
Efficient Dependency-Guided Named Entity Recognition

Zhanming Jie, Aldrian Obaja Muis, Wei Lu
Singapore University of Technology and Design

8 Somapah Road, Singapore, 487372
zhanming jie@mymail.sutd.edu.sg, {aldrian muis,luwei}@sutd.edu.sg

Abstract

Named entity recognition (NER), which focuses on the ex-
traction of semantically meaningful named entities and their
semantic classes from text, serves as an indispensable com-
ponent for several down-stream natural language process-
ing (NLP) tasks such as relation extraction and event ex-
traction. Dependency trees, on the other hand, also convey
crucial semantic-level information. It has been shown previ-
ously that such information can be used to improve the perfor-
mance of NER (Sasano and Kurohashi 2008; Ling and Weld
2012). In this work, we investigate on how to better utilize the
structured information conveyed by dependency trees to im-
prove the performance of NER. Specifically, unlike existing
approaches which only exploit dependency information for
designing local features, we show that certain global struc-
tured information of the dependency trees can be exploited
when building NER models where such information can pro-
vide guided learning and inference. Through extensive exper-
iments, we show that our proposed novel dependency-guided
NER model performs competitively with models based on
conventional semi-Markov conditional random fields, while
requiring significantly less running time.

Introduction

Named entity recognition (NER) is one of the most im-
portant tasks in the field of natural language processing
(NLP). The task focuses on the extraction of named entities
together with their semantic classes (such as organization
or person) from text. The extracted named entity informa-
tion has been shown to be useful in various NLP tasks, in-
cluding coreference resolution, question answering and re-
lation extraction (Lao and Cohen 2010; Lee et al. 2012;
Krishnamurthy and Mitchell 2015).

Dependency trees, on the other hand, were shown to be
useful in several semantic processing tasks in NLP such as
semantic parsing and question answering (Poon and Domin-
gos 2009; Liang, Jordan, and Klein 2013). The depen-
dency structures convey semantic-level information which
was shown to be useful for the NER task. Existing research
efforts have exploited such dependency structured informa-
tion by designing dependency-related local features that can
be used in the NER models (Sasano and Kurohashi 2008;

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Foreign Minister Shlomo Ben - Ami gave a talk
NNP NNP NNP NNP HYPH NNP VBD DT NN

O O B-PER I-PER I-PER I-PER O O O

The House of Representatives votes on the measure
DT NNP IN NNPS VB IN DT NN

B-ORG I-ORG I-ORG I-ORG O O O O

Figure 1: Two sentences annotated with both dependency
and named entity information. The edges on top of words
represent the dependencies and the labels with IOB encod-
ing are the entity types.

Ling and Weld 2012; Cucchiarelli and Velardi 2001). Figure
1 shows two example phrases annotated with both depen-
dency and named entity information. The local features are
usually the head word and its part-of-speech tag at current
position. For example, “Shlomo” with entity tag B-PER in the
first sentence has two local dependency features, head word
“Ami” and head tag “NNP”. However, such a simple treat-
ment of dependency structures largely ignores the global
structured information conveyed by the dependency trees,
which can be potentially useful in building NER models.

One key observation we can make in Figure 1 is that
named entities are often covered by a single or multiple con-
secutive dependency arcs. In the first example, the named
entity “Shlomo Ben - Ami” of type PER (person) is com-
pletely covered by the single dependency arc from “Ami” to
“Shlomo”. Similarly, the named entity “The House of Repre-
sentatives” of type ORG (organization) in the second exam-
ple is covered by multiple arcs which are adjacent to each
other. Such information can potentially be the global fea-
tures we can obtain from the dependency trees. This leads
to the following questions: 1) can such global structured in-
formation conveyed by dependency trees be exploited for
improved NER, and 2) if so, how to build new NER models
where such information can be explicitly incorporated?

With these two questions, in this paper we perform some
investigations on how to better utilize the structured infor-

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

3457

mation conveyed by dependency trees for building novel
models for improved named entity recognition. The model
assumes the availability of dependency trees before perform-
ing NER, which can be obtained from a dependency parser
or given as part of the input. Unlike existing approaches
that only exploit dependency structures for encoding local
features, the model is able to explicitly take into account
the global structured information conveyed by dependency
trees when performing learning and inference. We call our
proposed NER model the dependency-guided model (DGM),
and build it based on the conventional semi-Markov con-
ditional random fields (semi-CRFs) (Sarawagi and Cohen
2004), a classic model used for information extraction.

Our main contributions can be summarized as follows:

• We present a novel model that is able to explicitly ex-
ploit the global structured information conveyed by de-
pendency trees, showing that such information can be ef-
fectively integrated into the process of performing NER.
To the best of our knowledge, this is the first work that
exploits such information for NER.

• Theoretically, we show through average-case time com-
plexity analysis that our model has the same time com-
plexity as that of the linear-chain CRFs, and is better than
that of the semi-Markov CRFs.

• Empirically, we demonstrate the benefits of our approach
through extensive experiments on benchmark datasets.
We show that the resulting model leads to NER results
that are competitive with the baseline approach based
on semi-Markov CRFs, while requiring significantly less
running time.

Furthermore, although in this paper we focus on the task
of using the structured information conveyed by dependency
trees for improved NER, the underlying idea is general,
which we believe can be applied to other tasks that involve
building pipeline or joint models for structured prediction.
Potentially if we can find the relationship between different
NLP tasks, we can build an efficient model for a specific task
while using information from other tasks without making the
model more complex.

Related Work

Named entity recognition has a long history in the field
of natural language processing. One standard approach
to NER is to regard the problem as a sequence label-
ing problem, where each word is assigned a tag, indicat-
ing whether the word belongs to part of any named en-
tity or appears outside of all entities. Previous approaches
used sequence labeling models such as hidden Markov
models (HMMs) (Zhou and Su 2002), maximum entropy
Markov models (MEMMs) (McCallum, Freitag, and Pereira
2000), as well as linear-chain (Finkel, Grenager, and Man-
ning 2005) and semi-Markov conditional random fields
(CRFs/semi-CRFs) (Sarawagi and Cohen 2004). Muis and
Lu (2016b) proposed a weak semi-CRFs model which has
a lower complexity than the conventional semi-CRFs model
while still having a higher complexity than the linear-chain
CRFs model. Our model is proved to have the same time

complexity as linear-chain CRFs model in the average case.
The quality of the CRFs model typically depends on the fea-
tures that are used. While most research efforts exploited
standard word-level features (Ratinov and Roth 2009), more
sophisticated features can also be used. Ling and Weld
(2012) showed that using syntactic-level features from de-
pendency structures in a CRFs-based model can lead to im-
proved NER performance. Such dependency structures were
also used in the work by Liu, Huang, and Zhu (2010), where
the authors utilized such structures for building a skip-chain
variant of the original CRFs model. This shows that some
simple structured information conveyed by dependency trees
can be exploited for improved NER. In their skip-chain
CRFs model, they simply added certain dependency arcs
as additional dependencies in the graphical model, resulting
in loopy structures. However, such a model did not explic-
itly explore the relation between entities and global struc-
tured information of the dependency trees. The authors also
showed that such a model does not outperform a simpler
approach that adds additional dependencies between similar
words only on top of the original CRFs model. In this work,
we also focus on utilizing dependency structures for improv-
ing NER. Unlike previous approaches, we focus on exploit-
ing the global structured information conveyed by depen-
dency trees to improve the NER process. Comparing with
the semi-CRFs model, our model is not only able to perform
competitively in terms of performance, but also more effi-
cient in terms of running time.

There are also some existing works that focus on improv-
ing the efficiency of NER and other information extraction
models. For example, Okanohara et al. (2006) used a sepa-
rate naive Bayes classifier to filter some entities during train-
ing and inference in their semi-CRFs based model. While
the filtering process was used to reduce the computational
cost of the semi-CRFs model, the model still needs to enu-
merate all the possible chunks. Yang and Cardie (2012) ex-
tended the original semi-CRFs for extracting opinion ex-
pressions and used the constituency parse tree information
to avoid constructing implausible segments. Lu and Roth
(2015) proposed an efficient and scalable model using hy-
pergraph which can handle overlapping entities. Muis and
Lu (2016a) extended the hypergraph representation to rec-
ognize both contiguous and discontiguous entities.

Background
Before we introduce our models, we would like to have a
brief discussion on the relevant background. Specifically, in
this section, we review the two classic models that are com-
monly used for named entity recognition, namely the linear-
chain conditional random fields and the semi-Markov con-
ditional random fields models.

Linear-chain CRFs

Conditional random fields, or CRFs (Lafferty, McCallum,
and Pereira 2001) is a popular model for structured predic-
tion, which has been widely used in various natural lan-
guage processing problems, including named entity recog-
nition (McCallum and Li 2003) and semantic role label-
ing (Cohn and Blunsom 2005).

3458

We focus our discussions on the linear-chain CRFs in this
section. The probability of predicting a possible output se-
quence y (e.g., a named entity label sequence in our case)
given an input x (e.g., a sentence) is defined as:

p(y|x) = exp(wTf(x,y))

Z(x)
(1)

where f(x,y) is the feature vector defined over (x,y) tuple,
w is the weight vector consisting of parameters used for the
model, and Z(x) is the partition function used for normal-
ization, which is defined as follows:

Z(x) =
∑
y′

exp(wTf(x,y′)) (2)

In a (first-order) linear-chain CRF, the partition function
for a input of length n can also be written as follows:

Z(x) =
n∑

i=1

∑
y′∈T

∑
y∈T

exp(wT f(x, y′, y, i)) (3)

where f(x, y′, y, i) is a local feature vector defined at the
i-th position of the input sequence. T is the set of all out-
put labels. The above function can be computed efficiently
using dynamic programming. It can be seen that the time
complexity of a linear-chain CRFs model is O(n|T |2).

We aim to minimize the negative joint log-likelihood with
L2 regularization for our dataset:

L(w) =
∑
i

log
∑
y′

exp(wT f(xi,y
′))

−
∑
i

wT f(xi,yi) + λwTw
(4)

where (xi,yi) is the i-th training instance and λ is the L2

regularization coefficient.
The objective function is convex and we can make use of

the L-BFGS (Byrd et al. 1995) algorithm to optimize it. The
partial derivative of L with respect to each parameter wk is:

∂L
∂wk

=
∑
i

(
Ep(y′|xi) [fk(xi,y

′)]− fk(xi,yi)
)
+ 2λwk

Semi-Markov CRFs

The semi-Markov conditional random fields, or semi-
CRFs (Sarawagi and Cohen 2004) is an extension of the
standard linear-chain CRFs. Different from linear-chain
CRFs, which makes use of simple first-order Markovian as-
sumptions, the semi-CRFs assumes that the transitions be-
tween words inside a span (e.g., an entity consisting of mul-
tiple words) can be non-Markovian. Such an assumption al-
lows more flexible non-Markovian features to be defined.
The resulting model was shown to be more effective than its
linear-chain counterpart in information extraction tasks.

The partition function in this setting becomes:

Z(x) =

n∑
i=1

L∑
l=1

∑
y′∈T

∑
y∈T

exp(wT f(x, y′, y, i− l, i)) (5)

where f(x, y′, y, i − l, i) represents the local feature vector
at position i with a span of size l. In this case, the time com-
plexity becomes O(nL|T |2). The value L is the maximal
length of the spans the model can handle.

Consider the sentence “Lee Ann Womack won Single of
the Year award”. The upper portion of Figure 2 shows all the
possible structures that are considered by the partition func-
tion with L = 4. These structures essentially form a compact
lattice representation showing all the possible combinations
of entities (with length restriction) that can ever appear in the
given sentence. Each orange and red edge is used to repre-
sent an entity of type PER and MISC respectively. The black
lines are used to indicate words that are not part of any entity.
The directed path highlighted in bold blue corresponds to the
correct entity information associated with the phrase, where
“Lee Ann Womack” is an entity of type PER, and “Single of
the Year” is another entity of type MISC (miscellaneous).

Our Model

The primary assumption we would like to make is that the
dependency trees of sentences are available when perform-
ing the named entity recognition task.

NER with Dependency Features

One approach to exploit information from dependency struc-
tures is to design local features based on such dependency
structures and make use of conventional models such as
semi-CRFs for performing NER. Previous research efforts
have shown that such features extracted from dependency
structures can be helpful when performing the entity recog-
nition task (Sasano and Kurohashi 2008; Ling and Weld
2012; Cucchiarelli and Velardi 2001).

In Figure 2, we have already used a graphical illustration
to show the possible combinations of entities that can ever
appear in the given sentence. Each edge in the figure corre-
sponds to one entity (or a single word that is outside of any
entity – labeled with O). Features can be defined over such
edges, where each feature is assigned a weight. Such fea-
tures, together with their weights, can be used to score each
possible path in the figure. When dependency trees are pro-
vided, one can define features involving some local depen-
dency structures. For example, for the word “Womack”, one
possible feature that can be defined over edges covering this
word can be of the form “Womack ←won”, indicating there
is an incoming arc from the word “won” to the current word
“Womack”. However, we note that such features largely ig-
nore the global structured information as presented by the
dependency trees. Specifically, certain useful facts such as
the word “Lee” is a child of the word “Womack” and at the
same time a grandchild of the word “won” is not captured
due to such a simple treatment of dependency structures.

Dependency-Guided NER

The main question we would like to ask is: how should we
make good use of the structured information associated with
the dependency trees to perform named entity recognition?
Since we are essentially interested in NER only, would there

3459

PER

O

MISC

Lee Ann Womack won Single of the Year award

PER

O

MISC

Lee Ann Womack won Single of the Year award

Lee
B-PER

Ann
I-PER

Womack
I-PER

won
O

Single
B-MISC

of
I-MISC

the
I-MISC

Year
I-MISC

award
O

Figure 2: Illustrations of possible combinations of entities for the conventional semi-CRFs model (top) and our DGM model
(middle), as well as the example sentence with its dependency structure (bottom).

be some more global structured information in the depen-
dency trees that can be used to guide the NER process?

From the earlier two examples shown in Figure 1 as well
as the example shown in Figure 2 we can observe that the
named entities tend to be covered by a single or multiple
adjacent dependency arcs. This is not a surprising finding
as for most named entities which convey certain semanti-
cally meaningful information, it is expected that there exist
certain internal structures – i.e., dependencies amongst dif-
ferent words within the entities. Words inside each named
entity typically do not have dependencies with words out-
side the entities, except for certain words such as head words
which typically have incoming arcs from outside words.

This finding motivates us to exploit such global structured
information as presented by dependency trees for perform-
ing NER. Following the above observation, we first intro-
duce the following notion:
Definition 1 A valid span either consists of a single word,
or is a word sequence that is covered by a chain of (undi-
rected) arcs where no arc is covered by another.

For example, in Figure 2, the word sequence “Lee Ann
Womack” is a valid span since there exists a single arc from
“Womack” to “Lee”. The sequence “Ann Womack won” is
also a valid span due to a chain of undirected arcs – one be-
tween “Ann” and “Womack” and the other between “Wom-
ack” and “won”. Similarly, the single word “Womack” is also
a valid span given the above definition.

Based on the above definition, we can build a novel
dependency-guided NER model based on the conventional
semi-CRFs by restricting the space of all possible combina-
tions of entities to those that strictly contain only valid spans.
This leads to the following new partition function:

Z(x) =
∑

(i,j)∈SL(x)

∑
y′∈T

∑
y∈T

exp(wT f(x, y′, y, i, j)) (6)

(a) Best-case Scenario (b) Worst-case Scenario

Figure 3: The best-case and worst-case scenarios of DGM.

where S(x) refers to the set of valid spans for a given input
sentence x, and SL(x) refers to its subset that contains only
those valid spans whose lengths are no longer than L.

We call the resulting model dependency-guided model
(DGM). Figure 2 (middle) presents the graphical illustration
of all possible paths (combination of entities) with L = 4
that our model considers. For example, since the word se-
quence “Ann Womack won Single” is not a valid span, the
corresponding edges covering this word sequence is re-
moved from the original lattice representation in Figure 2
(top). The edge covering the word sequence “of the Year”
remains there as it is covered by the arc from “of” to “Year”,
thus a valid span. As we can see, the amount of paths that
we consider in the new model is substantially reduced.

Time Complexity

We can also analyze the time complexity required for this
new model. We show example best-case and worst-case
scenarios in Figure 3. For the former case there are O(n)
valid spans. Thus the time complexity in the best case is
O(n|T |2), the same as the linear-chain CRFs model. For
the latter, there are O(nL) valid spans, leading to the time
complexity O(nL|T |2) in the worst case, the same as the
semi-Markov CRFs model.

Furthermore, we have the following theorem for the
average-case time complexity:

3460

Theorem 1 The average-case time complexity of DGM is
O(n|T |2).

Proof We provide two proofs to the above theorem. Below
we show one proof and we move the second proof to the
supplementary material (S.3.1). In this proof we assume the
largest possible value for L, which is n (i.e., we do not limit
the length of valid spans). Since the time complexity of our
model depends directly on the total number of edges in the
DGM graph, which is the same as the number of valid spans,
we count the total number of valid spans over all possible
structures by defining a bijection between each valid span
and a tree with (n + 1) nodes. Here we consider only one
entity type since when we have |T | types, the number of
edges can be simply calculated by multiplying |T |2 to the
number that we will calculate here.

Let T (n) be the set of all undirected trees with n nodes,
let τ ∈ T (n) be an undirected tree with n nodes, let su,vτ
be a valid span based on τ covering the words from posi-
tion u to v, and let S(τ) = {su,vτ | 1 ≤ u ≤ v ≤ n}
be the set of valid spans based on τ . Then the set of all
valid spans over all possible undirected trees with n nodes is
SDGM(n) = ∪τ∈T (n)S(τ). Note that since the definition of
valid spans uses undirected arcs of the dependency tree, we
use undirected trees to count the number of valid spans.

Now we define the bijection from SDGM(n) to T (n + 1)
to show that the two sets have the same number of elements.
By definition of valid spans, for each su,vτ ∈ SDGM(n), there
is exactly one associated chain of edges in the dependency
tree τ , which is the chain of edges starting at u and ending
at v, possibly visiting some intermediary nodes in between.

Then, to define the bijection we map su,vτ to a tree τ ′ ∈
T (n+ 1) which is constructed from τ as follows: the edges
for the first n nodes coincide with τ , except that the edges
involved in the chain of edges are removed, and we make the
nodes involved in this chain of edges to be connected to the
(n + 1)-th node instead. The process creates a well-defined
mapping since the resulting graph is still connected and has
n edges over (n + 1) nodes, which means it is a tree with
(n+ 1) nodes.

Conversely, from a tree τ ′ ∈ T (n + 1) we can recover
the valid span and the undirected tree τ it is based on by
removing the (n+1)-th node and the associated edges, then
connecting the nodes that were previously connected to the
(n+1)-th node in increasing order. The smallest and largest
positions of the nodes define the starting and ending position
of the span, and the resulting tree is the undirected tree τ .

For illustration, Figure 4a shows an example of a valid
span s1,4τ where τ ∈ T (4) and the nodes and edges involved
in defining the valid span are highlighted in red. Figure 4b
shows the associated tree τ ′ ∈ T (5) where the removed
edges are put in dashed lines and the new edges in bold.

Therefore the mapping is bijective, and thus the number of
total valid spans in SDGM(n) is equal to the number of trees
in T (n + 1). It is a known result that the number of pos-
sible trees with n nodes is nn−2 (Aigner and Ziegler 2010,
Chapter 30), which means the total number of valid spans is

1 2 3 4

(a) One possible valid span
of length 4 on a tree with
4 nodes.

1 2 3 4 5

(b) The corresponding tree with
one additional node mapped to
the valid span in (a).

Figure 4: An illustration of the bijection between a valid
span su,vτ and a tree τ ′ ∈ T (n+ 1).

(n+ 1)n−1. Thus, the average number of valid spans is:

SDGM(n)

|T (n)| =
(n+ 1)n−1

nn−2
= n

(
1 +

1

n

)n−1

≤ n · e (7)

which is linear in terms of n, just like the linear-chain CRFs.
Here e is the Euler number (≈ 2.718).

This shows that the average-case time complexity of our
model is O(n|T |2).

Now, this is a remarkable result, showing that the com-
plexity of our DGM model in its average case is still linear in
the sentence length n even if we set L to its maximal value
n. This is also true empirically, which we show in the sup-
plementary material (S.3.2). So, while our model retains the
ability to capture non-Markovian features like semi-Markov
CRFs, it is more scalable and can be used to extract longer
entities.

Besides the standard DGM model defined above, we also
consider a variant, where we restrict the chain (of arcs) to
be of length 1 (i.e., single arc) only. We call the resulting
model DGM-S, where S stands for single arc. Such a simpli-
fied model will lead to an even simpler lattice representation,
resulting in even less running time. However it may also lead
to lower performance as such a variant might not be able to
capture certain named entities. In one of the later sections,
we will conduct experiments on such a model and compare
its performance with other models.

Experimental Setup

For experiments, we followed (Finkel and Manning 2009)
and used the Broadcast News section of the OntoNotes
dataset. Instead of using its earlier 2.0 release, we used the
final release – release 5.0 of the dataset, which is avail-
able for download1. The dataset includes the following
6 subsections: ABC, CNN, MNB, NBC, PRI and VOA.
Moreover, the current OntoNotes 5.0 release also includes
some English P2.5 data, which consists of corpus translated
from Chinese and Arabic.2 Following (Finkel and Man-

1https://catalog.ldc.upenn.edu/LDC2013T19/
2The OntoNotes 5.0 dataset also contains the earlier re-

lease from OntoNotes 1.0 to OntoNotes 4.0. However, we found
the number of sentences of the Broadcast News in the current
OntoNotes 5.0 dataset does not match the number reported in
(Finkel and Manning 2009; 2010), which was based on OntoNotes
2.0. Furthermore, they removed some instances which are incon-
sistent with their model. We thus cannot conduct experiments to
compare against the results reported in their work.

3461

Sent. # Entities
ALL DGM-S DGM

Train 9,996 18,855 17,584 (93.3%) 18,803 (99.7%)
Test 3,339 5,742 5,309 (92.5%) 5,720 (99.6%)

Table 1: Dataset statistics.

ning 2009), we split the first 75% of the data for train-
ing and performed evaluations on the remaining 25%. We
set L = 8, which can cover all entities in our dataset,
and developed the L2 coefficient using cross-validation (see
supplementary material S.1 for details). Following previous
works on dependency parsing (Chen and Manning 2014),
we preprocessed the dataset using the Stanford CoreNLP3

to convert the constituency trees to basic Stanford depen-
dency (De Marneffe et al. 2006) trees. In our NER exper-
iments, in addition to using the given dependency struc-
tures converted from the constituency trees, we also trained
a popular transition-based parser, MaltParser4 (Nivre, Hall,
and Nilsson 2006), using the training set and then used this
parser to predict the dependency trees on the test set to be
used in our model.

We also looked at the SemEval-2010 Task 1 OntoNotes
English corpus5, which contains sentences with both depen-
dency and named entity information. Although this dataset
is a subset of the OntoNotes dataset, it comes with manu-
ally annotated dependency structures. We conducted exper-
iments on this dataset and reported the results in the supple-
mentary material (S.2). The results on this dataset are con-
sistent with the findings reported in this paper.

Features

In order to make comparisons, we implemented a linear-
chain CRFs model as well as a semi-Markov CRFs model to
serve as baselines. The features used in this paper are basic
features which are commonly used in linear-chain CRFs and
semi-CRFs. For the linear-chain CRFs, we consider the cur-
rent word/POS tag, the previous word/POS tag, the current
word shape, the previous word shape, prefix/suffix of length
up to 3, as well as transition features. For word shape fea-
tures, we followed (Finkel et al. 2005) to create them. For the
semi-CRFs model, we have the following features for each
segment: the word/POS tag/word shape before and after the
segment, indexed words/POS tags/word shapes in current
segment, surface form of the segment, segment length, seg-
ment prefix/suffix of length up to 3, the start/end word/tags
of current segment, and the transition features.

Inspired by Ling and Weld (2012), we applied the follow-
ing dependency features for all models: (1) current word in
current position/segment and its head word (and its depen-
dency label); (2) current POS tag in current position/segment
and its head tag (and dependency label). More details of fea-
tures can be found in the supplementary material (S.4).

3http://stanfordnlp.github.io/CoreNLP/
4http://maltparser.org/
5https://catalog.ldc.upenn.edu/LDC2011T01/

Data Statistics

There are in total 18 well-defined named entity types in the
OntoNotes 5.0 dataset. Since majority of the entities are
from the following three types: PER (person), ORG (orga-
nization) and GPE (geo-political entities), following (Finkel
and Manning 2009), we merge all the other entity types into
one general type, MISC (miscellaneous). Table 1 shows the
statistics of total number of sentences and entities.

To show the relationships between the named entities and
dependency structures, we present the number and percent-
age of entities that can be handled by our DGM-S model and
DGM model respectively. The entities that can be handled
by DGM-S should be covered by a single arc as indicated in
our model section. As for DGM, the entity spans should be
valid as in definition 1. Overall, we can see that 93.3% and
92.5% of the entities can be handled by the DGM-S model
in training set and test set, respectively. These two numbers
for DGM are much higher – 99.7% and 99.6%. With the pre-
dicted dependency structures in test set, 91.7% of the enti-
ties can be handled by the DGM-S model, while for DGM it
is 97.4%.

We provide more detailed statistics for each of the 7 sub-
sections in the supplementary material (S.1). These numbers
confirm that it is indeed the case that most named entities
do form valid spans, even when using predicted dependency
trees, and that such global structured information of depen-
dency trees can be exploited for NER.

Results and Discussions

NER Performance

Following previous work (Finkel and Manning 2009), we
report standard F-score in this section (detailed results with
precision and recall can be found in the supplementary mate-
rial S.5). Table 2 shows the results of all models when depen-
dency features are exploited. Specifically, it shows results
when the given and predicted dependency trees are consid-
ered, respectively. Overall, the semi-Markov CRFs, DGM-
S and DGM models perform better than the linear-chain
CRFs model. Our DGM model obtains an overall F-score at
80.5% and outperforms the semi-CRFs model significantly
(p < 0.001 with bootstrap resampling (Koehn 2004)). For
individual subsection, our DGM also performs the best. On
2 out of the 7 subsections, our model’s improvements over
the baseline semi-CRFs model are significant (p < 0.001
with bootstrap resampling). For some other subsections like
ABC, CNN, MNB, NBC and PRI, DGM has higher F-score
than the semi-CRFs model but the improvements are not sta-
tistically significant. The results show that comparing with
semi-CRFs, our DGM model, which has a lower average-
case time complexity, still maintains a competitive perfor-
mance. Such results confirm that the global structured infor-
mation conveyed by dependency trees are useful and can be
exploited by our DGM model.

The performance of DGM-S is worse than that of semi-
CRFs and DGM in general since there are still many named
entities that can not be handled by such a simplified model
(see Table 1). This model has the same time complexity as
the linear-chain CRFs, but performs better than linear-chain

3462

Dependency Model ABC CNN MNB NBC P2.5 PRI VOA Overall

Given

Linear-chain CRFs 70.2 75.9 75.7 65.9 70.8 83.2 84.6 77.8
Semi-Markov CRFs 71.9 78.2 74.7 69.4 73.5 85.1 85.4 79.6

DGM-S 71.4 77.0 73.4 68.4 72.8 85.1 85.2 79.0
DGM 72.3 78.6 76.3 69.7 75.5 85.5 86.8 80.5

Predicted

Linear-chain CRFs 68.4 75.4 74.4 66.3 70.8 83.3 83.7 77.3
Semi-Markov CRFs 71.6 78.0 73.5 71.5 73.7 84.6 85.3 79.5

DGM-S 70.6 76.4 73.4 68.7 71.3 83.9 84.4 78.2
DGM 71.9 77.6 75.4 71.4 73.9 84.2 85.1 79.4

Table 2: NER results for all models, when given and predicted dependency trees are used and dependency features are used.
Best values and the values which are not significantly different in 95% confidence interval are put in bold.

Dependency Model ABC CNN MNB NBC P2.5 PRI VOA Overall

Given

Linear-chain CRFs 66.5 74.1 74.9 65.4 70.8 82.9 82.3 76.3
Semi-Markov CRFs 72.3 76.6 75.0 69.3 73.7 84.1 83.3 78.5

DGM-S 69.4 76.1 73.4 68.0 72.5 85.2 85.1 78.6
DGM 72.7 77.2 75.8 68.5 76.8 86.2 85.5 79.9

Predicted

Linear-chain CRFs 66.5 74.1 74.9 65.4 70.8 82.9 82.3 76.3
Semi-Markov CRFs 72.3 76.6 75.0 69.3 73.7 84.1 83.3 78.5

DGM-S 69.1 75.6 73.8 67.2 72.0 84.5 84.2 78.0
DGM 71.3 76.2 75.9 68.8 74.6 85.1 84.3 78.8

Table 3: NER results for all models, when given and predicted dependency trees are used but dependency features are not used.
Best values and the values which are not significantly different in 95% confidence interval are put in bold.

CRFs, largely due to the fact that certain structured informa-
tion of dependency trees are exploited in DGM-S. We note
that such a simplified model obtains similar results as semi-
CRFs for the two larger subsections, PRI and VOA. This is
largely due to the fact that a larger percentage of the entities
in these two subsections can be handled by DGM-S (see sup-
plementary material S.1 for more details). It is noted that the
performance of both semi-CRFs and DGM degrades when
the predicted dependency trees are used instead of the given.
The drop in F-score for DGM is more significant as com-
pared to the semi-CRFs. Nevertheless, their results remain
comparable. Such experiments show the importance of con-
sidering high quality dependency structures for performing
guided NER in our model.

To understand the usefulness of the global structured in-
formation of dependency trees better, we conducted fur-
ther experiments by excluding dependency features from
our models. Such results are shown in Table 3. Our DGM
model consistently performs competitively with the semi-
CRFs model. The only exception occurs when the ABC sub-
section is considered and the predicted dependency trees are
used (p=0.067). In general, we can see that when depen-
dency features are excluded, the overall F-score for all mod-
els drop substantially. However, we note that for semi-CRFs,
the drop in F-score is 1.1% for given dependency trees, and
is 1.0% for predicted trees, whereas for DGM, the drops with
given and predicted trees are both 0.6%. Overall, such re-
sults largely show that our proposed model is able to effec-
tively make use of the global structured information con-
veyed by dependency trees for NER.

We have also conducted experiments on the widely-used

USS Cole Navy destroyer
NNP NNP NNP NNP

B-MISC I-MISC B-ORG O

(a) Given dependency tree

USS Cole Navy destroyer
NNP NNP NNP NNP

B-ORG I-ORG I-ORG O

(b) Predicted dependency tree

Figure 5: The effect of different dependency parses on the
output of DGM. These are taken out from a part of a sentence.
The NER result in (a) is correct, while (b) is not.

NER dataset, CoNLL-2003, using the Stanford dependency
parser6 to generate the dependency trees. Using the same
feature set that we describe in this paper, our models do not
achieve the state-of-the-art results on this dataset. However,
they still perform comparably with the semi-CRFs model,
while requiring much lesser running time. Note that since
our goal in this paper is to investigate the usefulness of in-
corporating the dependency structure information for NER,
we did not attempt to tune the feature set to get the best
result on a specific dataset. Also it is worth remarking that
we still obtain a relatively good performance for our DGM
model although the dependency parser is not trained within
the dataset itself and that a correct dependency structure in-
formation is crucial for the DGM model.

Error Analysis

We provide a further analysis of how the dependency pars-
ing performance affects NER based on Table 3. Because our
model uses the dependency structure information directly in-

6http://nlp.stanford.edu/software/nndep.shtml

3463

stead of using them as features, we can analyze the influence
of dependency structures on NER more clearly. Specifically,
we focus on how the dependency parsing results affect the
prediction of our DGM model.

A typical error made by our model taken from the results
is shown in Figure 5 where the dependency tree in Figure 5a
is given by the conversion of constituent parse tree and the
other one in Figure 5b is predicted from the MaltParser. The
NER result on the left is correct while the one on the right
is incorrect. Based on the predicted dependency structure in
Figure 5b, there is no way to predict an entity type for “USS
Cole” since this is not a valid span in DGM model. Further-
more, DGM can actually recognize “Navy” as an ORG entity
even though the predicted dependency is incorrect. But the
model considers “USS Cole Navy” as an entity due to the
interference of other entity features (e.g., NNP tag and Cap-
italized pattern) that “USS Cole” has. While with the given
dependency tree, DGM considers “USS Cole” as a valid span
and correctly recognizes it as a MISC entity.

Speed Analysis

From Figure 2 we can see that the running time required for
each model depends on the number of edges that the model
considers. We thus empirically calculated the average num-
ber of edges per word each model considers based on our
training data. We found that the average number of edges in-
volved in each token is 132 for the semi-CRFs model, while
this number becomes 40 and 61 for DGM-S and DGM re-
spectively. A lower number of edges indicates less possible
structures to consider, and a reduced running time. See more
detailed information in the supplementary material (S.3.2).

The results on training time per iteration (inference time)
for all 7 subsections are shown in Figure 6. From the fig-
ure we can see that the linear-chain CRFs model empirically
runs the fastest. The simple DGM-S model performs com-
parably with linear-chain CRFs. The semi-CRFs model re-
quires substantially longer time due to the additional factor
L (set to 8 in our experiments) in its time complexity. In con-
trast, our model DGM requires only 47% of the time needed
for semi-CRFs for each training iteration, and requires 37%
more time than the DGM-S model.

Conclusion
In this paper, we proposed a novel efficient dependency-
guided model for named entity recognition. Motivated by
the fact that named entities are typically covered by depen-
dency arcs, presenting internal structures, we built a model
that is able to explicitly exploit global structured informa-
tion conveyed by dependency trees for NER. We showed that
the model theoretically is better than the semi-Markov CRFs
model in terms of time complexity. Experiments show that
our model performs competitively with the semi-Markov
CRFs model, even though it requires substantially less run-
ning time. Future directions include further investigations on
the structural relations between dependency trees and named
entities, and working towards building integrated models
that perform joint prediction of both structures.

We make our code and system available for download at
http://statnlp.org/research/ie/.

Linear-chain CRFs DGM-S DGM Semi-Markov CRFs
0

0.2

0.4

0.6

0.8

1

1.2

1.4

T
ra

in
in

g
 T

im
e

 (
s

/i
te

ra
ti

o
n

)

ABC

CNN

MNB

NBC

P2.5

PRI

VOA

Figure 6: Training time per iteration of all the models.

Acknowledgments

We would like to thank the anonymous reviewers for their
constructive and helpful comments. This work is supported
by MOE Tier 1 grant SUTDT12015008.

References

Aigner, M., and Ziegler, G. M. 2010. Proofs from THE
BOOK. Springer Berlin Heidelberg, 4th edition.
Byrd, R. H.; Lu, P.; Nocedal, J.; and Zhu, C. 1995. A lim-
ited memory algorithm for bound constrained optimization.
SIAM Journal on Scientific Computing 16(5):1190–1208.
Chen, D., and Manning, C. D. 2014. A fast and accurate
dependency parser using neural networks. In Proceedings
of EMNLP, 740–750.
Cohn, T., and Blunsom, P. 2005. Semantic role labelling
with tree conditional random fields. In Proceedings of
CoNLL, 169–172.
Cucchiarelli, A., and Velardi, P. 2001. Unsupervised named
entity recognition using syntactic and semantic contextual
evidence. Computational Linguistics 27(1):123–131.
De Marneffe, M.-C.; MacCartney, B.; Manning, C. D.; et al.
2006. Generating typed dependency parses from phrase
structure parses. In Proceedings of LREC, 449–454.
Finkel, J. R., and Manning, C. D. 2009. Joint parsing and
named entity recognition. In Proceedings of HLT-NAACL,
326–334.
Finkel, J. R., and Manning, C. D. 2010. Hierarchical joint
learning: Improving joint parsing and named entity recogni-
tion with non-jointly labeled data. In Proceedings of ACL,
720–728.
Finkel, J.; Dingare, S.; Manning, C. D.; Nissim, M.; Alex,
B.; and Grover, C. 2005. Exploring the boundaries: gene
and protein identification in biomedical text. BMC bioinfor-
matics 6(1):1.
Finkel, J. R.; Grenager, T.; and Manning, C. 2005. Incor-
porating non-local information into information extraction

3464

systems by gibbs sampling. In Proceedings of ACL, 363–
370.
Koehn, P. 2004. Statistical significance tests for machine
translation evaluation. In Proceedings of EMNLP, 388–395.
Krishnamurthy, J., and Mitchell, T. M. 2015. Learning a
compositional semantics for freebase with an open predicate
vocabulary. Transactions of the Association for Computa-
tional Linguistics 3:257–270.
Lafferty, J.; McCallum, A.; and Pereira, F. C. 2001. Con-
ditional random fields: Probabilistic models for segmenting
and labeling sequence data. In Proceedings of ICML, 282–
289.
Lao, N., and Cohen, W. W. 2010. Relational retrieval using
a combination of path-constrained random walks. Machine
learning 81(1):53–67.
Lee, H.; Recasens, M.; Chang, A.; Surdeanu, M.; and Juraf-
sky, D. 2012. Joint entity and event coreference resolution
across documents. In Proceedings of Joint Conference on
EMNLP-CoNLL, 489–500.
Liang, P.; Jordan, M. I.; and Klein, D. 2013. Learning
dependency-based compositional semantics. Computational
Linguistics 39(2):389–446.
Ling, X., and Weld, D. S. 2012. Fine-grained entity recog-
nition. In Proceedings of AAAI, 94–100.
Liu, J.; Huang, M.; and Zhu, X. 2010. Recognizing biomed-
ical named entities using skip-chain conditional random
fields. In Proceedings of the Workshop on BioNLP, 10–18.
Lu, W., and Roth, D. 2015. Joint mention extraction and
classification with mention hypergraphs. In Proceedings of
EMNLP, 857–867.
McCallum, A., and Li, W. 2003. Early results for named
entity recognition with conditional random fields, feature in-
duction and web-enhanced lexicons. In Proceedings of HLT-
NAACL, 188–191.
McCallum, A.; Freitag, D.; and Pereira, F. C. 2000. Maxi-
mum entropy markov models for information extraction and
segmentation. In Proceedings of ICML, 591–598.
Muis, A. O., and Lu, W. 2016a. Learning to recognize dis-
contiguous entities. In Proceedings of EMNLP.
Muis, A. O., and Lu, W. 2016b. Weak semi-markov crfs for
noun phrase chunking in informal text. In Proceedings of
NAACL, 714–719.
Nivre, J.; Hall, J.; and Nilsson, J. 2006. Maltparser: A data-
driven parser-generator for dependency parsing. In Proceed-
ings of LREC, 2216–2219.
Okanohara, D.; Miyao, Y.; Tsuruoka, Y.; and Tsujii, J. 2006.
Improving the scalability of semi-markov conditional ran-
dom fields for named entity recognition. In Proceedings of
COLING-ACL, 465–472.
Poon, H., and Domingos, P. 2009. Unsupervised semantic
parsing. In Proceedings of EMNLP, 1–10.
Ratinov, L., and Roth, D. 2009. Design challenges and mis-
conceptions in named entity recognition. In Proceedings of
CoNLL, 147–155.

Sarawagi, S., and Cohen, W. W. 2004. Semi-markov condi-
tional random fields for information extraction. In Proceed-
ings of NIPS, 1185–1192.
Sasano, R., and Kurohashi, S. 2008. Japanese named entity
recognition using structural natural language processing. In
Proceedings of IJCNLP, 607–612.
Yang, B., and Cardie, C. 2012. Extracting opinion ex-
pressions with semi-markov conditional random fields. In
Proceedings of Joint Conference on EMNLP-CoNLL, 1335–
1345.
Zhou, G., and Su, J. 2002. Named entity recognition using
an hmm-based chunk tagger. In Proceedings of ACL, 473–
480.

3465

