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Abstract

In this paper, we focus on the task of extracting named entities
together with their associated sentiment information in a joint
manner. Our key observation in such an entity-level sentiment
analysis (a.k.a. targeted sentiment analysis) task is that there
exists a sentiment scope within which each named entity is
embedded, which largely decides the sentiment information
associated with the entity. However, such sentiment scopes
are typically not explicitly annotated in the data, and their
lengths can be unbounded. Motivated by this, unlike tradi-
tional approaches that cast this problem as a simple sequence
labeling task, we propose a novel approach that can explic-
itly model the latent sentiment scopes. Our experiments on
the standard datasets demonstrate that our approach is able to
achieve better results compared to existing approaches based
on conventional conditional random fields (CRFs) and a more
recent work based on neural networks.

Introduction

Designing effective algorithms that can automatically per-
form sentiment analysis, the task of inferring the underlying
sentiment-level information associated with texts, is an im-
portant yet challenging task that has applications in various
fields (Pang and Lee 2008; Liu 2010; Ortigosa, Martı́n, and
Carro 2014; Smailović et al. 2013; Li and Wu 2010). Tra-
ditional sentiment analysis algorithms largely focus on as-
signing sentiment information at the complete sentence and
document level. Recently, there is a growing interest in per-
forming sentiment analysis at the target entities, where two
different types of tasks are considered: 1) to determine senti-
ment information for entities which are already recognized,
2) to jointly decide the named entities and their respective
sentiment information. In this paper, we focus on the latter,
which is a more challenging task than the former. Such a task
is also called entity-level sentiment analysis or targeted sen-
timent analysis (Mitchell et al. 2013), since the sentiment
information is assigned to specific target entities – certain
named entities in the texts. Figure 1 presents a real example,
where entities of interest are highlighted with their sentiment
information. Such an entity-level sentiment analysis task is
more challenging, but is more useful in many applications
such as product review (Hu and Liu 2004).
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MVP [Kyle Lowry]positive is very popular
in [NBA]neutral this year .

Figure 1: Entity-level sentiment analysis with named entities
and sentiment highlighted.

Currently, existing models tackled the entity-level senti-
ment analysis problem from a sequence labeling perspec-
tive, attempting to assign each word token in the text a spe-
cific tag. Such tags were used to indicate boundary and sen-
timent information associated with entities in the text. The
sequence labeling models can be either based on the linear-
chain or the factorial conditional random fields (CRFs)
(Mitchell et al. 2013), or certain neural structured prediction
models (Zhang, Zhang, and Vo 2015). Such models can typ-
ically make use of features based on information surround-
ing each word token within a fixed window of bounded size.
Thus the basic assumption behind such approaches is the
sentiment of each entity can be fully determined based on
such local contextual information.

However, such an assumption is not always true in prac-
tice. First, the right information required for determining the
current entity’s sentiment can appear outside the window.
Second, the information appearing inside the window is not
always indicative of the true sentiment associated with the
entity. Consider the example shown in Figure 1 with two
entities Kyle Lowry and NBA. Assume we use a bounded
window of size 2 (i.e. when constructing features, previous
and next 2 word tokens are considered), the word popular
that conveys key sentiment information will appear outside
of the window used for predicting the sentiment of the en-
tity Kyle Lowry. Thus such a model would have difficulty
assigning the positive sentiment to this entity. Increasing the
window size will not completely resolve this issue as the
sentiment-indicative keywords can appear far away from the
entity (e.g., consider the sentence “David Copperfield is be-
lieved to be one of the most amazing magicians . . . ”. Here
the keyword “amazing” appears far away from the entity
“David Copperfield”). On the other hand, since the same
word popular appears inside the window of the next entity,
it would be used to wrongly predict the sentiment associ-
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ated with the entity NBA, which in fact should be assigned
a neutral sentiment in this example.

Based on the above observations, in this work we pro-
pose a novel approach to entity-level sentiment analysis, by
assuming there exists a variable-size window of words sur-
rounding each entity that determine its sentiment polarity,
where the size of such windows can be unbounded. Such
window information is typically not available and needs to
be learned from data. We design a model that can effectively
capture entity, targeted sentiment, as well as such window
information in a joint manner. Specifically, we make the fol-
lowing major contributions in this work:
• We introduce the novel notion of sentiment scopes for the

task of entity-level sentiment analysis. Based on this, we
propose novel models that are able to efficiently learn sen-
timent scopes from data to jointly predict named entities
and their associated sentiment information.

• Empirically, we demonstrate that the proposed model
is able to consistently outperform previous approaches
based on conventional models based on CRF and neural
networks.

Approach

We present our approach to entity-level sentiment analysis
in this section. We first formally introduce the notion of sen-
timent scopes. Next we discuss our models.

Sentiment Scopes

Following previous work (Mitchell et al. 2013), only voli-
tional entities (named entities of type Person and Organiza-
tion) are considered for sentiment analysis in this work. Our
primary assumption is that for each volitional entity, there
exists a sentiment scope, which is analogous to the notion of
negation scope (Zou, Zhou, and Zhu 2013). The sentiment
scope fully determines the entity’s sentiment-level informa-
tion. We define a sentiment scope of a particular entity e
in a given text as a consecutive sequence of words, which
contains the entity e, as well as words surrounding e. Un-
like existing approaches which simply assume there exists
a window of fixed size around the volitional entity, we as-
sume there exists a window of unbounded size that speci-
fies the boundaries of each sentiment scope. Note that we
also assume each word appearing in a given sentence strictly
belongs to exactly one sentiment scope of a particular vo-
litional entity. This means the sentiment scopes cover the
complete sentence, while they do not overlap with one an-
other.

However, the sentiment scopes are not explicitly anno-
tated in the training data. We thus need to build models
that can automatically learn such latent information from the
data. As we will see later, with the above assumptions on the
properties of sentiment scopes in each sentence, we will be
able to design compact representations encompassing expo-
nentially many possible combinations of sentiment scopes
for efficient inference.

Let us return to the example shown in Figure 1 in the pre-
vious section. The sentence, which is a tweet, contains two
volitional entities: Kyle Lowry and NBA, where the former

should be associated with a positive sentiment and the latter
with a neutral one. In this case, the keywords very and popu-
lar that are indicative of a positive sentiment should be used
to predict the sentiment for the entity Kyle Lowry rather
than NBA, even though the word popular appears closer to
the latter. Thus, the correct latent sentiment scope for Kyle
Lowry in this case could be MVP Kyle Lowry is very pop-
ular, while the sentiment scope for NBA could be in NBA
this year . We will see how our model can capture such latent
information.

Models

We adopt an approach based on graphical models together
with the above assumptions on sentiment scopes. Similar to
the collapsed CRF, we integrate both named entity informa-
tion and sentiment level information together to form label
sequences. We extend such an approach by using 9 different
types of nodes at each word/position, namely B+, E+ and
A+ nodes for positive sentiment, B−, E− and A− nodes
for negative sentiment, as well as Bo, Eo and Ao nodes for
neutral sentiment.

The B nodes are used to denote that the current word is
part of a sentiment scope of a certain sentiment polarity, but
it appears before the named entity in the scope or exactly as
the first word in the entity. The E nodes are used to denote
the fact that the current word is part of a named entity of
a certain polarity. The A nodes are used to denote that the
current word appears within a sentiment scope of a certain
polarity but is after the named entity or as the last word in
the named entity. At each position, only some relevant nodes
will be selected based on where the named entities and sen-
timent scopes are. The nodes selected at different positions
will then be connected with each other, forming a sentiment
scope graph that shows the named entity information and
their associated sentiment scopes with polarity information.

We show illustrative examples in Figure 2. At each posi-
tion, there are 9 different nodes that can be divided into 3
groups. Each group represents one possible sentiment: posi-
tive (+), negative (-), and neutral (o). We again use the same
sentence “MVP Kyle Lowry is very popular in NBA this year
.” as an example. This example contains two entities. Thus
two sentiment scopes should be formed for this sentence,
with the first having the positive sentiment and the second a
neutral one.

Let us now take a closer look at how exactly a particular
sentiment scope graph can be formed. In this example, the
first word is “MVP” that is not part of any entity. However
this word appears within the sentiment scope of an entity
with the positive sentiment. Thus the node B with a posi-
tive sentiment is selected. The next word appears as the first
word of the named entity “Kyle Lowry”, and therefore the
node B is selected. Also, since this word “Kyle” is part of
a named entity, the node E is also selected at this position.
The next word “Lowry” is again part of a named entity, but
it appears as the last word in the entity. Therefore both E
and A nodes of the positive sentiment are selected. The next
word is “is”, which appears outside of any entity. If we as-
sume this word is still part of the sentiment scope for the
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MVP is very popular in this year .Kyle Lowry NBA

a. A sentiment scope graph consisting of correct named entities and sentiment annotation with two possible latent sentiment scopes.
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b. An example sentiment scope graph associated with incorrect named entities and incorrect sentiment annotation.

MVP is in this year .Kyle Lowry very popular NBA

Figure 2: Example sentiment scope graphs.

named entity “Kyle Lowry”, the node A at the correspond-
ing position needs to be selected, as shown in Figure 2 (a).
The next word is “very”. We can still assume this word ap-
pears within the sentiment scope of the first entity, but we
can also assume it appears within the sentiment scope of the
second entity (“NBA”) with a neutral polarity. In the former
case, the node A needs to be selected, while in the latter case
the node B of the neutral sentiment will be selected.

We can continue the above node-selection process until
we have reached the end of the sentence. Next we can con-
nect the selected nodes at different positions to form a sen-
timent scope graph, which is a directed chain. In Figure 2
(a), two possible graphs among all the possible graphs are
highlighted for the above example sentence.

Note that given any sentence, there exist exponentially
many possible sentiment scope graphs, each specifying a
different possible entity and sentiment scope combination.
For example, in Figure 2 (b), we show another example
sentiment scope graph that comes with incorrect sentiment
scope information. Specifically, in this graph, the scope
“very popular” is wrongly annotated as the second entity
with the positive sentiment.

Our task is to build a model that can assign high scores to
those sentiment scope graphs with correct named entity and
sentiment scope information, and can assign lower scores to
other incorrect sentiment scope graphs. Following the CRF

model (Lafferty, McCallum, and Pereira 2001), we use a
log-linear formulation with latent variables to parameterize
our model. Specifically, the probability of predicting a pos-
sible output y, which is a collection of named entities and
their associated sentiment information, given an input sen-
tence x is defined as:

p(y|x) =
∑

h exp (wT f(x,y,h))∑
y′,h′ exp(wT f(x,y′ ,h′))

(1)

where w is the weight vector, and f(x,y,h) is the feature
vector defined over the sentence x and the output structure
y, together with the latent variable h that provide the de-
tailed sentiment scope information for the (x,y) tuple.

A Semi-Markov Variant

The above model relies on the first-order Markov assump-
tions between nodes of adjacent words. We can relax this as-
sumption, resulting in a semi-Markov (Sarawagi and Cohen
2004) variant of the above model. Different from the origi-
nal model, in this new model we do not have the E nodes.
Whenever we have an entity, we establish a direct edge that
connects the first word’s B node and the last word’s A node.
An illustrative example is shown in Figure 3. In this ex-
ample, the words “Internet Marketing Agency” is an entity.
Thus an edge between the B node of “Internet” and A node
of “Agency” is established to reflect this fact. The rest of the
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sentiment scope graph remains the same. Such a model is
able to capture certain non-Markovian features that can not
be captured by the standard model above. However, it comes
with a slightly higher time complexity.

B B B B B

A A A A A

like inInternet Marketing Agency

Figure 3: An example partial sentiment scope graph for the
semi-Markov variant, where Internet Marketing Agency is
an entity.

Features

Feature functions can be factorized as products of two in-
dicator functions: one defined on the input sequence (input
features) and the other on the output labels (output features).
In other words, we could write each feature fj(x,y,h) as
f in
k (x) × fout

l (y,h). Following Mitchell et al. (2013) and
Zhang et al. (2015), we created all input features based
on Table 1, and used the MPQA lexicon (Wilson, Wiebe,
and Hoffmann 2005) and the SentiWordNet lexicon (Bac-
cianella, Esuli, and Sebastiani 2010) to obtain polarity infor-
mation for English. The Spanish versions of the MPQA lexi-
con and SentiWordNet lexicon are created based on their En-
glish versions. These lexicons are exactly the same as those
used in (Mitchell et al. 2013). Features for the semi-Markov
variant are listed in the supplementary material.

Our models are able to encode features defined over latent
sentiment scopes. Specifically, we define features as combi-
nations of each non-entity word and the sentiment informa-
tion of the sentiment scope it belongs to. We also create fea-
tures as combinations of each non-entity word, its sentiment
information, as well as its relative position to the named en-
tity (i.e., before or after the named entity).

Training and Decoding

We aim to minimize the negative joint log-likelihood of our
dataset with L2 regularization, which is defined as:

L(w) =
∑
i

log
∑
y′,h′

exp(wT f(x(i),y′,h′))

−
∑
i

log
∑
h

exp(wT f(x(i),y(i),h)) + λwTw (2)

where (x(i),y(i)) is the i-th training instance and λ is the L2

regularization parameter. Here the output y basically con-
veys the information annotated in the dataset, including en-
tity boundaries and sentiment information, but does not pro-
vide the latent sentiment scope information. Due to the la-
tent variables involved, the above objective function is non-
convex. The gradient with respect to each parameter wk can

Surface Features

binned word length, message length, sentence position; Jerboa
features; word identity; word lengthening; punctuation char-
acters, has digit; has dash; is lower case; is 3 or 4 letters; first
letter capitalized; more than one letter capitalized, etc.
Linguistic Features

function words; can syllabify; curse words; laugh words;
words for good/bad; slang words; abbreviations; intensiers;
subjective suffixes and prefixes (such as diminutive forms);
common verb endings; common noun endings
Brown Clustering Features

cluster at length 3; cluster at length 5
Sentiment Lexicon Features

is sentiment-bearing word; prior sentiment polarity

Table 1: Features used in our models. All these features are
exactly the same as those discrete features used in Mitchell
et al. (2013) and Zhang et al. (2015).

be computed as:

∂L(w)

∂wk
=

∑
i

Ep(y′,h′|x(i))

[
fk(x

(i),y′,h′)
]

−
∑
i

Ep(h|x(i),y(i),)

[
fk(x

(i),y(i),h)
]
+ 2λwk (3)

where Ep[·] is the expectation under the distribution p.
We can use standard gradient-based methods to optimize

the objective function. In this work, we choose to use L-
BFGS (Liu and Nocedal 1989) as the optimization algo-
rithm, which was previously shown effective in optimizing
similar objective functions (Blunsom, Cohn, and Osborne
2008).

To efficiently calculate the objective value and the above
expectations, we apply a generalized forward-backward
style algorithm, which allows us to perform exact inference
using dynamic programming. The key observation here is
that there exists a topological ordering amongst all the nodes
appearing in any sentiment scope graph. This allows us to
use a compact representation to encode exponentially many
sentiment scope graphs for a given sentence, and the result-
ing representation is a directed acyclic graph.

During decoding, we use standard MPE inference, where
we simply replace the sum operation in the forward-
backward style algorithm used during training by the max
operation. The resulting algorithm is analogous to the
Viterbi algorithm used for decoding a linear-chain CRF.
From the decoded sentiment scope graph, we can simply
read off the predicted named entities and their associated
sentiment information. Our model is also able to obtain the
predicted sentiment scope information associated with each
predicted named entity as a by-product.

The time complexity of the inference procedure for the
sentiment scope model is O(nT 2), where n is the sentence
length, and T is the number of different sentiment types,
which in our case is a small constant (3). For the semi-
Markov model, the time complexity is O(nLT 2), where L
is the maximal entity length.
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Model
English Spanish

Entity Recognition Sentiment Analysis Entity Recognition Sentiment Analysis
P. R. F1 P. R. F1 P. R. F1 P. R. F1

Pipeline 65.74 47.59 55.18 46.80 33.87 39.27 71.29 58.26 64.11 43.80 35.80 39.40
Collapsed 54.00 42.69 47.66 38.40 30.38 33.90 62.20 52.08 56.66 39.39 32.96 35.87
Joint 59.45 43.78 50.32 41.77 30.80 35.38 66.05 52.55 58.51 41.54 33.05 36.79
(Zhang, et al. 2015) 60.69 51.63 55.67 43.71 37.12 40.06 70.23 62.00 65.76 45.99 40.57 43.04
SS 63.18 51.67 56.83 44.57 36.48 40.11 71.49 61.92 66.36 46.06 39.89 42.75
SS (+word embeddings) 66.35 56.59 61.08 47.30 40.36 43.55 73.13 64.34 68.45 47.14 41.48 44.13
SS (+POS tags) 65.14 55.32 59.83 45.96 39.04 42.21 71.55 62.72 66.84 45.92 40.25 42.89
SS (semi) 63.93 54.53 58.85 44.49 37.93 40.94 70.17 64.15 67.02 44.12 40.34 42.14

Table 2: Main results. (SS: sentiment scope model introduced in this paper, semi: the semi-Markov variant of the model)

Experimental Setup

Data

We mainly performed most of our experiments based on
the dataset from (Mitchell et al. 2013). This dataset con-
sists of 7,105 Spanish tweets and 2,350 English tweets, with
named entities and their sentiment information annotated.
See supplementary material for detailed corpus statistics.
Following previous research efforts (Mitchell et al. 2013;
Zhang, Zhang, and Vo 2015), we report 10-fold cross-
validation results, and split 10% of the training set for de-
velopment.

We also carried out additional experiments based on
datasets from SemEval 2016 and TASS 2015. Such results
are listed in the supplementary material.

Evaluation Metrics

Different from (Mitchell et al. 2013) which performed eval-
uation at the word token level, we conducted evaluations
at the entity level. This makes our results comparable with
those of (Zhang, Zhang, and Vo 2015), which also adopted
the same evaluation methodology. Specifically, for entity
recognition, we calculated precision (P., the percentage of
entities predicted by the model which are correct), recall (R.
the percentage of of the entities in the dataset that are cor-
rectly discovered by the model) and F1-measure (the har-
monic mean of precision and recall). We also report results
for entity-level sentiment analysis (where the prediction is
regarded as correct only if both the entity and sentiment in-
formation are correct), and subjectivity.

Baseline

We first compared against three CRF-based baselines: the
collapsed model, the joint model and the pipeline model,
which are also the models used in (Mitchell et al. 2013). We
re-implemented all these models, and used exactly the same
word-level features in all models to have a fair comparison.

The collapsed model is essentially a linear-chain CRF
model, where the tagset {O, B-positive, B-negative, B-
neutral, I-positive, I-negative, I-neutral} was used. Each
tag indicates the sentiment information as well as the rela-
tive position of the word in the entity. The joint model is es-
sentially a factorial CRF model (Sutton, McCallum, and Ro-
hanimanesh 2007) with two layers, which jointly labels each
sentence with two different tagsets: {B, I, O}, and {positive,

negative, neutral, no sentiment}. The pipeline model in-
volves two linear-chain CRF. First, we use the tagset {B, I,
O} to perform volitional entity recognition. Next, we predict
the sentiment information for each named entity. Finally we
combine results from these two steps to output the named
entities with targeted sentiment.

Features used in the collapsed model, joint model and the
first step of the pipeline model are the same as those de-
scribed in Table 1. In the second step of the pipeline model,
only sentiment related features are used to predict targeted
sentiment information.

Another baseline we compared against is the best-
performing model presented in (Zhang, Zhang, and Vo
2015), which is motivated by the neural CRF model (Do,
Arti, and others 2010), integrating standard discrete CRF
features and continuous features (based on word embed-
dings). Their “Pipeline Integrated” system that incorporates
both discrete features and continuous features gives the best
F-score in that paper. Note that their continuous features
based on word embeddings are additional features, which
are not available to us.

Results and Discussions

Comparisons with Baselines

Main results for both English and Spanish datasets are
shown in Table 2. When comparing with the baseline
pipeline, joint and collapsed models, our model consistently
gives a significantly higher F1-measure for both English and
Spanish (p < 10−4 under paired t-test for all cases except
for entity recognition for both languages, in which case,
comparing our model and pipeline, we have p < 10−3).
These results confirm that our model has the capability to
capture some dependencies between entities and their senti-
ment information more accurately through the use of senti-
ment scopes (SS).

We also compared against the best performing system re-
ported in (Zhang, Zhang, and Vo 2015). Note that such a
comparison is unfair for us since in their model additional
word embedding features (learned from their own Twitter
data) were used, while we only used discrete features. Nev-
ertheless, compared with this model, for both datasets, our
model performs competitively with their best-performing
“Pipeline Integrated” approach reported in (Zhang, Zhang,
and Vo 2015).
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Model
English Spanish

Entity Recognition Sentiment Analysis Entity Recognition Sentiment Analysis
P. R. F1 P. R. F1 P. R. F1 P. R. F1

SS 63.18 51.67 56.83 44.57 36.48 40.11 71.49 61.92 66.36 46.06 39.89 42.75
SS (no s.p.) 63.39 51.40 56.76 44.37 36.00 39.74 71.97 61.18 66.13 44.19 37.55 40.60
SS (fixed scopes) 62.11 49.93 55.34 43.69 35.15 38.94 69.70 58.64 63.69 44.84 37.73 40.97
SS (fixed scopes, no s.p.) 61.66 49.32 54.79 43.98 35.18 39.08 69.85 57.87 63.29 43.33 35.89 39.26
SS (semi) 63.93 54.53 58.85 44.49 37.93 40.94 70.17 64.15 67.02 44.12 40.34 42.14
SS (semi, fixed scopes) 65.49 54.06 59.21 45.11 37.24 40.79 69.64 62.69 65.97 42.94 38.67 40.69

Table 3: Results for additional experiments. (SS: our sentiment scope model introduced in this paper. semi: its semi-Markov
variant. no s.p.: no sentiment propagation.)

To understand the effect of using word embeddings as fea-
tures, we used the pre-trained English and Spanish word em-
beddings from polyglot (Al-Rfou, Perozzi, and Skiena 2013)
which is publicly available, and constructed continuous fea-
tures in our model (when constructing such features, the val-
ues at each dimension of the embeddings are regarded as
feature values). Results show that inclusion of such features
can consistently further improve our results, leading to the
best results compared with all other systems. Experiments
on the semi-Markov variant of our model show that such a
model is effective as well, with comparable or slightly better
results as compared to our standard model (we added addi-
tional non-Markovian features to indicate entity boundaries
and relative positions for each word in the entity. We tuned
L using the development set, where L = 6 for English, and
L = 7 for Spanish).

Results also show that using POS tags as features can lead
to improved results. We believe this is due to the fact that
such POS tag information can be used to partially disam-
biguate the sentiment senses of certain words (e.g., the word
“like” may have different sentiment senses when different
POS tags are assigned to it).

We also measured the precision, recall and F-measure of
subjectivity and non-neutral polarities as shown in Table 4
on the Spanish dataset and compared against the results re-
ported in (Zhang, Zhang, and Vo 2015). The subjectvity
measures whether a target sentence or phrase expresses an
opinion or not according to (Liu 2010). Comparing with the
best-performing system’s results reported in (Zhang, Zhang,
and Vo 2015), both of our models can obtain a higher F-
measure, especially when only the non-neutral sentiment
analysis is considered.

To understand the results qualitatively, we used our model
to output the predicted sentiment scopes. One interesting ex-
ample that we found was: “When it comes to presentation,
Mark Zuckerberg is no Steve Jobs ;P http://t.co/3ORETf2
facebook announcement”. Here our model successfully
marked “Mark Zuckerberg” as negative, and “Steve Jobs” as
positive, due to the correct sentiment scope boundary pre-
dicted (between “no” and “Steve”).

Additional Experiments

To understand the effectiveness of our models better, we
conducted some additional experiments on different variants
of our sentiment scope model. Results are shown in Table 3.

Model
Subj (+,-,o) SA (+,-)

P. R. F1 P. R. F1

(Zhang, et al.) 49.2 42.1 45.3 40.9 21.6 27.9
SS 49.0 42.4 45.4 37.2 24.7 29.6
SS (+emb) 50.0 44.0 46.8 37.6 25.4 30.2

Table 4: Results on subjectivity as well as non-neutral sen-
timent analysis on the Spanish dataset. (Subj(+,-,o): subjec-
tivity for all polarities. SA(+,-): sentiment analysis for non-
neutral polarities. SS: our basic sentiment scope model in-
troduced in this paper without word embedding features. SS
(+emb): SS model with word embedding features.

First, we removed all sentiment-level features defined at
non-entity words in the sentiment scopes. This prevented the
sentiment information associated with entities from being
propagated to other words within the same sentiment scope.
We call the resulting approach a model without “sentiment
propagation” (no s.p.). Under such a setting, only sentiment
features that appear around the entities within a fixed-size
window can be exploited, while certain long-distance sen-
timent dependencies that can be captured by the sentiment
scopes will not be captured. For both languages, the overall
results of such an approach are much lower than those of the
standard model. These results indicate that there does exist
some long-distance sentiment information that needs to be
captured, and can be captured by our model.

In another experiment, to understand the importance of
modeling the sentiment scopes as latent variables, we im-
plemented a simpler version of our model by assuming the
boundaries of two adjacent sentiment scopes are fixed at
the middle point of the sequence of words appearing in be-
tween two adjacent entities (fixed scopes). The results show
such a model in general yields much worse results than the
standard approach across two languages for both tasks. The
only exception is when the semi-Markov model is consid-
ered and English data is used, where fixing the sentiment
scopes can yield comparable results in F-measure. These re-
sults largely confirm the importance of modeling the latent
sentiment scopes.

Related Work

Sentiment analysis and opinion mining has been a very pop-
ular task in the past decade (Pang and Lee 2008; Liu 2010).
They can be largely regarded as structured prediction prob-

3487



lems. In fact, there exist several approaches that rely on
graphical models, especially sequence labeling models for
such a task. For example, Jin et al. (2009) used a lexical-
ized HMM to extract opinions and their orientation. Li et
al. (2010) used a CRF to perform joint extraction of opin-
ions and opinion targets. Yang and Cardie (2012) proposed
to use a semi-Markov CRF model for opinion expression ex-
traction.

Mitchell et al. (2013) introduced the task of open domain
targeted sentiment analysis, and regarded it as a sequence
labeling problem. They proposed several models based on
CRF that can predict both entity and targeted sentiment in-
formation. Zhang, Zhang and Vo (2015) proposed an ap-
proach that combines neural networks with a structured pre-
diction model for open domain targeted sentiment task. They
have demonstrated that it is useful to integrate both dis-
crete and continuous features for such a task. The model
learns to predict at each position the label based on con-
textual words from a window of limited size. The authors
also proposed a recent model based on gated neural net-
works (Zhang, Zhang, and Vo 2016) to capture the influence
of the surrounding words when performing sentiment clas-
sification of entities. While this approach shares similar mo-
tivations as ours, it tackles a simpler task where the named
entities are assumed to be already recognized.

Other approaches to predicting sentiment structures also
exist. For example, Socher et al. (2013) performed sentiment
analysis on top of syntactic tree structures and introduced a
sentiment treebank. They proposed to use neural networks
to recursively predict sentiment labels at each tree node.

Conclusion

In this work, we explored entity-level sentiment analy-
sis by using a novel model that captures latent sentiment
scopes. The model yields significantly better results than
those of different baseline systems, due to its ability to cap-
ture unbounded long-distance sentiment dependencies be-
tween words and entities. We also performed further inves-
tigations to verify the effectiveness of the proposed model.
Future work includes extending the model to support other
types of inputs such as trees (Socher et al. 2013), and to re-
lax some assumptions we have made in this work so as to
handle more sophisticated language phenomena. For exam-
ple, one assumption that we made when defining the senti-
ment scopes was that they strictly do not overlap with one
another. However, such an assumption is not always true
in practice, and we believe some recent models developed
for predicting overlapping structures (Lu and Roth 2015;
Muis and Lu 2016) can be potentially used for modeling
overlapping sentiment scopes.

We make our code, system and supplementary material
available at http://statnlp.org/research/st/.
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