ones.
Actions capture the repairs on the original trace t: sync (syn-
chronization) actions stand for no change, add for addition
and del for deletion. Thus, executable plans represent se-
quences of changes applied to the original trace t (based on
which both T + and A+ are generated). sync actions have
cost 0 while add and del have cost 1 thus, when search-
ing for a plan, sync actions are preferred, as well as, conse-
quently, repaired traces “closer” to t.

Observe that, as actions take place, the (augmented) trace
automaton and the constraint automaton are progressed. The
intuition is that when a plan takes both automata to a fi-
nal state, the repaired trace resulting from the plan execu-
tion – i.e., the trace obtained from the obtained plan by re-
placing sync e and add e with e, and by removing del e
– satisfies the original constraint ϕ. Of course, for the con-
straint automaton it is enough that any of its current states
is final. Finally, if the plan has minimal cost, the obtained
trace is an optimal solution to the original trace alignment
problem. The above observations suggest to define the cost-
optimal planning problem P = 〈D, s0, G〉 as follows: s0 =

{q0, qt0, } and G = qft ∧
∨

q∈F q, for qft ∈ Ft (remember
that T + has a single final state).

The construction of the cost-optimal planning problem
defined above can be easily generalized to many constraints.
To this end, it is enough to include, in the domain states,
new propositions used to capture the states of all automata
and then generalize the actions so that their execution pro-
gresses all the automata at once. This approach is adopted in
Section 6, where we deal with multiple constraints.

3557

5 Encoding the Alignment Problem in PDDL

In this section, we show how, given a set of augmented con-
straint automataA+

1 , ..,A+
n obtained from n LTLf formulas

ϕ1, .., ϕn , and an augmented trace automaton T + obtained
from a trace t, we build a cost-optimal planning domain
D and a problem instance P in the standard Planning Do-
main Definition Language (PDDL (McDermott et al. 1998)).
D and P can be used to feed any state-of-the-art planning
technology. In particular, we represent them making use of
PDDL 2.1 (Fox and Long 2003), which provides numeric
features to keep track of the costs of planning actions. A
solution plan for P amounts to the set of interventions of
minimal cost to align the trace with respect to the LTLf for-
mulas.

Planning Domain. In D, we provide two abstract types:
activity and state. The first captures the activities in-
volved in a transition between two different states of a
constraint/trace automaton. The second is used to uniquely
identify the states of any constraint automaton (through the
sub-type automaton state) and of the trace automaton
(through the sub-type trace state). To capture the struc-
ture of the automata and to monitor their evolution, we de-
fined four domain propositions as boolean predicates in D:
• (trace ?t1 - trace state ?e - activity ?t2
- trace state) holds if there exists a transition in the
trace automaton from two different states t1 and t2,
being e the activity involved in the transition.

• (automaton ?s1 - automaton state ?e -
activity ?s2 - automaton state) holds if
there exists a transition from two different states s1 to s2
of a constraint automaton, being e the activity involved
in the transition.

• (cur state ?s - state) holds if s is the current state
of a constraint/trace automaton.

• (final state ?s - state) holds if s is a final ac-
cepting state of a constraint/trace automaton.

Furthermore, we define a numeric fluent total-cost to
keep track of the cost of the alignment. In the remainder
of the paper, we remain consistent with PDDL terminology,
which allows for both the values of predicates and fluents to
change as result of the execution of actions.

Planning actions are used to express the alignments on
the original trace t. Each action is characterized by its pre-
conditions and effects, stated in terms of the domain propo-
sitions. In our encoding, we have defined three actions to
perform synchronous moves in the trace automaton and in
the constraint automata, or to add/remove activities in/from
the trace automaton.

(:action sync

:parameters (?t1 - trace_state ?e - activity

?t2 - trace_state)

:precondition (and (cur_state ?t1) (trace ?t1 ?e ?t2))

:effect(and (not (cur_state ?t1)) (cur_state ?t2)

(forall (?s1 ?s2 - automaton_state)

(when (and (cur_state ?s1)

(automaton ?s1 ?e ?s2))

(and (not (cur_state ?s1))

(cur_state ?s2))))))

(:action add

:parameters (?e - activity)

:effect (and (increase (total-cost) 1)

(forall (?s1 ?s2 - automaton_state)

(when (and (cur_state ?s1)

(automaton ?s1 ?e ?s2))

(and (not (cur_state ?s1))

(cur_state ?s2))))))

(:action del

:parameters (?t1 - trace_state ?e - activity

?t2 - trace_state)

:precondition (and (cur_state ?t1) (trace ?t1 ?e ?t2))

:effect(and (increase (total-cost) 1)

(not (cur_state ?t1)) (cur_state ?t2)))

We modeled sync and del in such a way that they can be
applied only if there exists a transition from the current state
t1 of the trace automaton to a subsequent state t2, being
e the activity involved in the transition. Differently from the
abstract encoding presented in Section 4, here states occur as
action parameters. This is a technical convenience adopted
to avoid existential quantifiers in preconditions and effects.

Notice that, while the del action yields a single move
in the trace automaton, the sync action yields, in addition,
one move per constraint automaton (all to be performed syn-
chronously). In particular, a synchronous move is performed
in each constraint automaton for which there exists a transi-
tion involving the activity e that connects s1 – the current
state of the automaton – with a different state s2. Finally, the
add action is performed only for transitions involving the
activity e between two different states of any constraint au-
tomaton, with the current state of the trace automaton that re-
mains the same after the execution of the action. It is worthy
observing how the execution of a del or add action makes
total cost (of the alignment) increasing of a predefined value
(here we are assuming a unitary cost); conversely, sync ac-
tion has no cost, as it stands for no change in the trace.

Planning Problem. In P , we first define a finite set of con-
stants required to properly ground all the domain proposi-
tions defined in D. In our case, constants will correspond to
the state and activity instances involved in the trace automa-
ton and in any constraint automaton.

Secondly, we define the initial state of P to capture the
exact structure of the trace automaton and of every con-
straint automaton. This includes the specification of all the
existing transitions that connect two different states of the
automata. The current state and the accepting states of any
trace/constraint automaton are identified as well.

Thirdly, to encode the goal condition, we first preprocess
each constraint automaton by: 1. adding a fresh dummy state
with no outgoing transitions; 2. adding a fresh special action,
executable only in the accepting states of the original au-
tomaton, which makes the automaton move to the dummy
state; 3. including in the set of accepting states only the
dummy state. Then, we define the goal condition as the con-
junction of the accepting states of the trace automaton and
of all the accepting states of the constraint automata. In this

3558

TEMPLATE FORMALIZATION TEMPLATE FORMALIZATION

existence(A) ♦A absence(A) ¬♦A
resp. existence(A,B) ♦A → ♦B not resp. existence(A,B) ♦A → ¬♦B

response(A,B) �(A → ♦B) not response(A,B) �(A → ¬♦B)

chain response(A,B) �(A → ◦B) not chain response(A,B) �(A → ¬◦B)

Table 1: LTLf formalization of some DECLARE templates.

trace length no. traces Fast-
Downward

SymBA*-2 de Giacomo
et al.

de Leoni et
al.

Alignment
Cost

Real-life log 16 constraints

3-50 607 2.47 2.92 11.02 0.15 0.63
51-75 38 2.59 4.13 35.69 0.45 1.02

76-100 5 2.65 4.99 72.43 2.78 2.4
101-128 4 2.66 5.61 123.45 5.88 2.5

Table 2: Experimental results of the real-life case study. The
time (in seconds) refers to the average per trace.

way, we avoid using disjunctions in goal formulas, as not
supported by all planners.

Finally, as our purpose is to minimize the total cost of
the alignment, the planning problem contains the following
specification: (:metric minimize (total-cost)).

6 Experiments

We have developed a planning-based alignment tool as a
standard Java application that implements the approach dis-
cussed in Sections 4 and 5. The tool can be ran interactively
using a GUI interface, and allows us to load existing logs
formatted with the XES (eXtensible Event Stream) stan-
dard and to import DECLARE models previously designed
through the DECLARE design tool (Westergaard and Maggi
2011). A DECLARE model consists of a set of constraints,
i.e., rule templates applied to activities. Their semantics can
be formalized using LTLf , making them verifiable and exe-
cutable. Table 1 summarizes some DECLARE templates. The
reader can refer to (van der Aalst, Pesic, and Schonenberg
2009) for a full description of the language.

In order to find the minimum cost trace alignment against
a pre-specified DECLARE model, our tool makes use of the
FAST-DOWNWARD (Helmert 2006) and of the SYMBA*-
2 (Torralba et al. 2014) planning systems. To produce op-
timal alignments, FAST-DOWNWARD uses a best-first search
in the first iteration to find a plan and a weighted A* search
to iteratively decreasing weights of plans, while SYMBA*-
2 (winner of the sequential optimizing track at the 2014 Int.
Planning Competition) performs a bidirectional A* search.

We tested our approach on the grounded version of the
problem presented in Section 5. We used both a real-life log
and synthetic logs. We performed our experiments with a
machine consisting of an Intel Core i7-4770S CPU 3.10GHz
Quad Core and 4GB RAM. We used a standard cost function
with unit costs for any alignment step that adds/removes ac-
tivities in/from the input trace, and cost 0 for synchronous
moves.
Real-life Log. The real-life log comes from real process ex-
ecutions and refers to an application process for personal
loans in a Dutch financial institute. The original log con-
tains 262,200 events distributed across 36 activities and in-
cludes 13,087 traces, out of which we randomly extracted

654 traces of various lengths (between 3 and 128 events) for
the experiments. We employed the same DECLARE model
depicted in Fig. 1 of (De Giacomo et al. 2016), which con-
tains 16 constraints. Notice that the real-life log tested is of
average complexity, as the optimal alignment for any log
trace has a cost varying from 0 to 2 for short traces (less
than 50 events) and from 0 to 3 for longer traces.

Synthetic Logs. To have a sense of the scalability with re-
spect to the “size” of the model and the “noise” in the traces,
we have also tested the approach on synthetic logs of differ-
ent complexity. Specifically, we generated syntectic logs us-
ing the log generator presented in (Di Ciccio et al. 2015). We
defined 3 DECLARE models having the same alphabet of ac-
tivities and containing 10, 15, and 20 DECLARE constraints
respectively. Then, to create logs containing noise, i.e., be-
haviors non-compliant with the original DECLARE models,
we changed some of the constraints in these models and gen-
erated logs from them. In particular, we modified the orig-
inal DECLARE models by replacing 3, 4, and 6 constraints
in each model with their negative counterparts (see Table 1).
Each modified model was used to generate 4 logs of 100
traces containing traces of different lengths, i.e., from 1 to
50 events, from 51 to 100 events, from 101 to 150 events,
and from 151 to 200 events, respectively.

Results. The results of the experiments can be seen in Ta-
bles 2, 3 and in Fig. 1. They include the results obtained by
testing the approaches of De Giacomo et al. (De Giacomo et
al. 2016) and de Leoni et al. (de Leoni, Maggi, and van der
Aalst 2012). The results show that both in the real-life and in
the synthetic logs the approach of de Leoni et al. is faster for
short traces with a small amount of noise. Conversely, the
approach of de Giacomo et al. (which has been tested on the
real-life log only) is the slowest one in all tests. Such a poor
performance depends on the fact that it needs to determine,
for each trace, a bound on the maximum number of instances
of each activity needed to align the trace. However, such a
bound is not minimal, i.e., more activity instances than those
needed for the alignment are incorporated in the planning
problem. This dramatically increases the search space.

When the noise increases and/or the model becomes
larger, our planning-based approach outperforms the exist-
ing ones by several orders of magnitude. For example, us-
ing the synthetic log generated by the DECLARE model
with 20 constraints and 3 constraints modified, contain-
ing traces of lengths varying from 151 to 200 events, our
approach requires on average around 27.49 seconds (with
FAST-DOWNWARD) and 28.97 seconds (with SYMBA*-2)
per trace to compute an optimal alignment, while the ap-
proach of de Leoni et al. takes 223.47 seconds. This can be
explained with the observation that the heuristics adopted by
planners are able to efficiently cope with the size of the state
space, which is exponential with respect to the size of the
model, the amount of noise and the trace length.

Finally, in order to study the “boundaries” of our approach
and to understand how much noise a log needs to contain
to make our approach ineffective, we performed a third as-
sessment by modifying 4 and 6 constraints in each of the
DECLARE models. The results are shown in Table 3 and in

3559

Trace length Fast-
Downward

SymBA*-2 de Leoni et al. Alignment
Cost

Fast-
Downward

SymBA*-2 de Leoni et al. Alignment
Cost

Fast-
Downward

SymBA*-2 de Leoni et al. Alignment
Cost

3 const. modified 10 constraints 15 constraints 20 constraints

1-50 0.62 1.95 0.34 1.77 1.97 3.49 1.08 1.71 17.63 12.42 3.99 1.87
51-100 0.85 3.63 1.37 2.11 2.79 5.3 6.64 2.23 19.05 15.02 34.91 2.61

101-150 1.15 6.4 5.9 3.03 3.61 8.26 24.05 3.07 23.23 20.45 87.89 3.35
151-200 1.46 10.75 12.98 3.79 5.12 13.63 91.39 4.2 27.49 28.97 223.47 4.2

4 const. modified 10 constraints 15 constraints 20 constraints

1-50 0.59 1.86 - 2.74 2.09 3.49 - 3.21 18.21 12.37 - 3.89
51-100 0.87 3.35 - 5.86 3.04 5.12 - 6.12 31.53 14.73 - 6.92

101-150 1.26 5.72 - 9.68 4.9 8.06 - 10.35 52.21 18.89 - 10.87
151-200 1.7 8.87 - 13.42 6.94 12.2 - 14.2 64.99 24.62 - 15.1

6 const. modified 10 constraints 15 constraints 20 constraints

1-50 0.59 1.75 - 4.34 2.29 3.41 - 5.23 21.29 12.41 - 6.12
51-100 0.93 3.35 - 7.1 3.55 5.01 - 8.12 38.39 19.88 - 9.02

101-150 1.36 5.66 - 9.81 5.66 7.71 - 10.96 53.97 23.83 - 11.83
151-200 1.85 9.11 - 14.4 8.91 12.14 - 16.3 74.27 26.25 - 17.51

Table 3: Experimental results for the synthetic case study. The time (in seconds) is the average per trace.

1-50 51-100 101-150 151-200

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Length of the trace.

To
ta

la
lig

nm
en

tt
im

e
(s

ec
on

ds
)

10 constraints (3 const. modified)

Fast-Downward
SymBA*-2

De Leoni et al.

1-50 51-100 101-150 151-200

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Length of the trace.

To
ta

la
lig

nm
en

tt
im

e
(s

ec
on

ds
)

15 constraints (3 const. modified)

Fast-Downward
SymBA*-2

De Leoni et al.

1-50 51-100 101-150 151-200

25

50

75

100

125

150

175

200

225

250

Length of the trace.

To
ta

la
lig

nm
en

tt
im

e
(s

ec
on

ds
)

20 constraints (3 const. modified)

Fast-Downward
SymBA*-2

De Leoni et al.

1-50 51-100 101-150 151-200

1

2

3

4

5

6

7

8

9

10

Length of the trace.

To
ta

la
lig

nm
en

tt
im

e
(s

ec
on

ds
)

10 constraints (4-6 const. modified)

Fast-Down. (4 const. mod.)
Fast-Down. (6 const. mod.)
SymBA*-2 (4 const. mod.)
SymBA*-2 (6 const. mod.)

1-50 51-100 101-150 151-200

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Length of the trace.

To
ta

la
lig

nm
en

tt
im

e
(s

ec
on

ds
)

15 constraints (4-6 const. modified)

Fast-Down. (4 const. mod.)
Fast-Down. (6 const. mod.)
SymBA*-2 (4 const. mod.)
SymBA*-2 (6 const. mod.)

1-50 51-100 101-150 151-200

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

Length of the trace.

To
ta

la
lig

nm
en

tt
im

e
(s

ec
on

ds
)

20 constraints (4-6 const. modified)

Fast-Down. (4 const. mod.)
Fast-Down. (6 const. mod.)
SymBA*-2 (4 const. mod.)
SymBA*-2 (6 const. mod.)

Figure 1: Performance of computing optimal alignments for the synthetic case study.

the lower plots of Fig. 1. They suggest that the approach is
feasible also in case of traces requiring a large number of
alignment actions. It is interesting to notice that the bidirec-
tional A* search employed in SYMBA*-2 scales better than
the blind A* search of FAST-DOWNWARD when the tested
models contain a higher number of constraints.

7 Concluding Remarks

The scientific literature reports several works in the field of
conformance checking (van der Aalst 2011). In (Cook and
Wolf 1999; Rozinat and van der Aalst 2008), for the first
time, the concept of conformance checking with respect to
(procedural) process models was investigated. In (Adrian-
syah, van Dongen, and van der Aalst 2011), the authors in-

troduce conformance checking augmented with the notion
of trace alignment. Recently, in (Di Francescomarino et al.
2015), an approach for trace alignment against procedural
process models based on automated planning has been pro-
posed.

In recent years, an increasing number of researchers
are focusing on the conformance checking with respect to
declarative models. Some of these works (Chesani et al.
2009; Montali et al. 2010; Burattin et al. 2012) do not aim at
aligning the trace of concern, but at calculating its “fitness”
value (i.e., how much it adheres to a DECLARE model). Spe-
cific works on trace alignment for declarative specifications
include (de Leoni, Maggi, and van der Aalst 2012; 2015;
De Giacomo et al. 2016).

In this work, we have presented a sound and complete

3560

technique to synthesize the trace alignment for declarative
specifications relying on finite automata theoretic manipula-
tions. The technique has been implemented using automated
planning technology. Planning provides a mature and “elab-
oration tolerant” technology and, in fact, in the BPM liter-
ature, there exists a number of works utilizing planning in
the various stages of a process life cycle, e.g., to create pro-
cess models from declarative activity specifications (Mar-
rella and Lespérance 2013) or to run, monitor and adapt
processes at run-time (Marrella, Russo, and Mecella 2012;
Marrella, Mecella, and Sardiña 2014; 2016).

Through an in-depth experimental study, we showed
that our proposed plan-based technique significantly outper-
forms the state-of-the-art ad-hoc alignment approaches pre-
sented in (de Leoni, Maggi, and van der Aalst 2012; 2015;
De Giacomo et al. 2016). In addition, differently from these
approaches, we propose a fully general approach that is not
limited to the DECLARE language but is able to cope with
the whole LTLf .

In the next future, we would like to employ the same
planning-based technology for advanced types of trace
alignment in which data and time are taken into account,
something that is being recognized as a necessary though
challenging problem in the BPs community (Montali et al.
2013; Burattin, Maggi, and Sperduti 2016; Maggi and West-
ergaard 2014).

Acknowledgments. This work has been partly supported by
the Italian projects RoMA and NEPTIS, the Italian cluster
SM&ST and the Sapienza project “Immersive Cognitive En-
vironments”.

References
Adriansyah, A.; van Dongen, B. F.; and van der Aalst, W. M. P.
2011. Conformance Checking Using Cost-Based Fitness Analysis.
In 15th Int. Ent. Dist. Object Comp. Conf. (EDOC 2011).
Burattin, A.; Maggi, F. M.; van der Aalst, W. M. P.; and Sperduti,
A. 2012. Techniques for a Posteriori Analysis of Declarative Pro-
cesses. In 16th Int. Ent. Dist. Object Comp. Conf. (EDOC 2012).
Burattin, A.; Maggi, F. M.; and Sperduti, A. 2016. Conformance
Checking Based on Multi-Perspective Declarative Process Models.
Expert Syst. Appl. 65:194–211.
Chesani, F.; Mello, P.; Montali, M.; Riguzzi, F.; Sebastianis, M.;
and Storari, S. 2009. Checking Compliance of Execution Traces
to Business Rules. In Business Process Management Workshops.
Cook, J. E., and Wolf, A. L. 1999. Software Process Valida-
tion: Quantitatively Measuring the Correspondence of a Process
to a Model. ACM Trans. Softw. Eng. Methodol. 8(2):147–176.
De Giacomo, G., and Vardi, M. Y. 2013. Linear Temporal Logic
and Linear Dynamic Logic on Finite Traces. In 23th Int. Conf. on
AI (IJCAI’13).
De Giacomo, G., and Vardi, M. Y. 2015. Synthesis for LTL and
LDL on Finite Traces. In 24th Int. Conf. on AI (IJCAI’15).
De Giacomo, G.; Maggi, F. M.; Marrella, A.; and Sardiña, S. 2016.
Computing Trace Alignment against Declarative Process Models
through Planning. In 26th Int. Conf. on Automated Planning and
Scheduling (ICAPS 2016).
de Leoni, M.; Maggi, F. M.; and van der Aalst, W. M. P. 2012.
Aligning Event Logs and Declarative Process Models for Confor-

mance Checking. In 10th Int. Conf. on Business Process Manage-
ment (BPM 2012).
de Leoni, M.; Maggi, F. M.; and van der Aalst, W. 2015. An
alignment-based framework to check the conformance of declar-
ative process models and to preprocess event-log data. Inf. Syst.
47:258–277.
Di Ciccio, C.; Bernardi, M. L.; Cimitile, M.; and Maggi, F. M.
2015. Generating event logs through the simulation of declare
models. In 11th Int. Workshop on Ent. & Org. Modeling and Sim-
ulation (EOMAS 2015).
Di Francescomarino, C.; Ghidini, C.; Tessaris, S.; and Sandoval,
I. V. 2015. Completing Workflow Traces Using Action Languages.
In 27th Int. Conf. on Adv. Inf. Syst. Eng. (CAiSE 2015).
Fox, M., and Long, D. 2003. PDDL2.1: An Extension to PDDL for
Expressing Temporal Planning Domains. J. Artif. Intell. Res.(JAIR)
20:61–124.
Helmert, M. 2006. The Fast Downward Planning System. J. Artif.
Intell. Res.(JAIR) 26:191–246.
Maggi, F. M., and Westergaard, M. 2014. Using Timed Automata
for a Priori Warnings and Planning for Timed Declarative Process
Models. Int. J. Coop. Inf. Syst. 23(1).
Marrella, A., and Lespérance, Y. 2013. Synthesizing a Library of
Process Templates through Partial-Order Planning Algorithms. In
14th Int. Conf. on Business Process Modeling, Development and
Support (BPMDS 2013).
Marrella, A.; Mecella, M.; and Sardiña, S. 2014. SmartPM: An
Adaptive Process Management System through Situation Calculus,
IndiGolog, and Classical Planning. In Knowledge Representation
and Reasoning (KR 2014).
Marrella, A.; Mecella, M.; and Sardiña, S. 2016. Intelligent Pro-
cess Adaptation in the SmartPM System. ACM Trans. Intell. Syst.
Technol. 8(2):25:1–25:43.
Marrella, A.; Russo, A.; and Mecella, M. 2012. Planlets: Auto-
matically Recovering Dynamic Processes in YAWL. In OTM Conf.
Int. Conferences (CoopIS 2012).
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C. A.; Ram,
A.; Veloso, M.; Weld, D. S.; and Wilkins, D. E. 1998. PDDL
- The Planning Domain Definition Language. Technical Report
DCS TR-1165, Yale Center for Computational Vision and Control.
Montali, M.; Pesic, M.; van der Aalst, W.; Chesani, F.; Mello, P.;
and Storari, S. 2010. Declarative Specification and Verification of
Service Choreographies. ACM Trans. on the Web 4(1).
Montali, M.; Chesani, F.; Mello, P.; and Maggi, F. M. 2013. To-
wards data-aware constraints in DECLARE. In ACM Symp. on
Applied Computing (SAC 2013).
Rozinat, A., and van der Aalst, W. M. P. 2008. Conformance
Checking of Processes Based on Monitoring Real Behavior. Inf.
Syst. 33(1):64–95.
Torralba, A.; Alcazar, V.; Borrajo, D.; Kissmann, P.; and Edelkamp,
S. 2014. Symba: A symbolic bidirectional a planner. In Interna-
tional Planning Competition, 105–108.
van der Aalst, W.; Pesic, M.; and Schonenberg, H. 2009. Declara-
tive Workflows: Balancing Between Flexibility and Support. Com-
puter Science - R&D 23(2):99–113.
van der Aalst, W. M. P. 2011. Process Mining: Discovery, Confor-
mance and Enhancement of Business Processes. Springer Publish-
ing Company, Incorporated, 1st edition.
Westergaard, M., and Maggi, F. M. 2011. Declare: A Tool Suite
for Declarative Workflow Modeling and Enactment. In Business
Process Management (Demonstration Track).

3561

