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Abstract

Phrase mining is a key research problem for semantic analysis
and text-based information retrieval. The existing approaches
based on NLP, frequency, and statistics cannot extract high
quality phrases and the processing is also time consuming,
which are not suitable for dynamic on-line applications. In
this paper, we propose an efficient high-quality phrase min-
ing approach (EQPM). To the best of our knowledge, our
work is the first effort that considers both intra-cohesion and
inter-isolation in mining phrases, which is able to guaran-
tee appropriateness. We also propose a strategy to eliminate
order sensitiveness, and ensure the completeness of phrases.
We further design efficient algorithms to make the proposed
model and strategy feasible. The empirical evaluations on
four real data sets demonstrate that our approach achieved
a considerable quality improvement and the processing time
was 2.3× ∼ 29× faster than the state-of-the-art works.

Introduction

With the explosive growth of the information, people are
overwhelmed by a large number of unstructured text data.
It is of high value to enhance the power and efficiency to fa-
cilitate human manipulating and understanding unstructured
text data. Phrase mining could transform text document from
word granularity to phrase granularity by automatically ex-
tracting semantically meaningful phrase. Particularly, phrase
mining is an essential step for further semantic analysis or
text-based retrieval in established fields of information re-
trieval and natural language processing (NLP). Moreover,
phrase mining is also critical to various tasks in emerging ap-
plications. Examples of such applications include topic de-
tection and tracking (Leskovec, Backstrom, and Kleinberg
2009), social event discovery (Li et al. 2016b), and docu-
ment summarization (He et al. 2012).

The study of phrase mining originates from the natural
language processing (NLP) community, which utilizes a set
of language rules (Witten et al. 1999; Abney 1991; Clahsen
et al. 2006) to derive phrases. Such rule-based approaches
are rigorous and not suitable for the emerging applications,
such as scientific papers, twitters, and query logs.

Therefore, there have been developed many data-driven
approaches in this area. The raw frequency-based ap-
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proaches regard each mined phrase as a frequent pat-
tern (Ahonen 1999; Simitsis et al. 2008), where a phrase
is extracted if it has longest consecutive words and its fre-
quency is larger than a given threshold. However, ranking
the word sequences according to the frequency will generate
many false phrases. Recently, a variety of frequency statisti-
cal approaches (O’Neil and Sangiovanni-Vincentelli 2014;
El-Kishky et al. 2014; Li et al. 2016a) are developed to
estimate phrase quality and rank candidate phrases. Liu et
al. (2015) consider integrating phrasal segmentation with
phrase quality estimation to further rectify the inaccurate
phrase quality initially estimated, based on local occurrence
context.

These frequency statistical approaches mine quality
phrases from a large collection of documents or a corpus.
A phrase is a sequence of words that appear contiguously
in the text, and serves as a whole (non-composible) seman-
tic unit in certain context of the given documents (Liu et al.
2015). Generally, a high quality phrase should have the fol-
lowing criteria.
• Frequency. This criterion is based on the observation that

a non-frequent phrase is likely to be not important (El-
Kishky et al. 2014).

• Phraseness. If adjacent phrases co-occur more signifi-
cant than expected under a given statistical significant
level, these phrases should be concatenated into a longer
phrase (Wang et al. 2013).

• Completeness. If long frequent phrases satisfy the above
criteria, then their subsets also satisfy these criteria since
the subsets will satisfy the criteria of frequency and
phraseness, yet is clearly a subset of a larger and more
intuitive phrase (El-Kishky et al. 2014).

• Appropriateness. If complete phrases are overlapping,
an appropriate segmentation should ensure the extracted
phrases are disjoint and each of them is semantically in-
dependent.
The existing approaches may generate low quality phrases

that do not conform to the above criterions as demonstrated
below.

(i) Order sensitive processing causes incomplete phrases.
The existing frequency statistical approaches could not
guarantee to extract complete phrases since they heuris-
tically concatenate those words into one phrase who has
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large statistic score, i.e., the quality of the extract phrase
highly depends on the concatenating order among words.
For example, consider four adjacent words w1=Gaussian,
w2=Mixture, w3=Model, and w4 =Selection in a
corpus. Assume Gaussian Mixture Model is a high
quality phrase. We use t(p) to represent the t-statistic score
of a phrase p (i.e. the ratio of its actual frequency to
its expected occurrence). Let t(w1w2) = 6391.62 and
t(w2w3) = 23.96. The approaches heuristically concate-
nate Gaussian and Mixture firstly, and then determine
if Gaussian Mixture can be concatenated with Model.
By using this concatenating order, the complete phrase
Gaussian Mixture Model cannot be extracted since
t(w1w2w3) = 15.75 is small (e.g., less than a given thresh-
old 16). On the contrary, it can be extracted if Mixture and
Model are concatenated in first step.

(ii) Overlapping sequences causes inappropriate seg-
mentation. For aforementioned example Gaussian
Mixture Model Selection, two sequences w1w2w3

and w3w4 are overlapping if they both have high statis-
tic scores. In the scenario of word segmentation, w3

can only be set to one of these two sequences, i.e.,
w1w2|w3w4 or w1w2w3|w4. The approach in (Liu et al.
2015) prefers to choose w1w2|w3w4 based on a probability
p(·) since p(w1w2|w3w4) = 0.07, which is greater than
p(w1w2w3|w4) = 0.039. However, Gaussian Mixture
Model should be a high quality phrase since it is an
attributive noun that functions as an adjective, whereas
Model Selection is rare to mention as a semantically
independent phase.

This paper takes on the challenge of designing a phrasal
segmentation model to improve the quality of extracted
phrases. We propose a novel phrasal segmentation model
by making the first effort to consider both intra-cohesion
and inter-isolation in mining phrases, which could guarantee
appropriateness. We then propose a complete phrase min-
ing strategy to eliminate order sensitive and guarantee to
avoid incomplete phrases. Both the new phrasal segmenta-
tion model and phrase mining strategy are time consuming,
therefore, the second challenge of this paper is to design
efficient algorithms to make the proposed model and strat-
egy feasible. We propose a dynamic programming approach
to reduce the inference cost of updating the probability in
our model and a parameter estimation with a strict error
bound to avoid cost of learning parameters. Moreover, we
propose two efficient algorithms to improve the efficiency of
complete phrase mining. The experiments on real data sets
demonstrate that we can efficiently get phrases with high
quality compared with the state-of-the-art methods.

Related Work
Phrase mining originates from the NLP shallow parsing
(also known as chunking) problem. As the origin, shallow
parsing methods (Witten et al. 1999; Abney 1991; Clah-
sen et al. 2006) mostly rely on part-of-speech (POS) tag-
ging techniques and use predefined NLP rules to group noun
phrases. Obviously, these rule-based methods lack enough
flexibility to handle various languages and heterogeneous
corpora. Thus, other NLP methods have been proposed to

enhance the accuracy by introducing supervised learning
models (Punyakanok and Roth 2001; Brill 2002; Kudoh and
Matsumoto 2002; Mcdonald, Crammer, and Pereira 2005)
or stochastic models (Church 1989; Shen and Sarkar 2005;
Sha and Pereira 2003; Vishwanathan et al. 2006; Sun et al.
2008; Huang, Xu, and Yu 2015). Supervised shallow parsing
methods take a number of annotated texts as training data,
and learn classification rules based on POS features. Super-
vised methods are barely able to overcome the high annota-
tion cost. Stochastic shallow parsing methods use stochastic
model to parse noun phrases, where Sha and Pereira (2003),
Vishwanathan et al. (2006), and Sun et al. (2008) adopt
CRF model, and Shen and Sarkar (2005) adopt HMM as the
stochastic model. However, these methods show low scala-
bility to a new language or a new domain. These shortages
hinder their applications in domain-specific, dynamic, and
emerging applications.

Recent efforts derived statistics of data distribution from
a large corpus to further improve the accuracy of phrase
quality estimation. Based on the distributional features of a
web-scale corpus, Pitler et al. (2010) used a statistical mea-
sure PMI to mine n-grams; Parameswaranc et al. (2010) ex-
tracted n-grams using several indicators. Deane (2005) pro-
posed a statistical measure based on Zipfan ranking to mea-
sure lexical association in a phrase. El-Kishky et al. (2014)
uses t-statistic to filter and rank candidate phrases. These
statistical measure based methods do not rely on language-
specific linguistic feature, and can thus achieve greater scal-
ability compared with the aforementioned methods.

Word sequence segmentation is another strategy of phrase
mining which partitions a word sequence into disjoint sub-
sequences, like query segmentation (Tan and Peng 2008;
Li et al. 2011), or chunking (Tjong K. S. and Buchholz 2000;
Blackwood, Gispert, and Byrne 2008; Echizen-ya and Araki
2010). A recent work is phrasal segmentation (Liu et al.
2015). The existing models only consider intra-cohesion of
phrases such as the number of words in the phrase and to-
kens, while ignore the inter-isolation between phrases.

Quality Phrase Mining

We propose a novel phrasal segmentation model to mine
phrases and ensure the appropriateness requirement. For
completeness requirement, we propose a complete phrase
mining approach to eliminate incomplete phrases.

Phrasal Segmentation Model

In order to solve the problem of inappropriate segmentation,
we propose a more comprehensive and effective phrasal seg-
mentation model by considering inter-isolation which is for-
mally defined as follow:

Given a sequence S with n words w1 . . . wn, we want to
find a set of positions P = {b1, . . . , bm} to split S into
m−1 disjoint subsequences si, . . . , sm, where b1 = 1, bm =
n+1, b1 ≤ bj ≤ bm (1 ≤ j ≤ m), and we use S(bi, bi+1−1)
to represent each subsequence si = wbi . . . wbi+1−1 (1 ≤
i ≤ m−1). We use |S| to denote the sequence length, i.e. the
number of words in S. Let P ∗ = {b1∗, b2∗, . . . , bm∗} be a
set of optimal split positions that can maximize the follow-
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ing joint probability:

p(P ∗, S) =
m−1∏
i=1

p(si, bi+1|bi)× p(bi
∗|si, si−1), (1)

where p(si, bi+1|bi) denotes the conditional probability of
observing a subsequence si as the i-th phrase, which reflects
the intra-cohesion of phrases. p(bi

∗|si, si−1) is an inter-
isolation indicator of i-th split position bi when subse-
quences si−1 and si are given. Notice that p(b∗1|·) = 1.

Eq. 1 is derived from the following two-step generative
model. The first step is to generate split position bi+1 with a
probability of p(L), where L is a random variable represent-
ing the number of words in a subsequence. The variable L is
drawn from a Poisson distribution:

p(L) ∼ λLe−λ

L
, (2)

where λ can be estimated based on the distribution of phrase
length (i.e. the number of words in the phrase). We count the
number of words of all high quality phrases in a corpus, and
use maximum likelihood estimation to estimate λ.

After generating bi+1, we generate si according to a
multinomial distribution over L such that L equals to the
length of si, i.e. L = l(si). Suppose we can get the fre-
quency f(si) of each si in a corpus, then the probability of
generating si under condition L=l(si) can be estimated as:

p(si|L = l(si)) =
f(si)∑

∀l(sj)=l(si)
f(sj)

. (3)

Based on the above two prior probabilities, the condi-
tional probability p(si, bi+1|bi) in Eq. 1 can be derived via
the following probabilistic factorization:

p(si, bi+1|bi) =p(bi+1|bi) · p(si|bi+1, bi)

=p(L) · p(si|L = l(si)).

The second step is to determine whether bi is a good split
position to divide S(bi−1, bi+1 − 1) into two independent
phrases si−1 and si according to p(b∗i |si−1, si).

p(b∗i |si−1, si) =

{
1, i = 0 or i = |S|
H(si−1)+H(si)
2×I(si−1;si)

, otherwise
(4)

where H(si) = p(si) log p(si) and

I(si−1; si) = p(si−1 ⊕ si) log
p(si−1 ⊕ si)

p(si−1)p(si)
.

Here we use si−1 ⊕ si to represent a concatenated phrase of
consecutive phrases si−1 and si. Let s be a phrase, then

p(s) =
f(s)∑

s′∈U f(s′)
,

where U is the collection of all computed phrases.
Since for every newly generated split position, we have

to “look back” at its previous split position, our model
could achieve a better appropriateness than existing meth-
ods. However, this “look back” feature also causes a large
computation cost. A naive method is to check all possible
segmentations, compute joint probabilities, and choose the
best one. In the worst case, the naive method requires an
O(n4) time in a single inference. Moreover, due to p(si|L =
l(si)) is unknown, it will cause O(ite · n4) learning cost, in
which ite denotes the rounds of iterations.

Complete Phrase Mining

Recall that generating a complete phrase is sensitive to
the concatenating order. To strictly guarantee the complete-
ness requirements, we propose a complete phrase mining
strategy to enumerate all possible concatenating orders and
choose the best one. In this way, we could avoid the incom-
pleteness. This naturally raises a straightforward algorithm,
which firstly enumerates every possible subsequences, and
secondly verifies whether each of them is a complete phrase.
There are totally n2 sequences for a sequence S with n
words. Verifying a sequence needs n2 time complexity in the
worst case. Therefore, the total time complexity is O(n4).

In this paper, we adopt χ2-test (F.R.S. 1900) as phraseness
measurement. Notice that, we can also use other statistics-
based measurements such as z-test and mutual information
to replace χ2-test in our framework. The focus of this work
is to show an efficient algorithmic design of quality phrase
mining, not to optimize a specific phraseness measurement.

Efficiency Improvement

In EQPM, we improve the efficiency from the following two
aspects. (i) In order to make our phrasal segmentation model
feasible, we adopt a dynamic programming based method to
reduce the inference cost of finding the optimal segmenta-
tion. Meanwhile we use the result of complete phrase mining
to estimate the unknown parameter to avoid learning cost.
(ii) We propose two algorithmic designs – a dynamic pro-
gramming approach and a seed extension based approach to
improve the efficiency of complete phrase mining.

Reducing Inference Cost for Phrasal Segmentation

We adopt a dynamic programming strategy to reduce the in-
ference cost of our phrasal segmentation model. Since the
split positions in S(1, i−1) is based on the split positions in
S(1, j − 1) (j < i), we construct a matrix D(n+1)×(n+1), in
which each cell D(i, j) stores the optimal probability that j
is the last split positions in S(1, i− 1). Initially, D(0, j) =
−∞, D(1, 0) = 1, D(i, 0) = −∞ (if i > 1), D(i, j) = −∞
(if i = j). The recursion function is given as follows:

D(i, j) = max
k∈[0,j−1]

{
D(j, k)p(S(j, i− 1), i|j)
×p(j∗|S(k, j − 1), S(j, i− 1))

}
,

(5)
where i ∈ [1, n+ 1] and j ∈ [0, i− 1].

Based on Eq. 5, we choose k such that D(n+ 1, k) is the
maximal. Such value equals to the maximum joint probabil-
ity p(P ∗, S) (Eq. 1) for the given sequence S(1, n). Then
the optimal segmentation P ∗ can be easily fetched by back-
tracking the matrix from D(n + 1, k). Since we need to fill
D(n+1)×(n+1), and computing each cell needs O(n+1) time
cost, the total time complexity is O(n3).

Avoiding Learning Cost by Unknown Parameter
Estimation

Recall our phrasal segmentation model contains an unknown
parameter p(si|L = l(si)). To learn this parameter, existing
approaches usually employ an expectation-maximization
(EM) based method (Liu et al. 2015), which keeps searching
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for an optimal segmentation and updating unknown param-
eter until a stationary point has been reached. However, this
iterative approach leads to an extremely heavy learning cost.

In order to avoid such learning cost, we could estimate
p(si|L = l(si)) using those complete phrases and their
frequencies derived by the complete phrase mining stage.
Theorem 1 shows the relative error bound of our estima-
tion. Let θ and θ′ be the actual value and estimated value
of p(si|L = l(si)), respectively.

Theorem 1. The relative error bound ε of our param-
eter estimation is ε(ρ, ε) ≤ max{ε, ρ−ε

1−ρ}, where ε =
τ∑

∀l(sj)=l(si)
f(sj)

, and ρ = τ
f(si)

, in which τ is the number

of all overlapping phrases after complete phrase mining.

Proof. The error is caused by the overlapping phrases, in ex-
treme cases, the frequencies of overlapped parts are counted
into only one phrase (e.g., left phrase or righ phrase). There-
fore, we have

min{f(si)− τ

Σ− τ
,
f(si)

Σ + τ
} ≤ θ ≤ f(si) + τ

Σ+ τ

⇒min{θ
′ − ε

1− ε
,

θ′

1 + ε
} ≤ θ ≤ θ′ + ε

1 + ε
.

Thus, the approximation ratio

η = max{ θ

θ′
,
θ′

θ
}

= max{ 1− ε

1− ρ
, 1 + ε,

1 + ρ

1 + ε
}

= max{1 + ε,
1− ρ

1− ε
(0 ≤ ρ ≤ 1)}.

Utilizing the fact that ε ≤ η − 1, we have ε(ρ, ε) ≤
max{ε, ρ−ε

1−ρ}. Thus Theorem 1 holds.

Dynamic Programming for Complete Phrase
Mining

For complete phrase mining, since a corpus can be very
large, the time cost of the aforementioned straightforward al-
gorithm (O(n4)) is prohibitively expensive. To address this
issue, firstly, we propose a dynamic programming (DP) ap-
proach. This approach is based on the observation that if
S(i, j) is a phrase, there must exist an integer k (i ≤ k ≤
j − 1), such that S(i, k) and S(k + 1, j) are also phrases.
Therefore, we set up a matrix M , in which a cell M(i, j)
stores a boolean value to denote whether S(i, j) is a phrase
or not. The recursion function is given as follows:

M(i, j) =

⎧⎪⎪⎨
⎪⎪⎩
true, if i = j

∨j−1
k=i

⎛
⎝ M(i, k)

M(k + 1, j)

υ(S(i, k), S(k+1, j))

⎞
⎠ ozws.,

(6)
where υ denotes a boolean function whose value is true if
it satisfies our phraseness measurement, i.e. χ2-test. In this
way, each sub-problem needs to be solved only once, and
the computation complexity reduces from O(n4) to O(n2).

Seed Extension for Complete Phrase Mining

We propose a seed extension based approach (SEBA) to
further improve the efficiency. SEBA is based on the fact
that phrase length (the number of words) follows a long-
tailed distribution which means that the predominant major-
ity of phrases have relatively fixed and short lengths. For
any multi-token phrase (phrase length ≥ 2), it must contain
at least one bi-gram phrase (phrase length = 2). We define
these bi-gram phrases as seeds. Based on the above analy-
sis, the main process of SEBA is that: (1) selecting bi-gram
phrases as seeds; (2) extending each seed to subsequences
bounded by a window with length w that centered on the
seed, and computing their local solution using Eq. 6; and
(3) checking whether a window needs to be extended. Given
a window that contains words in S(i, i + w), it needs to
be extended if it satisfies υ(wi−2, wi−1) ∨ υ(wi−1, wi) ∨
υ(wi, wi+1) or υ(wi+w−1, wi+w) ∨ υ(wi+w, wi+w+1) ∨
υ(wi+w+1, wi+w+2). If a window needs to be extended, we
extend the window to either its left or right until the new
window does not satisfy the above conditions. Algorithm 1
describes our seed extension based approach.

Algorithm 1: SEBA
Input: A corpus C, window length w;
Output: A set of high quality phrases R in C;

1 foreach word sequence S ∈ C do
2 Initialize matrix M ← φ;
3 Initialize SeedsList ← φ;
4 for i = 1 to i = |S| − 1 do
5 if υ(wi, wi+1) then
6 preSeed ← get the last seed in SeedsList;
7 if i− preSeed.end < w then
8 preSeed.end ← i;
9 else

10 SeedsList ← (i, i);

11 foreach seed di ∈ SeedsList do
12 Compute M(di.start− �w

2 �, di.end+ w
2 �);

13 foreach seed di ∈ SeedsList do
14 while di.start do not need extension do
15 di.start ← di.start− 1;
16 Compute M(di.start, di.end);
17 while di.end do not need extension do
18 di.end ← di.end+ 1;
19 Compute M(di.start, di.end);

20 R ← Back tacking optimal phrases;
21 return R;

Algorithm 1 shows when the current seed and the previ-
ous seed are within a window with length w, these two seeds
may belong to a same phrase. Therefore, we simply concate-
nate them into one seed (lines 6–8).
Theorem 2. Given a word sequence S, a window length
w, a phrase ratio r (i.e. the average number of phrases
divided by total number of words in S), and an average
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phrase length l. Let N be the expected number of seeds,
O(σ(w)) be the cost of checking a window whether it needs
to be extended, and e be the expected number of extra
verification. The expected running time of Algorithm 1 is
O(n+N · w2 + (2N + e)σ(w) + e · l2), where

N =

{
r · n, if l ≤ w

r · n l
w �, otherwise

and

e =

{
l − w, if l > w

0, otherwise.

Proof. The time cost of seed generation is n. The time cost
of step (2) is O(N ·w2) since the algorithm requires O(w2)
time to calculate each seed. Notice that, if l ≤ w, each
phrase generates no more than one seed, so the number of
seeds is r · n; otherwise, r · n l

w � seeds will be generated.
Algorithm 1 then needs to check the two boundaries of each
seed in O(2N · σ(w)) time. Moreover, if l > w, it requires
an extra time cost O((l−w)l2) as well as a verification cost
O((l − w)σ(w)).

From Theorem 2 we can see that the window length w is
the key parameter to determine the performance of the algo-
rithm SEBA. In practice, l and r are relatively fixed values,
so they can be regarded as constant values and estimated by
empirical statistics, and n is already known. Therefore we
hope to find a “good” w. We can do so by minimizing the
cost of the algorithm. Then the theoretically optimal param-
eter w can be easily estimated as

argmin
w

f(w) = n+N · w2 + (2N + e)σ(w)) + e · l2.

Experimental Evaluation

Data sets. We test four real-world data sets as follows.

• 5Conf 1 is a set of paper titles that were published in con-
ferences on the areas of artificial intelligence, databases,
data mining, information retrieval, machine learning, and
natural language processing;

• APNews2 contains 106K TREC AP news articles that
were published in 1989;

• Titles3 is a full collection of paper titles that were ex-
tracted from DBLP data set; and

• Abstracts4 contains 529K abstracts of computer science
papers that were downloaded from DBLP data set.

The detailed statistics are summarized in Table 1.
Compared Methods. To demonstrate the quality and effi-
ciency of our framework, we compared our method with the
following state-of-the-art methods:

1http://web.engr.illinois.edu/ elkishk2/
2http://www.ap.org/
3http://dblp.uni-trier.de/db/
4http://dblp.uni-trier.de/db/

Table 1: Statics on the four data sets
Data sets 5Conf APNews Titles Abstracts

# of Documents 44K 106K 1555K 529K
# of Vocabularies 5K 170K 96K 135K

Data Size 2.8M 229M 182M 479M

• ToPMine (El-Kishky et al. 2014) is a topical phrase min-
ing method which performs phrase mining and then infer
topic modeling strategy. Since we only consider phrase
mining in this paper, we used its phrase mining part for
comparison.

• SegPhrase+ (Liu et al. 2015) is a phrase mining
method, which utilizes phrasal segmentation to prune
over-estimated phrases based on rectified frequency, and
adds segmentation features to refine quality estimation.

Experimental Settings. In our experiments, we set signif-
icance level α = 0.05 for all data sets. We used a fre-
quency threshold ft to specify that only those phrases whose
frequencies are larger than ft were regarded as candidate
phrases. We set a wide rang of ft from 2 to 150 to compre-
hensively evaluate the effectiveness.

In complete phrase mining stage, we used the theoreti-
cally optimal parameter w (see Theorem 2) as the window
length w. We set average phrase length l = 2.1 and phrase
ratio r = 0.2 based on our empirical statistics on data sets.
For the other compared methods, we used their default set-
tings or the setting reported in their papers.

Our algorithms were implemented using Java SE Devel-
opment Kit 8. The experiments were run on a PC with an
Intel Xeon 3.3GHz 6-Cores CPU X5680 and 24GB memory
with a 1TB disk, running Ubuntu (Linux) operating system.

Phrases Quality Evaluation

We conducted a phrase quality evaluation on Wiki phrases
benchmark (Liu et al. 2015) along with an expert evaluation.

Wiki Phrases: We use Wiki phrases as ground truth labels,
which were got from the authors of (Liu et al. 2015). Wiki
phrases refer to popular mentions of entities by crawling
intra-Wiki citations within Wiki content. A mined phrase is
considered to be positive if it is the same with a Wiki phrase.
Then precision is defined as the number of positive phrases
to the number of mined phrases, and recall is the ratio of
the number of positive phrases to the number of mined Wiki
phrases returned by all comparison approaches and ours.
Precision and recall are biased in this case because positive
labels are restricted to Wiki phrases, however, they can still
provide some insights regarding the performance between
EQPM and baselines.

Fig. 1 shows the precision-recall curves (PR-curves)
based on Wiki phrases evaluation. The curves are created
by plotting the precision against recall at various frequency
threshold settings. We can see that EQPM outperforms all
baselines, and the trends on all data sets are similar. To be
specific, EQPM could achieve a higher recall while its pre-
cision is maintained at a satisfactory level. Conversely, given
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(a) 5Conf . (b) APNews . (c) Titles . (d) Abstracts .

Figure 1: Precision-recall curves of four data sets evaluated by Wiki phrases benchmark.

(a) 5Conf . (b) APNews . (c) Titles . (d) Abstracts .

Figure 2: Precision-recall curves of four data sets evaluated by experts.

a recall, the precision of our method is higher than other
methods. It indicates that EQPM could find more quality
phrases than baselines. Not surprisingly, our method could
achieve a better performance than TopMine, indicating our
complete phrase mining algorithm really beats the heuristic
approach adopted by TopMine. Besides, the higher perfor-
mance compared with SegPhrase+ demonstrates EQPM
could effectively eliminate inappropriate segmentation. We
also observed that, SegPhrase+ fluctuates more heavily
than EQPM, which demonstrates our method is less sen-
sitive to ft than SegPhrase+.

Expert Evaluation: For each method, we randomly sam-
pled 500 Wiki-uncovered phrases from the candidates to
form a pool. If the number of Wiki-uncovered phrases was
smaller than 500, all of them were put into the pool, in which
each phrase was then evaluated by 5 reviewers (computer
science Ph.D. candidates in year 2 or above). The metric was
whether the phrases were natural, meaningful, and unam-
biguous. The reviewers independently evaluated the phrase
quality, based on their background knowledge, and possi-
bly with the help of search engine. We took the majority of
opinions as results and accordingly evaluated the precision
of phrases by the methods. The experiment result of expert
evaluation is shown in Fig. 2.

Comparing Fig. 1 and Fig. 2, an interesting observa-
tion is that, the difference between EQPM and baselines is
more significant on expert evaluation. This is because Wiki
phrases is not a complete source of phrases, many phrases
especially terminologies have not been covered, and this is
also the reason why we need to conduct an expert evalua-
tion. From Fig. 2, we can see that EQPM outperforms base-

Table 2: Relative weight w.r.t. expert evaluation

Data sets
Precision Recall

CPM PS CPM PS

5Conf 97.46% 2.54% 95.76% 4.24%
APNews 96.35% 3.65% 95.41% 4.59%

Titles 98.02% 1.98% 96.64% 3.36%
Abstracts 96.76% 3.24% 95.79% 4.21%

lines significantly, it could achieve a higher recall with a
fairly high precision. In practice, EQPM could mine 90% of
those Wiki-uncovered phrases out and keep a very high pre-
cision level (nearly 70%). Therefore, the evaluation results
suggest that our methods not only detect the well-known
Wiki phrases, but also work properly for the long tail phrases
which might occur not so frequently.

We conduct that both phrasal segmentation (PS) and com-
plete phrase mining (CPM) stage can improve precision and
recall. Table 2 shows their relative weight using expert eval-
uation. For the four data sets, among all generated phrases
CPM contributed above 96.35% on precision, and around
95.41% on recall, whereas PS contributed the remaining.
This is because the number of overlapped phrases was much
smaller than the whole data set. Whereas CPM focuses on
order sensitive which was very common in data sets.

Efficiency Evaluation

We firstly verified the efficiency of the proposed two com-
plete phrase mining algorithms DP and SEBA by compar-
ing them with the Greedy algorithm in ToPMine. Fig. 3(a)
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(a) Varying document length. (b) Varying # of documents.

Figure 3: Efficiency of complete phrase mining algorithms

shows the running time on the data sets that have differ-
ent average document lengths but with a constant total data
size (2.8MB). With the average document length increas-
ing, the time cost of DP grows much faster than others,
whereas Greedy and SEBA are less sensitive to the aver-
age document length. This is because DP conducts dynamic
programming on whole word sequences, whereas SEBA ex-
tends each seed to a window and then conducts dynamic
programming on word subsequence within the window. Not
surprisingly, SEBA could achieve almost the same time cost
as Greedy, even though the latter has a theoretical O(n)
time complexity. Fig. 3(b) shows running time varies with
data size (with a 40 average document length). In this set-
ting, SEBA is more efficient than DP. The results shown
in Fig. 3 demonstrate that SEBA algorithm can greatly re-
duce time cost than DP, moreover, the efficiency of SEBA
is competitive even to the greedy algorithm.

We then examined the efficiency of our method compared
with the two state-of-the-art methods ToPMine and Seg-
Phrase+. To make the comparison fair, in this evaluation,
neither our method nor the baselines use parallelization.
ToPMine does not discuss parallelism. Segphrase+ claims
the penalty learning and parameter training could be par-
allelized. In our method, both complete phrase mining and
overlapped phrases segmentation (which are also the most
time consuming parts) can be easily parallelized, since our
method could independently run on individual sentence and
document.

Table 3 shows the running time of the whole quality
phrase mining method compared with EQPM, ToPMine,
and SegPhrase+ on different data sets. As expected, the
utilization of efficient phrasal segmentation and efficient
complete phrase mining methods account for EQPM’s bet-
ter efficiency. Unsurprisingly, our method has a huge advan-
tage compared with SegPhrase+ (13.5× ∼ 29× faster),
which has a huge learning cost. Comparing with ToPMine,
EQPM is 2.3× ∼ 17.5× faster.

Table 3: Running time

Methods
Data sets

5Conf APNews Titles Abstracts

EQPM 0.31s 34s 56s 240s
ToPMine 5.434s 4min25s 5min6s 9min34s

SegPhrases+ 9.02s 19min14s 25min56s 54min4s

Table 4: Running time of different components in EQPM

Component

Data sets
5Conf APNews Titles Abstracts

Frequency Counting 0.101s 13.742s 34.315s 89.621s

Complete Phrase Mining (SEBA) 0.163s 16.637s 14.358s 101.139s

Phrasal Segmentation 0.046s 5.825s 7.495s 49.923s

Besides, Table 4 shows the time cost of different compo-
nents of EQPM. We can see that the time cost of phrasal
segmentation was less than the other two components, since
the number of such phrases only takes a small portion (on
average only 1% to 2%) among all the phrases.

Conclusion

In this paper, we propose an efficient integrated framework
for high quality topical phrase mining, which adopts com-
plete phrase mining to guarantee completeness, and uti-
lizes a novel phrasal segmentation model to handle overlap-
ping phrases. Moreover, by means of an accurate parame-
ter estimation and two efficient algorithmic designs, the ef-
ficiency could be greatly improved. The experimental evalu-
ation demonstrates that, compared with two state-of-the-art
methods, our framework is of the highest quality and the
highest efficiency as well.
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