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Abstract

Opinion target extraction is a fundamental task in opinion
mining. In recent years, neural network based supervised
learning methods have achieved competitive performance on
this task. However, as with any supervised learning method,
neural network based methods for this task cannot work well
when the training data comes from a different domain than the
test data. On the other hand, some rule-based unsupervised
methods have shown to be robust when applied to different
domains. In this work, we use rule-based unsupervised meth-
ods to create auxiliary labels and use neural network models
to learn a hidden representation that works well for different
domains. When this hidden representation is used for opinion
target extraction, we find that it can outperform a number of
strong baselines with a large margin.

Introduction

Opinion target extraction is a fundamental problem in opin-
ion mining. Its goal is to extract from opinionated texts
the targets on which opinions have been expressed. For ex-
ample, given the sentence “I like the tuna sandwich and
chicken salad very much,” the opinion targets should be tuna
sandwich and chicken salad. Opinion target extraction has
many downstream applications such as sentiment classifica-
tion and opinion summarization. Given its importance, the
problem has attracted much attention in the research com-
munity in the last decade (Schouten and Frasincar 2016).

Opinion target extraction is typically modeled as a su-
pervised sequence labeling problem. A traditional approach
is to use hand-crafted discrete features at token level cou-
pled with Conditional Random Fields (CRFs) (Lafferty, Mc-
Callum, and Pereira 2001) to extract opinion targets. In re-
cent years, with the advances of deep learning techniques
for NLP, many researchers also tried to apply deep neural
networks to this problem. In particular, Recurrent Neural
Networks (RNNs) and their variants such as BiRNNs and
LSTMs have been applied to opinion target extraction and
shown to be effective (Liu, Joty, and Meng 2015).

As with any supervised learning method, the neural net-
work based methods for opinion target extraction also suf-
fers from the domain adaptation problem. This happens
when the training data labeled with opinion targets comes
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from a domain different from the test data. For example, the
labeled training data may contain laptop reviews, but the test
data may contain restaurant reviews. This domain difference
often causes a serious problem because the opinion target
words can be very different in the two domains. For exam-
ple, in the restaurant domain, words such as food and drink
are frequent opinion targets, but if the training data comes
from the laptop domain, you may not see these words at all
in the training data. In our experiments, we find that some
state-of-the-art RNN based method for opinion target ex-
traction may face a performance drop of up to 40% when
the training and the test data comes from different domains.

On the other hand, people have also developed some rule-
based methods for opinion target extraction that are unsu-
pervised and therefore more robust in different domains. For
example, the double propagation method developed by Qiu
et al. (2011) is an unsupervised method that has been shown
to work well without any training data.

In this paper, we study how we can take advantage of neu-
ral network based supervised methods and rule-based un-
supervised methods to develop a method for cross-domain
opinion target extraction. Our method is motivated by the
idea of learning a good hidden representation for both the
source and the target domains by utilizing syntactic rules
that are domain-independent. Specifically, we first use these
syntactic rules to generate auxiliary labels. We then use re-
current neural networks, in particular, long short-term mem-
ory networks (LSTMs), to learn a good hidden layer that
works well for predicting these auxiliary labels for both the
source and the target domains. In addition, this hidden layer
is also trained to work well for predicting the opinion tar-
gets in the source domain. We propose two different neu-
ral network architectures to learn the hidden representations.
Our experiments using reviews from four different domains
show that our proposed method can significantly outperform
a number of strong baselines, including some domain adap-
tation methods.

The main contribution of our work is a novel way of
combining rule-based, unsupervised opinion target extrac-
tion with neural network based supervised models to achieve
better performance in a cross-domain setting.
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Related Work

Opinion Target Extraction (OTE): Most existing studies
of opinion target extraction can be categorized into rule-
based methods or supervised machine learning based meth-
ods. The former either focuses on highly frequent single
and compound nouns (Hu and Liu 2004) or defines some
syntactic rules to detect opinion targets (Qiu et al. 2011).
The later usually treats the problem as a sequence label-
ing task by applying Hidden Markov Models (HMMs) (Jin
and Ho 2009) or Conditional Random Fields (CRFs) (Yang
and Cardie 2013). With the recent advances of deep learn-
ing techniques for NLP, many neural network based models
such as Neural-CRF, RNNs and their variants have been ap-
plied to this problem and shown competitive performance
(Liu, Joty, and Meng 2015; Zhang, Zhang, and Vo 2015;
Yin et al. 2016; Wang et al. 2016). While these studies fo-
cus on standard single-domain opinion target extraction, our
work aims at developing a general neural network based
method for cross-domain opinion target extraction.
Cross-Domain OTE: To the best of our knowledge, only a
few studies have explored cross-domain opinion target ex-
traction by using hand-crafted domain-independent features
and CRF models (Jakob and Gurevych 2010; Chernyshevich
2014). Different from them, our proposed models are based
on distributed word vectors and neural networks.
Domain Adaptation: Domain adaptation has attracted
much attention in recent years (Pan and Yang 2010).
One typical line of work aims to derive a general low-
dimensional cross-domain representation by leveraging ei-
ther auxiliary tasks (Blitzer, McDonald, and Pereira 2006)
or unsupervised auto-encoders (Chen et al. 2012). Another
line of work focuses on inducing robust cross-domain fea-
ture embeddings based on predicting its neighboring fea-
tures (Yang and Eisenstein 2015). Our work is similar to the
first line of work since we try to learn a general cross-domain
representation through auxiliary labels.

Methodology

Notation

Opinion target extraction aims at extracting all the opinion
targets from a given sentence. An opinion target is not re-
stricted to a single token; in fact, it often contains multi-
ple tokens. The task is therefore a typical sequence labeling
problem.

Formally, we represent a sentence as a sequence of tokens
x = (w1, w2, . . . , wN ), where each wi is a word type from
a vocabulary V . Opinion targets are indicated by token-level
labels y = (y1, y2, . . . , yN ), where each yi ∈ {B, I,O}.
The three labels B, I and O refer to the beginning, inside and
outside of an opinion target, respectively, and they follow the
standard BIO notation used in sequence labeling. A sample
review sentence together with its opinion target labels are
shown in Figure 1.

We assume that there is a set of labeled review sentences
from a source domain, denoted with Ds = {(xs,ys)}. On
the other hand, the sentences from which opinion targets
need to be extracted come from a different target domain
and are denoted with Dt = {xt}. We would like to use both

Figure 1: A sample sentence and its labels.

Ds and Dt to train a good model for opinion target extrac-
tions for the target domain.

Overview of Our Method

Our method is essentially a supervised method based on re-
current neural networks. The key to our method is a hidden
layer of the neural network that is trained using auxiliary
labels created by domain-independent rules. The idea of us-
ing auxiliary labels to induce a representation for domain
adaptation is not new (Blitzer, McDonald, and Pereira 2006;
Blitzer, Dredze, and Pereira 2007). It essentially follows the
principle of multi-task learning, where it is generally be-
lieved that if multiple prediction tasks are related, then the
underlying prediction models are likely to share some com-
mon feature structures. When the auxiliary tasks are related
to the actual prediction task and the labels of the auxiliary
tasks can be easily obtained for both the source and the tar-
get domains, we can use the auxiliary tasks to help us induce
a good hidden feature representation that is good for domain
adaptation.

Neural network models are intrinsically suitable for this
kind of multi-task learning based domain adaptation because
we can naturally use one of the hidden layers as the cross do-
main hidden representation. To the best of our knowledge,
however, there has not been any work on extending neu-
ral network models to solve the domain adaptation problem
for opinion target extraction. In our method, we use a Re-
current Neural Network (specifically, an LSTM) to process
an input sentence such that each token has a correspond-
ing hidden vector. Typically this hidden vector will then go
through a linear transformation followed by a softmax layer
to make the final prediction. In our method, this hidden vec-
tor is used for predicting not only the opinion target label but
also some auxiliary label. The auxiliary labels are predicted
by manually-crafted syntactic rules, which will be detailed
below.

Figure 2 illustrates the main idea of our method at a high
level. We can see that typically, as shown in Figure 2(a),
the hidden layer h is learned only through back propaga-
tion from the true labels y, which are only available in the
source domain. With our method, as shown in Figure 2(b)
and Figure 2(c), there is an auxiliary hidden layer h′ that
is learned using some auxiliary labels z. And this auxiliary
hidden layer h′ is then either to be concatenated with h or
to generate h in order to predict the true labels y. Because
the auxiliary labels z are available in both the source and
the target domains, we can expect the auxiliary hidden layer
h′ to be properly learned such that it works well for both
domains.
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Figure 2: Overview of the standard method and our method.

Recurrent Neural Networks for Opinion Target
Extraction

In this section, we describe how we use recurrent neural net-
works for opinion target extraction. Note that this is a stan-
dard approach and has been studied before (Liu, Joty, and
Meng 2015). Recall that we use x = (w1, w2, . . . , wN ) to
represent an input sentence. Let xi ∈ Rd denote the embed-
ding vector for word wi. A recurrent neural network model
aims at learning a hidden vector representation for each posi-
tion i that supposedly encodes all the tokens from the begin-
ning of the sentence up to position i. Specifically, let hi−1

denote such a hidden vector corresponding to position i− 1.
Then the hidden vector hi is defined as follows:

hi = g(hi−1,xi),

where g(·) is some function. For example, in standard RNN,
we have

hi = f(Uhi−1 +Vxi + c),

where U ∈ Rl×l and V ∈ Rl×d are weight matrices, c ∈ Rl

is a bias vector, l is the dimension of the hidden layer, and
f(·) is an element-wise non-linear transformation function.

In our experiments, we experiment with a few different
types of RNNs, including the standard RNN, bi-directional
RNN, long short-term memory (LSTM) network (which is a
special form of RNN), and bi-directional LSTM. We will not
give the details of LSTM here. Interested readers can refer
to Hochreiter and Schmidhuber (1997) for details.

To simplify the discussion, we use Θ to denote all the
parameters used in any type of an RNN, and represent the
hidden layer as

hi = RNNΘ(hi−1,xi).

The vector hi is then used to predict the opinion target
label as follows:

p(yi | hi) = softmax(Whi + b),

where W is a weight matrix and b is a bias vector, both to
be learned.

Rule-based Auxiliary Labels

Our preliminary experiments using the RNN model pre-
sented above on target opinion extraction suggest that the
supervised RNN model relies much on lexical information.
This is not surprising because the RNN model does not
model syntactic structures of a sentence such as part-of-
speech tags and dependency relations. Although lexical in-
formation is very important for opinion target extraction, it
is also very domain specific. As a result, we find that the
RNN model performs poorly in cross-domain settings.

On the other hand, people have studied how to use general
syntactic patterns to detect opinion targets (Zhuang, Jing,
and Zhu 2006; Qiu et al. 2011). An important observation
is that opinion targets often co-occur with explicit opinion
expressions, which usually contain opinion words. Syntac-
tically, there are some patterns between opinion words and
opinion targets, and these patterns tend to be general across
different domains. For example, usually the object of the
verb love is an opinion target. Using this rule, we can predict
that the phrases tuna sandwich and chicken salad in the sen-
tence “I love tuna sandwich and chicken salad very much”
are opinion targets. We can also predict that the phrase the
design of iPhone 7 in the sentence “I love the design of
iPhone 7” is an opinion target. We can see that the two sen-
tences come from very different domains, but the rule is gen-
eral.

Based on the work by Qiu et al. (2011), we develop a set
of rules that use syntactic patterns to detect potential opinion
targets. The rules are based on three dependency relations:
amod, nsubj and dobj. In the descriptions below, we use ar-
rows to indicate the direction of the dependency relations.
We use T to denote a potential opinion target and O to de-
note an opinion word. We use four rules (R1, R2, R3 and
R4) shown in Table 1 to identify T.

In addition, we have the constraints that the opinion word
O must come from a pre-defined sentiment lexicon, and the
POS tag of the target T must be one of {NN, NNS, NNP,
NNPS}.

The rules above can only help us identify the head word
of an opinion target. However, many opinion targets consist
of multiple tokens. In order to identify additional tokens in
opinion targets, we analyze the dependency relations within
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RuleID Rule Example

R1 O
amod−→ T They have nice dessert.

(nice amod−→ dessert)
R2 T

nsubj−→ O Its camera is great.

(camera
nsubj−→ great)

R3 T
dobj−→ O I love their fries.

(fries
dobj−→ love)

R4 T
nsubj−→ H

amod←− O iPhone is the best cellphone.

(iPhone
nsubj−→ phone amod←− best)

ER1 W
amod−→ T I like Indian food.

(Indian amod−→ food)
ER2 W

nn−→ T Their spring roll is great.
(spring nn−→ roll)

ER3 W2
pobj−→ W1

prep−→ T I like the design of iPhone.

(iPhone
pobj−→ of

prep−→ design)

Table 1: Rules for detecting opinion targets. H represents any
word. W represents an additional target word to be detected
using the expansion rules.

opinion targets and identify a set of expansion rules to ex-
pand opinion targets. They are shown as ER1, ER2 and ER3
in Table 1.

The rules described above can help us identify potential
opinion targets in any given domain. However, using only
these rules to extract opinion targets does not give very com-
petitive results. This is because the coverage of these rules is
still limited, and therefore the performance of a purely un-
supervised method using these rules is not competitive, as
we will see in the experiment section. In the next section,
we will describe in detail how we combine these rules with
recurrent neural network models to perform cross-domain
opinion target extraction.

Two Architectures for Cross-domain Opinion
Target Extraction

In this section, we will describe the neural network archi-
tectures we use to combine auxiliary labels with true labels
in order to perform cross-domain opinion target extraction.
The core of our models is to learn a hidden vector represen-
tation for each token that is useful for both the source and
the target domains.

First of all, we have the following training data available
to us. Recall that in the source domain, we have a set of
sentences together with the true opinion target labels, de-
noted as Ds = {(xs,ys)}. Next, for both sentences in the
source domain and sentences in the target domain, based on
the syntactic rules we have defined, we can obtain their aux-
iliary label sequences. Let us use z to denote the auxiliary
labels of sentence x. Let Da = {(xa, za)} denote all the
sentences from the source and the target domains together
with their auxiliary labels.

We now present two neural network architectures to use
Ds and Da to learn a prediction model. In both architectures,
we introduce an auxiliary hidden layer h′.

Concatenated Network In the first architecture, we first
use an RNN to create the auxiliary hidden layer h′ as fol-
lows:

h′
i = RNNΘ′(h′

i−1,xi). (1)

This hidden layer will be used to predict the auxiliary labels:

p(zi | h′
i) = softmax(W′h′

i + b′). (2)

We also use a different RNN to create the standard hidden
layer h as follows:

hi = RNNΘ(hi−1,xi).

Next, we concatenate h and h′ into a single vector:

hi = hi

⊕
h′
i.

This concatenated hidden vector is then used to predict the
true opinion target label:

p(yi | hi) = softmax(Whi + b).

This architecture is shown in Figure 2(b). We can see that
different from a standard model, this model uses the addi-
tional auxiliary hidden vector h′ together with h to predict
the final labels.

Hierarchical Network In the second architecture, the
auxiliary hidden vector h′ is defined in the same way as in
Eqn. (1), and the probability distribution p(zi | h′

i) is also
defined in the same way as in Eqn. (2). However, the stan-
dard hidden layer h now uses h′ as input:

hi = RNNΘ(hi−1,h
′
i). (3)

And finally, to predict the true opinion target label, we have

p(yi | hi) = softmax(Whi + b). (4)

This architecture is shown in Figure 2(c). We call this the
hierarchical network because h′ and h now reside at differ-
ent layers of the neural network.

While both architectures can combine the power of
domain-independent rules and the true opinion target labels
from the source domain, they differ in how knowledge from
these two parts are integrated. In the Concatenated Network,
there is not much interaction between h′ and y. The Hierar-
chical Network has a more complicated mechanism by feed-
ing h′ into the RNN that produces h. However, both mod-
els share the similar idea of (1) using auxiliary labels to en-
code domain-independent rules, and (2) learning parameters
based on true annotated labels and auxiliary labels to obtain
representation vectors that are potentially useful across dif-
ferent domains.

Learning the Parameters

To learn the parameters, we use the commonly-used log like-
lihood objective function. Note that there are two parts in
our loss function, one related to the auxiliary labels z and
the other related to the true labels y.

Let us define the following loss functions:

Lz =
∑

(xa,za)∈Da

− log p(za | xa),

Ly =
∑

(xs,ys)∈Ds

− log p(ys | xs).
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To learn the parameters of our model, we can divide our
training process into two steps by first minimizing Lz and
then minimizing Ly with all the parameters learned by min-
imizing Lz fixed. We can also jointly minimize the sum of
Lz and Ly with respect to all the parameters. We refer to the
former as separate training and the latter as joint training.
Back propagation is used in both training strategies. In our
experiments, we will compare their performance.

Experiments

Experiment Settings

Datasets We use reviews from four different domains for
our experiments. The four domains are restaurant, laptop,
digital device and web service. The restaurant data is a com-
bination of the restaurant reviews from SemEval 2014 (Pon-
tiki et al. 2014) and SemEval 2015 (Pontiki et al. 2015). The
laptop data comes from SemEval 2015 (Pontiki et al. 2015).
The digital device dataset contains review sentences on five
digital devices and was created by Kessler et al. (2010). The
web service dataset was introduced by Toprak, Jakob, and
Gurevych (2010) and consists of sentences from reviews of
web services. The sentiment lexicon we use was downloaded
from University of Illinois at Chicago.1

During preprocessing, all words are converted to lower-
case, URL links are replaced with <URL> and numbers
are replaced with <NUM>. We also remove some noisy
sentences in the web service dataset. After preprocessing,
the basic statistics of our datasets are shown in Table 2. For
simplicity, we use Restaurant, Laptop, Device and Service
to denote each of the datasets, respectively.

Dataset # Sentences # Words

Restaurant 5,841 88,707
Laptop 3,845 63,011
Device 3,836 70,913
Service 8,545 159,742

Table 2: Basic statistics of the datasets.

Evaluation Metric We use the F1 score of opinion tar-
gets as the evaluation metric. Following previous work (Liu,
Joty, and Meng 2015; Zhang, Zhang, and Vo 2015), we only
consider exact matches, which means a target is considered
correctly extracted only if the output of a model is exactly
the same without any missing word or extra word.

Parameter Settings We use pre-trained word embeddings
from Google word2vec2 to initialize the word embeddings in
our models. The word embeddings are updated in the train-
ing process. To learn the parameters of our model, we use the
Adagrad algorithm with a mini-batch size of 10 sentences.
The initial learning rate is set to 0.01. Following previous
work (Liu, Joty, and Meng 2015; Zhang, Zhang, and Vo

1https://www.cs.uic.edu/∼liub/FBS/sentiment-
analysis.html#lexicon

2https://code.google.com/archive/p/word2vec/

2015; Wang et al. 2016), we concatenate the word embed-
dings of the current word, its previous word and next word
as the input to our model. This setting is also used in our
neural network baselines. For each target domain, we leave
out 200 randomly selected sentences as validation set. The
dimension of the hidden layers is determined according to
the performance on the validation set. We find 100 to be the
best and the reported results below are obtained using 100 as
the hidden layer dimension. All neural network models are
trained for 15 iterations. Based on performance on the vali-
dation set, we choose the best model across the 15 iterations
as our final model.

Models for Comparison

We use the following baselines for comparison:

• CRF: This is a traditional sequence labeling model us-
ing Conditional Random Field and discrete features such
as word types, POS tags and dependency relations. It has
been used for both single-domain and cross-domain opin-
ion target extraction (Jakob and Gurevych 2010).

• mDA: This is a recently proposed domain adap-
tation method using marginalized denoising auto-
encoders (Chen et al. 2012). We use features that have
been proven to be useful for opinion target extraction, in-
cluding current word, previous word, next word, current
POS tag, and the shortest dependency path and distance
to an opinion word. The features are largely the same as
in the CRF method.

• FEMA: This is another recently proposed domain adap-
tation method based on cross-domain feature embed-
dings (Yang and Eisenstein 2015). We use the same fea-
ture templates as those for mDA.

• Direct-1, Direct-2: These two methods naively use the
labeled training data from the source domain to train an
LSTM model and apply it to the target domain test data.
Direct-2 uses two layers of LSTM. This is to compare
with our hierarchical model, which also uses two layers
of LSTM.

• Aux: This is an unsupervised method where we directly
use the rules presented earlier to extract opinion targets.

• Direct-Aux: This is a naive way of using both the labeled
training data from the source domain and the general syn-
tactic rules. Essentially, we train an LSTM model using
the combination of the source domain data with the true
labels and the target domain data with the auxiliary labels
generated by the rules.

Meanwhile, we have the following variants of our proposed
models:

• Con-Sep The concatenated network trained with separate
training.

• Con-Joint The concatenated network trained with joint
training.

• Hier-Sep The hierarchical network trained with separate
training. After the parameters Θ′ are learned and the word
embeddings updated, they are kept fixed. The subsequent
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training only updates Θ in Eqn. (3) and W and b in
Eqn. (4).

• Hier-Joint The hierarchical network trained with joint
training.

Experiment Results

We show the F1 scores of the various methods under differ-
ent source-target domain settings in Table 3. From the table
we can observe the following: (1) Our proposed model with
the hierarchical network and joint learning can outperform
all the other methods under all settings except one. Further-
more, most of the time the improvement is statistically sig-
nificant. This shows the advantage of our proposed model
with the Hier-Joint setting. (2) Our proposed model with the
other settings (Con-Sep, Con-Joint and Hier-Sep) also tend
to work well in many cases, outperforming the baselines.
This shows that in general our idea of learning a hidden rep-
resentation using the auxiliary labels is effective. (3) Com-
parison among Con-Sep, Con-Joint, Hier-Sep and Hier-Joint
shows that using joint learning helps and using the hierarchi-
cal network generally is better than using the concatenated
network. (4) Among the baselines, Direct-2 tends to work
well in general except when Restaurant is the target domain,
in which case Aux and Direct+Aux generally work better.
This shows that none of the baselines we consider is guaran-
teed to work well in a cross-domain setting for the opinion
target extraction task.

Overall, the results demonstrate that our hierarchical net-
work with joint learning can integrate labeled dataset from
the source domain with domain-independent syntactic rules
well. The reinforcement between these two types of infor-
mation makes this model more effective than other models
for cross-domain opinion target extraction.

To understand how our Hier-Joint model obtains better
performance over the others, we compare the precision and
recall of Hier-Joint with all the other baselines. We find
that Hier-Joint can get both better precision and better recall
most of the time. It demonstrates that our hierarchical net-
work with auxiliary labels can discover more targets without
bringing in many false positive predictions.

Analysis

Comparison of different RNNs The results above are
based on LSTM, which is a special case of RNN. To com-
pare the effectiveness of different types of RNNs, we pick
the Device dataset as the target domain and compare the per-
formance of different RNNs. We consider standard RNN,
bi-directional RNN, LSTM and bi-directional LSTM. The
results are shown in Figure 3(a) with X-axis showing the
source domain. We can see that LSTM consistently achieves
better F1 scores than the other three RNN models. Its advan-
tage is the most obvious when we use Restaurant or Service
as the source domain.

Effect of the hidden layer dimension We also study the
effect of using different hidden layer dimensions. We show
the results in Figure 3(b). The results are from the Hier-Joint
model, which is the best among our proposed models. We
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Figure 3: Effect of different RNNs and hidden dimensions.
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Figure 4: F1 scores of Hier-Joint under different rule selec-
tion threshold. p is the precision of the selected rules on the
source domain data.

again use Device as the target domain. We can see that the
F1 score first goes up. It then reaches the optimal value at
dimension 100 and then starts to go down. The likely reason
for the drop in F1 score is that the model starts to overfit the
training data when the hidden layer dimension becomes too
high.

Rule Pruning Using different rules to generate auxiliary
labels may lead to different results. To evaluate the effect
of different rules at a finer-grained level, we instantiate all
general rules listed in Table 1 with opinion words and get
4×6790 concrete rules, where 6790 is the number of opin-
ion words we use. We then calculate the precision of each
rule on the source domain and use a threshold to select them.
The selected concrete rules are then used to generate auxil-
iary labels. We test three different thresholds and show the
results when using Device as the target domain in Figure 4.
We can see that only when Laptop is the source domain, we
can get better performance by selecting a subset of the rules.
The likely reason is that the Laptop data is similar to the De-
vice data, so pruning rules on the source domain can benefit
the extraction task on the target domain. However, when the
source domain is not very similar to the target domain, it is
better to use all rules without pruning.

Conclusion

In this work, we propose two RNN-based neural networks
for cross-domain opinion target extraction. We first use un-
supervised syntactic rules to generate an auxiliary label se-
quence for each sentence. We then train our models us-
ing both the true labels and the auxiliary labels. By lever-
aging knowledge from labeled training data and domain-
independent syntactic rules at the same time, our Hierar-
chical Network with joint learning can learn a robust vector
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Data CRF mDA FEMA Direct-1 Direct-2 Aux Direct-Aux Con-Sep Con-Joint Hier-Sep Hier-Joint

L-R 0.170 0.243 0.350 0.301 0.364 0.390 0.436 0.302 0.338 0.436 0.467†

D-R 0.025 0.213 0.207 0.306 0.352 0.390 0.432 0.280 0.281 0.451† 0.504†

S-R 0.170 0.325 0.376 0.439 0.458 0.390 0.434 0.458 0.421 0.479† 0.520†

R-L 0.109 0.209 0.266 0.277 0.290 0.199 0.210 0.248 0.292 0.269 0.317†

D-L 0.245 0.257 0.268 0.323 0.353 0.199 0.197 0.334 0.329 0.252 0.362†

S-L 0.116 0.146 0.150 0.252 0.249 0.199 0.219 0.256 0.288† 0.260 0.300†

R-D 0.090 0.172 0.229 0.246 0.225 0.233 0.246 0.269† 0.295† 0.300† 0.320†

L-D 0.270 0.294 0.296 0.296 0.300 0.233 0.226 0.308 0.316 0.279 0.316

S-D 0.097 0.169 0.187 0.283 0.275 0.233 0.241 0.243 0.283 0.309† 0.334†

R-S 0.088 0.131 0.108 0.146 0.175 0.151 0.127 0.167 0.145 0.180† 0.198†

L-S 0.086 0.131 0.148 0.152 0.183 0.151 0.126 0.150 0.185† 0.111 0.234†

D-S 0.045 0.095 0.088 0.165 0.151 0.151 0.132 0.166 0.186† 0.241† 0.235†

Average 0.126 0.199 0.223 0.265 0.281 0.243 0.252 0.265 0.280 0.297 0.342

Table 3: F1 scores achieved by the various methods we consider. The Data column shows the source and the target domains,
where L stands for laptop, R stands for restaurant, D stands for device and S stands for service. † indicates that the result
is statistically significantly better than CRF, mDA, FEMA, Direct-1, Direct-2, Aux and Direct-Aux with p < 0.01 based on
McNemar’s test. As an upper bound, we note that the F1 scores on the four domains R, L, D and S when trained on in-domain
data are 0.779, 0.766, 0.451 and 0.438, respectively.

representation that is useful across domains and outperform
several strong baselines. This work shows that it is a promis-
ing direction to boost RNNs with rules and auxiliary tasks
for opinion target extraction.
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