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Abstract

A critical challenge in temporal planning is robustly deal-
ing with non-determinism, e.g., the durational uncertainty of
a robot’s activity due to slippage or other unexpected influ-
ences. Recent advances show that robustness is a better mea-
sure of solution quality than traditional metrics such as flex-
ibility. This paper introduces the Robust Execution Problem
for finding maximally robust dispatch strategies for general
probabilistic temporal planning problems. While generally
intractable, we introduce approximate solution techniques—
one that can be computed statically prior to the start of exe-
cution with robustness guarantees and one that dynamically
adjusts to opportunities and setbacks during execution. We
show empirically that our dynamic approach outperforms all
known approaches in terms of execution success rate.

Introduction

Successfully executing tasks in uncertain environments re-
quires close coordination between agents. Consider an au-
tomated warehouse where two robots must deliver pallets
to a pick station so that a box can be manually packed for
shipment. Navigation can take an uncertain amount of time
due to slippage and localization error. Further, due to start-
ing in different locations, robot A takes around six minutes
to navigate to the pickup, while robot B can arrive in around
two minutes. To avoid congestion and ensure efficiency, the
robots must arrive at the pick station within two minutes of
each other. Clearly, the likelihood of successfully arriving at
the pick station at the same time improves if Robot B waits
to begin. However, the critical question is: given the dura-
tional uncertainty of tasks, how long should Robot B wait
to maximize its chance of arriving within 2 minutes of A?

Probabilistic temporal planning provides a framework for
representing systems of scheduling constraints, like our ex-
ample, and captures how those constraints restrict the times
at which activities can occur, including characterizing activ-
ities with uncertain durations. The challenge that this paper
addresses is determining the best way to schedule events to
account for scheduling uncertainty in probabilistic temporal
plans. More specifically, this paper contributes:

• a formal definition of the Robust Execution Problem for

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

AST AET

BST BET

[0,∞)

N(6,2)

[0,10]

[-2,2]

[0,10]

[0,∞)

N(2,1)
[0,10] [0,10]

Figure 1: Temporal network for our example. Robot A and
B’s navigation tasks take ∼ 6 and ∼ 2 minutes respectively.

finding maximally-robust dispatch strategies to general
probabilistic temporal planning problems;

• a new LP-based approximation for determining a static
dispatch strategy with strict robustness guarantees;

• the first dynamic probabilistic temporal plan dispatch
strategy that opportunistically refines the dispatch strat-
egy in response to environmental dynamism; and

• an empirical comparison that shows our dynamic ap-
proach outperforms all known approaches in terms of
temporal plan execution success rate.

Background

Our example scheduling problem is displayed graphically in
Figure 1. Each vertex represents an event such as the start
and end times for robot A’s navigation task, which are rep-
resented as AST and AET respectively. Directed edges rep-
resent temporal constraints and are labeled with the range
of time that is allowed to elapse between the occurrence of
the events of the source and target vertices. Note the two
styles of directed edges: dashed edges highlight constraints
between agents (e.g., both robots must end navigation within
two minutes of each other), and thick edges convey that
the duration is controlled by an uncertain process (e.g., the
time to completion of each robot’s task). In our example, the
robots are given 10 minutes to complete all tasks. This con-
straint is represented by loops labeled [0, 10] at each event
node. The uncertain navigation durations for robots A (ap-
proximately 6 minutes) and B (approximately 2 minutes)
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are captured by normal distributions (μ = 6;σ = 2 and
μ = 2;σ = 1 respectively). This graphically represents a
Probabilistic Simple Temporal Network, defined next.

Simple Temporal Network

A Simple Temporal Network (STN) is defined as the tuple
S = 〈T,C〉, where the timepoints t0, t1, ..., tn ∈ T rep-
resent n + 1 distinct events in the schedule, and each tem-
poral difference constraint cij ∈ C represents a bound on
the elapsed time from ti to tj of the form tj − ti ≤ bij ,
where bij ∈ R (Dechter, Meiri, and Pearl 1991). The time-
point t0 is the zero timepoint. This is defined to occur at
time 0 and grounds the schedule against a clock time. Con-
straints between timepoints t0 and ti implicitly specify when
ti is allowed to occur (i.e., its domain of possible times). The
mapping from an STN to a distance graph (e.g., Figure 1) is
straightforward. Each timepoint in T maps to a vertex, and
each constraint cij ∈ C maps to a directed edge from vertex
ti to tj with the label [−bji, bij ], i.e., tj − ti ∈ [−bji, bij ],
where bij is set to ∞ if cij does not exist. Each timepoint
ti’s domain, defined through its constraints with t0, is repre-
sented with a self-loop labeled [−bi0, b0i].

A substantial advantage of temporal networks is that they
do not require the combinatorial overhead of planning ap-
proaches that discretize time. An STN is consistent if there
is some assignment of values to the timepoints such that
all constraints are satisfied. In a minimal STN, the ranges
for constraints and timepoints are restricted to exactly those
values that could result in a consistent schedule. A mini-
mal STN exactly captures the set of all solutions (consis-
tent schedules) so that a timepoint can be scheduled to oc-
cur at any of its allowed values and be guaranteed that there
is some assignment of the remaining timepoints that satis-
fies all constraints. A minimal STN can be computed by
applying a shortest-path algorithm to the distance graph of
an STN. For instance, the constraints between the activities’
start and end times in Figure 1 can be made minimal by re-
stricting their intervals from [0,∞) to [0, 10], the feasible
range of time implied by the timepoint domains. A decom-
position of an STN further restricts the domains of time-
points such that all timepoints can be scheduled indepen-
dently to occur at any of their allowed values while satisfy-
ing all constraints. For instance, restricting both AET and
BET to occur between 7 and 9 minutes would decompose
the constraint between them, since any values between 7 and
9 would inherently satisfy the constraint that the robots must
arrive within 2 minutes of each other.

Models of Temporal Uncertainty

The Simple Temporal Network with Uncertainty (STNU)
(Vidal and Ghallab 1996) adds a set of contingent edges,
CC , to the typical requirement edges, CR (i.e., tempo-
ral difference constraints) defined by an STN. A contin-
gent edge, kij , is one that is not directly controlled by
the agent. Instead, some uncontrollable process (e.g., na-
ture) sets the time that elapses between ti and tj to a value
βij ∈ [−bji, bij ] which is unknown prior to execution. Any
timepoint with an incoming contingent edge is thus called
a contingent timepoint, since when it occurs is decided by

nature. A timepoint with no incoming contingent edge is an
executable timepoint, because the agent can decide when to
execute it. Contingent (TC) and executable (TX ) timepoints
partition the set of non-zero timepoints (T = TC ∪ TX). In
Figure 1, contingent edges are represented with thick lines.
Here, the start time of each activity is executable by the
robot, whereas the end time is contingent (e.g., due to an un-
expected obstacle or low battery). Because it is theoretically
impossible for two activities with uncertain, continuous du-
rations to end at exactly the same time, the STNU formu-
lation assumes that a timepoint cannot have more than one
incoming contingent edge. This limitation can be remedied
by constraining two or more contingent timepoints to occur
within a synchronization window (e.g., in Figure 1, robots A
and B must arrive within 2 minutes of each other).

A Probabilistic STN (PSTN) is an extension of the
STNU that more precisely models how the durations of con-
tingent edges are selected using probability density func-
tions (PDFs) (Tsamardinos 2002; Brooks et al. 2015). Each
contingent constraint cij ∈ CC is of the form tj − ti = Xij ,
where Xij is a random variable that is selected according to
the PDF Pij . In Figure 1, for example, robot B’s uncertain
navigation time is modeled by a normal distribution with
mean 2 and standard deviation 1.

Measures of Flexibility and Robustness

Flexibility is an aggregate measure of slack contained
within an STN. Naı̈vely, flexibility can be computed by
summing together the slack (i.e., size of the domain) of
each timepoint in a minimal STN representation. However,
this systematically overestimates slack, since scheduling one
timepoint can restrict when others can occur. This is cor-
rected by decomposing timepoints before summing their
slack to avoid double counting (Wilson et al. 2014). Flexibil-
ity has traditionally been used as a measure for how robust
an STN is to scheduling perturbations but has the drawback
that it is agnostic as to how disturbances arise in practice.

Robustness is a measure of the likelihood that a partic-
ular PSTN S can be executed successfully, P (Success|S)
(Tsamardinos 2002; Brooks et al. 2015). Naı̈vely, we can
compute robustness by multiplying the amount of probabil-
ity mass captured by each contingent edge in the minimal
representation, RobustnessN =

∏
cij∈CC

∫ cij
−cji

Pij(x)dx.
For instance, in Figure 1, both contingent edges have be-
tween 0 and 10 seconds to complete, which capture 99.725%
and 97.725% of the probability mass of the navigation tasks
for A and B, respectively. Thus, the naı̈ve estimate would
predict that agents executing our example should be success-
ful 99.725× 97.725 ≈ 92.46% of the time.

However, like flexibility, this naı̈ve approach systemati-
cally overestimates the overall likelihood of success because
it fails to capture how various contingent edges interact. For
instance, if robot A arrives earlier than expected, this shrinks
the amount of time that robot B can take to navigate. Thus,
in practice, if both robots start navigating at the same time
(t = 0), it is very likely that robot B will arrive much earlier
than A will, reducing robustness to only 17.21%. Unfortu-
nately, exactly computing robustness requires evaluating the
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definite integral formed by a combinatorial convolution of
the PDFs of contingent edges, where the bounds on each
integral must capture the complex interactions between con-
straints! Because exactly calculating robustness quickly be-
comes intractable except for the smallest, simplest STNs,
previous methods have turned to approximation.

Tsamardinos (2002) approximates robustness by making
strong assumptions about the nature of contingent edges
(e.g., that their PDFs are continuous, time-independent, and
that no temporal dependencies can exist between contin-
gent timepoints). These assumptions allow the use of the
naı̈ve robustness metric discussed above, and in turn, allows
the scheduling optimization problem to be formulated as a
linear program (LP). However, such assumptions eliminate
many interesting, real-world scheduling problems that in-
clude rich networks of interrelated temporal dependencies,
including even our simple example problem. Brooks et al.
(2015) avoid these limiting assumptions by using a Monte
Carlo approach—repeatedly simulating the execution of the
PSTN to approximate robustness, sampling from the PDF
whenever a contingent edge is encountered, and then report-
ing the portion that complete successfully.

STN Dispatch

Dispatching is the real-time decision of agents about when
to execute their events. For PSTNs and STNUs, this is partic-
ularly difficult because the agent does not control (or know)
the exact duration of contingent edges until they are received
from nature. One approach to dealing with this is to make
an STNU strongly controllable (Vidal and Ghallab 1996)
where any assignment of values to executable timepoints is
guaranteed to be consistent with all constraints regardless of
how nature sets contingent edges. Strong controllability is
computed offline by temporally decoupling each executable
timepoint from contingent timepoints by restricting its do-
main to values that are guaranteed to work with all con-
tingencies. An STNU is dynamically controllable (Morris
and Muscettola 2005; Morris 2014) if executable timepoints
can be scheduled online during execution (i.e., based on ob-
served values of past contingent edges) in a way that guar-
antees success.

A controllable STNU is ready to be dispatched. An ex-
ecutable timepoint i is considered live if the current time
is within its bounds [−bi0, b0i], and it is enabled if it can
be executed at the present time without violating any con-
straints (e.g., all timepoints that precede it have been exe-
cuted). A contingent timepoint can also be live, and is en-
abled if and only if the timepoint at the beginning of its
contingent edge has been executed. However, no dispatch
decisions are made; instead an agent receives the value of
a contingent timepoint from nature. Once an STN has been
made minimal, or an STNU has been made controllable, its
dispatch strategy falls out naturally—it can be dispatched
using an early execution policy that executes timepoints as
soon as they become both live and enabled.

The only known methods for dispatching either do not
generalize to all PSTNs (Tsamardinos 2002) or are satisfic-
ing approaches that establish controllable networks within
a set failure rate tolerance (Tsamardinos, Pollack, and Ra-

makrishnan 2003; Fang, Yu, and Williams 2014; Santana et
al. 2016). We address these limitations by introducing two
novel approximate approaches for optimizing the robustness
of dispatch strategies across general PSTNs

The Robust Execution Problem

An important detail that has been overlooked in previ-
ous work is that robustness and dispatch are inextricably
linked—a probabilistic temporal network with theoretical
guarantees of robustness cannot be used without a dis-
patch strategy that can help achieve that level of robust-
ness in practice. We note that we can clarify the defi-
nition of robustness by parameterizing it to consider not
only the input PSTN S, but also a dispatch strategy D:
Robustness(S,D) = P (Success|S,D). Only considering
the times permitted by the dispatch strategy makes the def-
inition and the computation of robustness much more pre-
cise. Without this explicit parameterization, one must either
consider all possible dispatch strategies, which the original
theoretical definition of robustness does, or make some other
assumption about how timepoints are executed (e.g., Brooks
et al. (2015) assumed the simple early execution strategy dis-
cussed above).

We can now formalize the Robust Execution Problem
(REP) as finding an optimally robust dispatch strategy D
for a given PSTN S:

maximize Robustness(S,D)

subject to tj − ti ≤ bij ∀ cij ∈ CR

tj − ti ≤ bij ∀ cij ∈ CD

where our parameterized Robustness(S,D) is the primary
objective, CR is the set of required constraints as dictated by
the original PSTN, and CD is the set of constraints (possi-
bly dynamically) added by the dispatch strategy. The output
of the REP is a dispatch strategy that maximizes the likeli-
hood of success (i.e., robustness) subject to all original con-
straints. Note that if D is static the set CD can be completely
determined prior to execution (e.g., as in strong controllabil-
ity), and this is simply a non-linear optimization problem.

Recall that exactly computing robustness is generally in-
tractable for instances of PSTNs. Our optimization above re-
quires evaluating robustness across a combinatorially large
space of dispatch strategies. Even if we limit ourselves to
the simpler task of computing static dispatch strategies (e.g.,
ones that attempt to temporally decouple against uncertain
edges), computing optimal temporal decouplings is gener-
ally NP-hard for non-linear objective functions (Planken, de
Weerdt, and Witteveen 2010). Thus, we propose new ap-
proximate methods for solving the REP.

The Static Robust Execution Algorithm

In this section, we introduce our Static Robust Execution
Algorithm (SREA), an approximate method for solving the
REP that produces an offline dispatch strategy. The goal
of SREA is to find an optimal dispatch strategy where all
scheduling decisions must be made offline before execution,
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prior to receiving any information about contingent time-
points. Our approach leverages the notion of strong con-
trollability for STNUs. We can translate our PSTN into an
STNU to utilize an LP formulation, but we must be careful
about how we extract bounds for the contingent edges. Max-
imizing overall robustness requires capturing as much of the
probability mass as possible on each contingent edge. To do
this, we select an acceptable level of risk, α ∈ [0, 1], which
is the allowable amount of probability mass we are willing
to sacrifice in coming up with a dispatch strategy.

Then, for each contingent edge, kij ∈ CC , we define
bαij = F−1

(
1 − α

2

)
and bαji = −F−1

(
α
2

)
, where F−1

(
x
)

is the inverse CDF of the probability distribution on the
edge from i to j. This gives us a bound for the contingent
edge that contains (1 − α) of the probability mass. Addi-
tionally, we expand each of these bounds by some δij > 0:[− bαji − δji, b

α
ij + δij

]
to heuristically capture as much ad-

ditional probability mass as possible.

Maximize:
∑

cij∈Cc

δij

Subject to: t+i ≥ t−i ∀ ti ∈ T (1)
t+j − t−i ≤ bij ∀ cij ∈ CR (2)

t+j − t+i = bαij + δij ∀ cij ∈ CC : tj ∈ TC (3)

t−j − t−i = −bαji − δji ∀ cij ∈ CC : tj ∈ TC (4)
δij ≥ 0 ∀ δij (5)
t+0 = t−0 = 0 (6)

Figure 2: LP for finding a strongly controllable STNU that
ensures each contingent edge incurs at most α risk of failure.

Our LP finds new upper and lower bounds on a timepoint
t as t+ and t− (thus initially, t+i = b0i and t−i = −bi0).
Lines 1-2 ensure that these new timepoint bounds are con-
sistent with all original constraints. Lines 3-4 ensure that the
new timepoint bounds are consistent with at least (1-α) of
the PDF associated with that contingent edge (represented
by bαij bounds computed above). The δij that appear in the
objective function to heuristically maximize the additional
probability mass captured by each contingent edge.

Theorem 1. A PSTN that satisfies the constraints of the LP
is guaranteed to have a robustness of at least (1− α)|Tc|.

Proof. Because the STNU output by the LP is strongly con-
trollable, the schedule will succeed if the received value for
every edge is within its bounds. By construction, the re-
ceived value for a contingent edge will fall within its bounds
with a probability of at least 1−α. Therefore, because there
are |Tc| contingent edges that will succeed with probability
at least 1 − α independent of the execution of other edges,
the overall probability of success is at least (1− α)|Tc|.

Notice that the guarantee of robustness given by Theorem
1 makes no assumption about dispatch strategy, so applies
no matter how the agents choose to dispatch the schedule
output by our LP. Thus, in our empirical evaluations, we use
the early execution strategy on the output from our LP to
dispatch schedules. However, whereas the choice of dispatch

Algorithm 1: Static Robust Execution Algorithm
Input : A PSTN S, a resolution r, and range [α−, α+]
Output: The execution strategy with minimum α
if (α+ − α−) ≤ r then

return LP(S,α+)

α′ = (α−+α+)
2

if LP(S,α′) is infeasible then

return SREA(S, r, [α′, α+])

return SREA(S, r, [α−, α′])

strategy has a negligible impact, the choice of α significantly
impacts performance, as we discuss next.

To maximize the benefit of our approach, we find the
minimal α (i.e. maximum guaranteed robustness) such that
strong controllability can still be established. We minimize
α by running a binary search over the rang [0, 1] for a given
resolution r, evaluating the LP at every point, and return-
ing the schedule corresponding to the minimum feasible
α. Because we evaluate the LP for every value of α dur-
ing the binary search, the runtime of our static approach is
O(LP · log ( 1

1−r )) where LP is the runtime of the linear
program and r is the resolution at which the range [0, 1] is
divided up during the binary search for α. Our search for
the optimal α, coupled with our LP that heuristically max-
imizes the probability mass captured per contingent edge,
guarantees that the resulting dispatch strategy is strictly
more robust than previous satisficing methods (Fang, Yu,
and Williams 2014).

The result of applying SREA to our example problem is
shown in Figure 3. The best α level found by the algorithm
was 0.506, corresponding to bounds of [4.66, 7.33] on robot
A’s contingent edge, and [1.35, 2.67] on robot B’s contingent
edge. Notice that the algorithm expanded robot A’s contin-
gent edge very slightly to [4.64, 7.33]. The robustness of this
modified schedule is now 24.61%, as compared to 17.21%
with the early execution dispatch method. This points to the
fact that the efficacy of statically computing a wait time that
optimizes for the expected case is inherently limited in its
ability to sync up events that are subject to high amounts of
uncertainty. Next we define an approach that can dynami-
cally exploit new information that arises during execution.

AST AET

BST BET

[4.64,7.33]

N(6,2)

[0,0]

[-2,2]

[4.64,7.33]

[1.35,2.67]

N(2,1)
[3.98,3.98] [5.33,6.64]

Figure 3: The example of Figure 1 after applying SREA.
α = 0.506, and the STN robustness is 24.61%.
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The Dynamic Robust Execution Algorithm

Our static approach exploits strong controllability to approx-
imate an optimal offline dispatch strategy. It works by lim-
iting the range of executable timepoints so that nature can
consistently choose any time within the

[−bαji−δji, b
α
ij+δij

]

bounds of each contingent edge, thus ensuring a guaran-
teed robustness level. However, this approach has two limi-
tations. First, the approach is conservative—even though na-
ture is more likely to pick a value near the mode of its distri-
bution, the

[−bαji−δji, b
α
ij+δij

]
intervals are constructed to

include as much of the distribution as possible. The problem
with this is that hedging against uncertainty in one portion of
the temporal network can inhibit our ability to hedge against
uncertainty in other places. Second, if nature does choose a
timepoint outside the restricted range (e.g., the process runs
unexpectedly long), the strongly controllable network guid-
ing execution simply breaks.

Our dynamic approach is to re-evaluate the LP when-
ever additional information about contingent constraints is
received. The result is an online algorithm that exploits fa-
vorable outcomes (e.g., extra time due to a robot finishing
unexpectedly early) by readjusting the remaining schedule
to increase the guaranteed level of robustness (reducing α).
Conversely, if nature chooses an extreme value outside the[ − bαji − δji, b

α
ij + δij

]
interval, our approach attempts to

adjust to this unlucky break by gracefully decreasing ro-
bustness (increasing α). Not waiting until the controllable
STNU breaks before adjusting ensures that schedule dis-
patch will not fail unless there is no longer any way to satisfy
the original constraints. This resolves a question from pre-
vious work of what to do if a PSTN grounded as a control-
lable STNU fails (Tsamardinos, Pollack, and Ramakrishnan
2003). Our approach mimics the idea of dynamic controlla-
bility in STNUs, since execution decisions are responsive to
environmental dynamism, but as we show later, it performs
much better than dynamic controllability in practice.

Our Dynamic Robust Execution Algorithm (DREA),
summarized in Algorithm 2, detects when a contingent time-
point is enabled or received and re-evaluates SREA on the
schedule. Executable timepoints are executed if they are
live and enabled according to the most recent instantia-
tion of SREA. Two things happen any time a contingent
timepoint is received or becomes enabled: (1) that time-
point is updated—either assigned to its received value or the
corresponding PDF is renormalized if it has not yet been
received—and (2) a new set of dispatch instructions is com-
puted using SREA. The speed of this algorithm can be im-
proved by caching the α value between subsequent execu-
tions of SREA so that subsequent binary searches can be
seeded with this value. Re-evaluating any time a contingent
timepoint is enabled even if it is not yet received ensures
that executable timepoints that are (or may become) live
are informed if a contingent timepoint is taking longer (or
shorter) than expected. This allows the agent to opportunis-
tically readjust its schedule to pursue more (or less) aggres-
sive levels of risk, α. Because DREA can dynamically ad-
just the execution of BST based on the status of AET , the
expected success rate (computed as described in Experimen-
tal Setup) for our example problem (Figure 1) improves to

Algorithm 2: Dynamic Robust Execution Algorithm
Input : A PSTN S
guideSTN ← SREA(S)
while S.isConsistent() and not S.allExecuted() do

if any t ∈ TC is received or enabled then
S.update(t)
guideSTN ← SREA(S)

else
foreach live & enabled t ∈ TX according to
guideSTN do

S.execute(t)
guideSTN .execute(t)

68.04% as compared to 24.61% when using SREA.

DREA Example

To illustrate the usefulness of DREA, we walk through a
simulated execution of our DREA algorithm applied to the
running example.

Step 1: First, SREA is applied to the initial problem (Fig-
ure 1), which produces the PSTN shown in Figure 3. Dis-
patch begins by setting AST to the current time t = 0. This
produces the PSTN in Figure 4a.

Step 2: We now have an action with an uncertain duration
(robot A’s navigation) in progress. During every time step
that AET is enabled but not received, the algorithm updates
by renormalizing the associated PDF and re-running SREA
so that it can shift the recommended start time of any exe-
cutable timepoints with respect to the latest information. If
robot A does not arrive before BST is scheduled to start, the
algorithm would execute it anyway. However, in this partic-
ular simulation, robot A arrives in less time than expected,
3.88 minutes, and thus is received before we dispatch robot
B. At this point, we run SREA again to produce the PSTN in
Figure 4b. Node AST can be removed in the process because
all of its children have been executed and it is no longer rel-
evant to future execution.

Step 3: Once AET is received, robot B can start navi-
gating early as well, since there is no longer any benefit to
waiting. Robot B departs at our new earliest possible time,
t = 3.88, which produces the PSTN in Figure 4c.

Step 4: Now the only thing left to do is wait for robot B
to arrive. In this simulation, B arrives at the pick station in
1.91 minutes, and so we receive BET at t = 5.79 as shown
in Figure 4d.

This sample walk-through represents a successful execu-
tion because the all requirement constraints were satisfied
at every point during execution. Although this example is
very simple, and determining the best course of action is
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AST

Exec. at t=0

AET

BST BET

[4.64,7.33]

N(6,2)
[-2,2]

[4.64,7.33]

[1.35,2.67]

N(2,1)

[3.98,3.98] [5.33,6.64]

(a) Step 1: Set AST = 0

AET

Received at t=3.88

BST BET

[0,2]
[0,2]

N(2,1)

[3.88,5.88] [3.88,5.88]

(b) Step 2: Receive AET = 3.88

AET

BST

Exec. at t=3.88

BET

[0,2]

[3.88,3.88]

[0,2]

N(2,1)

[3.88,5.88]

(c) Step 3: Set BST = 3.88

AET

BET

Received at t=5.79

[0,2]

[3.88,3.88]

(d) Step 4: Receive BET = 5.79

Figure 4: Sample execution of our DREA algorithm on our example problem.

relatively straightforward, it shows how DREA can adjust
the schedule to take advantage of unexpected situations. In
larger examples, where the best course of action is not as
easy to determine, dynamically adjusting the schedule is
successful in improving robustness.

Empirical Performance Analysis

We compare our approaches against three approaches:
(1) the simple early execution strategy described earlier,
(2) the static-controllability-based approach described by
Fang, Yu, and Williams (2014), and (3) the dynamic-
controllability-based approach of Tsamardinos, Pollack,
and Ramakrishnan (2003) using the latest dynamic control-
lability algorithm (Morris 2014). The latter two approaches
represent the current state-of-the art. Note, that Fang, Yu,
and Williams’s approach is a satisficing approach that re-
quires a risk budget as input—we assign risk to its best set-
ting by performing a binary search for the minimal risk bud-
get that still permits a strongly controllable STNU.

Experimental Setup

We adapt the random robot navigation problem generator of
Brooks et al. (2015) to generate random PSTNs with varying
numbers of timepoints and constraint characteristics. Struc-
turally, each PSTN is composed of several agent subprob-
lems (i.e., one with no concurrent operations) that are con-
nected through interagent constraints with a check to avoid
causal loops. The PDFs associated with contingent edges
were all normal distributions, with means of less than 10
seconds. The standard deviations (σ) of these distributions
were systematically varied using values between 1 and 5,
which varied the entropy/kurtosis of the contingent edges’
distributions. As distributions become wider and flatter, it
may become difficult to capture as much probability mass.

The problems we generated generally have 20 timepoint
variables divided among 2 to 4 agents and 20 to 35 con-
straints depending on the selected interagent constraint den-
sity, of which up to 15 are contingent. Requirement con-
straints were set with a lower bound of 0 and no upper
bound, and the total time (makespan) given to complete each
schedule was the midpoint between the minimum and max-
imum possible times of the critical path through the PSTN.
We also varied the interagent constraint density, which is
the proportion of constraints between agents’ sequences of

actions and which allows us to explore the impact of dif-
ferent degrees of interagent coupling. Finally, the degree
of synchronization represents the “tightness” of the bounds
on interagent constraints, which were set to [0, n · σ] with
n = 1, 2, 4 (n = 1 by default). We implemented our ap-
proaches in Python using the PuLP linear programming li-
brary. For each parameter setting that we tested, we report
an empirically derived execution success rate computed by
simulating the execution of 20 PSTN schedules 500 times
each using a robot navigation simulator (Brooks et al. 2015).
The simulation engine sets executable timepoints according
to the dispatch strategy being tested. It samples the values
of contingent edges as it encounters them according to their
PDF, and then assigns the corresponding contingent time-
point once the correct time arrives. We ran simulations on a
Linux machine with 96 Xeon E7540 cores.1

Analysis

As shown in Figures 5a - 5c, DREA results in execution
strategies with the highest success rates across the board,
early execution is next, followed by SREA and dynamic
controllability. Note, for clarity, we omitted plotting curves
for static controllability—a restricted case of both the dy-
namic and SREA approaches—since it was strictly domi-
nated by all other approaches. Our results demonstrate that
DREA effectively balances the agility to respond effectively
to dynamism in the environment with the ability to proac-
tively guide agents towards more promising solutions.

The strong performance of early execution, particularly
relative to SREA, points to the value of dynamically react-
ing to, vs. proactively hedging against, uncertainty in the en-
vironment. Early execution can react to the results of nature
assigning contingent timepoints over the course of the exper-
iment, while SREA makes all decisions at the very start, be-
fore any contingent timepoints are assigned. Controllability-
based approaches like SREA attempt to guide agents away
from schedules that are particularly unlikely to succeed by
pruning the space of schedules available at execution time.
For these problems, the benefits do not appear to outweigh
the costs. However, the robustness guarantees provided by
Theorem 1 may still be useful in critical situations where
complexity or limited communication may preclude using

1Simulation code and problem instances available upon request.
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Figure 5: Simulated success rates of DREA, Early Execution, SREA, and Dynamic Controllability.

early execution or DREA. Further, the example in Figure 3
demonstrates that these guarantees may become more valu-
able in problems where waiting and synchronization are crit-
ical for success.

Interestingly, SREA consistently outperforms the dy-
namic controllability approach, albeit not always by a sta-
tistically significant margin. Recall that the dynamic con-
trollability approach is dynamic in the sense that it allows
execution decisions to be conditioned on events—however,
all such conditionals are still precomputed prior to execu-
tion. Dynamic controllability appears to constrain the solu-
tion space as much as SREA, which heuristically tries to
recover as much of the solution space as possible. Hence,
for this particular space of problems, the benefits of heuris-
tically expanding how much probability mass is captured by
each contingent edge outpaces the benefits of dynamic con-
trollability.

The success rates of all approaches improved as the de-
gree of synchrony between agents became less tight (Fig-
ure 5a). This is intuitive—as the synchronization windows
between uncertain processes increase, all strategies become
more robust. As interagent constraint density increases, the
success rate of all approaches generally decreased (Fig-
ure 5b). This is as expected—more dependencies between
agents means more opportunities for failure. At the same
time, SREA becomes much more competitive with the early
execution strategy. This points to the fact that as the density
of constraints increases, SREA’s ability to guide agents away
from schedules that are unlikely to lead to successful coor-
dinations becomes increasingly valuable.

Surprisingly, the success rates of all approaches increase
as standard deviations on distributions grow (Figure 5c).
We expected our approaches to benefit from peaky distribu-
tions containing dense information about when things were
likely to occur. We note that SREA attempts to increase the
bounds of contingent edges without regard to the associated
increase in probability mass, which works well for symmet-
rical, (e.g., normal) distributions. We suspect that the per-
formance of our algorithms would be improved if we biased
which bounds we increased in distributions exhibiting skew.

We also tracked the computational overhead introduced
by our methods in terms of runtime. Across all experiments,
SREA took 872±218 milliseconds in expectation to com-

plete each evaluation, which includes resolving the LP for
each α value during the binary search over α (with a reso-
lution of r = 0.001). Our DREA introduced more overhead
per problem instance, with on average approximately 26 sec-
onds per sample over the course of the simulated execution.
Recall that DREA works by reapplying SREA many times
during execution. As executed timepoints are removed from
the problem during simulation, the runtime of each applica-
tion of SREA progressively decreases, allowing scheduling
decisions to be safely dispatched within a half second.

Discussion

In this paper, we defined the Robust Execution Problem for
finding maximally robust dispatch strategies in probabilis-
tic temporal planning. We also contributed two approximate
methods for solving the REP. The first is an LP-based ap-
proximation that finds a static dispatch strategy by mini-
mizing the risk of failure associated with the uncertainty
of contingent edges and provides minimal robustness guar-
antees. Our second approach is the first to dynamically re-
optimize as execution unfolds, lowering risk when execu-
tion is turning out favorably, and gracefully increasing risk
when execution violates expectations. Our empirical evalua-
tion demonstrates that our dynamic approach significantly
outperforms all known approaches in terms of execution
success rate across a set of randomly-generated PSTNs.

In the future, we would like to evaluate the efficacy of
our approaches on real-world scheduling problems includ-
ing recently published PSTN benchmarks (Santana et al.
2016) and by deploying to real multi-robot systems. Addi-
tionally, we would like to generalize and test our approaches
on problems that contain the types of uncertainty found in
both PSTNs and STNUs (Santana et al. 2016). We would
also like explore whether there are improvements that can
be made to our LP if it is known a priori that replan-
ning may occur dynamically. We believe that robust dis-
patch strategies may be particularly useful in multiagent set-
tings, and would like to explore decentralized methods for
robustly managing multiagent temporal plans. Finally, we
would like to explore more explicitly the connection be-
tween multi-robot scheduling and the recent advances in
constrained multi-robot path planning (Ulusoy et al. 2013;
Hönig et al. 2016).
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