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Abstract

We present a novel approach to learning word embeddings by
exploring subword information (character n-gram, root/affix
and inflections) and capturing the structural information of
their context with convolutional feature learning. Specifically,
we introduce a convolutional neural network architecture that
allows us to measure structural information of context words
and incorporate subword features conveying semantic, syn-
tactic and morphological information related to the words.
To assess the effectiveness of our model, we conduct exten-
sive experiments on the standard word similarity and word
analogy tasks. We showed improvements over existing state-
of-the-art methods for learning word embeddings, including
skipgram, GloVe, char n-gram and DSSM.

1. Introduction

Traditionally, words are represented using count-based vec-
tors in a sparse high dimension space where each word in
the vocabulary is represented by a single dimension. In con-
trast, word embeddings are low dimensional distributed rep-
resentations of words in a real-valued vector space. Such
dense representations can be learned from data, and they
have proven to be effective in improving the performance on
many natural language processing (NLP) tasks, e.g., chunk-
ing, named entity recognition, and language modelling (Col-
lobert and Weston 2008; Turian, Ratinov, and Bengio 2010;
Socher et al. 2013). Thus the quest to find robust word em-
bedding is of particular interest in the NLP community.

Most existing approaches regard words as individual
atomic units when learning their embeddings. By doing so,
the resulting word embeddings lack linguistic information
that might be captured by the subword features. Subword
information, such as roots, affixes, character n-grams and
inflections, typically conveys useful features that captures
derivational and/or inflectional morphological information
that can be exploited in the embedding learning process.
Additionally, important structural information such as word
order needs to be captured to enrich the syntactic proper-
ties of the resulting word embeddings (Ling et al. 2015). It
remains an active research topic in search of the effective
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techniques to represent linguistic units and to capture con-
textual/structural information in word embedding learning.

Similar to previous work (Bian, Gao, and Liu 2014;
dos Santos and Zadrozny 2014; Chen et al. 2015; Cotterell
and Schütze 2015; Bojanowski et al. 2016), we integrate
the subword information in the first feature layer in our
model training. In contrast, we improve upon the existing
literature by explicitly adding derivational and inflectional
morphology features to our subword feature layer. Differ-
ent from popular approaches, e.g., continuous bag-of-words
and skipgram, that capture contextual information as a meta-
prediction task, we make use of convolutional neural net-
works (CNNs) to capture the structural information of the
context words when learning the word embeddings.

In this paper, we propose a novel approach that focuses
on fusing fruitful subword information and learning convo-
lutional features that improve the quality of word embed-
dings. We evaluate our approach on different word similarity
and word analogy tasks using standard benchmark datasets
and our model can outperform other state-of-the-art word
embedding learning methods.

2. Related Work

In this section, we discuss related work on word embedding
learning and the applications of convolutional feature learn-
ing.

2.1 Word Embeddings

The task of learning word embeddings has received a sig-
nificant amount of interest recently. Bengio et al. (2006)
proposed a neural network-based language model which can
yield word embeddings. Improved approaches were later in-
troduced to mitigate the high computational cost of neu-
ral language models (Morin and Bengio 2005; Mnih and
Hinton 2009). Mikolov et al. (2010) introduced a recurrent
neural network approach to learning word embeddings by
capturing long distance relationship among words. Subse-
quently, the skipgram model was introduced and has since
gained its popularity due to the open release of its implemen-
tation in the word2vec package1 (Mikolov et al. 2013a;
2013b). Thereafter, CWINDOW and Structured Skip-Ngram
were proposed as variant implementations of word2vec to

1The package also contains an alternative model called CBOW.
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capture the structured information of context words (Ling et
al. 2015). Song et al. (2014) introduced an alternative Deep
Structured Semantic Model (DSSM) to learn word emebed-
dings via a deep fully-connected neural network argumented
by a cosine similarity function to construct the loss func-
tion. In contrast to the prediction-based learning methods
described above, GloVe (Pennington, Socher, and Manning
2014) showed that count-based methods with dimensional-
ity reduction using global word co-occurrence information
can achieve similar results.

Other than improving the techniques to model the contex-
tual information, previous works have also leveraged exist-
ing lexical resources to improve word embeddings, such as
RCM (Yu and Dredze 2014), knowledge embedding (Wang
et al. 2014) and SensEmbed (Iacobacci, Pilehvar, and Nav-
igli 2015). Without additional resources, previous works
have also utilized character-level information to improve
the word embeddings, e.g., CWE (dos Santos and Zadrozny
2014) and CharWNN (Chen et al. 2015), morphological in-
formation (Cotterell and Schütze 2015). Most recently, Bo-
janowski et al. (2016) improved the original word2vec by
introducing character n-gram information in addition to the
surface word representations.

2.2 Convolutional Feature Learning

Convolutional neural networks have been widely used in
various fields, including computer vision, speech, as well
as NLP (LeCun and Bengio 1995; LeCun et al. 1998;
Kalchbrenner, Grefenstette, and Blunsom 2014). For exam-
ple, Shen et al. (2014) reported that convolution-based ar-
chitectures can extract more information from short texts as
compared to fully-connected structures in an information re-
trieval task. Meng et al. (2015) improved upon the neural
network joint model in machine translation by introducing
different convolutional neural network architectures to en-
code the source and target languages. Sun et al. (2015) pro-
posed to model structural information of both context men-
tions and words by convolutional tensors. Fang et al. (2015)
utilized convolution-pooling layers for measuring the simi-
larities between an image and its caption.

Existing literature have demonstrated the potential bene-
fits of using convolutional feature learning to extract struc-
tural information from short texts.

3. Model

Figure 1 illustrates our model for learning word embeddings.
On the left, we first construct the input representation for
each context word at the subword feature layer based on the
character trigram features, the root and affix features and the
inflection features. Next, we set a sliding window of size n
to learn convolutional features from local word n-grams of
context words, where n=3. Thereafter, a max-pooling layer
is utilized to extract most informative features from among
convolutions.

On the right, we construct the input representations for the
current word, together with randomly selected words which
serve as negative samples, using the same features described
above for context words representation. Next, we feed each

of them into a fully-connected non-linear projection layer to
learn lower-dimensional representations and the final word
embeddings are then obtained at the word embedding layer.

Using the max pooling layer (left) and word embedding
(right), we define an objective function which maximizes the
similarity between the context and the current word while
minimizing the similarity between the context and all other
negatively sampled words. We use back-propagation to learn
model parameters.

3.1 Extracting Subword Features

The subword feature layer aims to encode useful linguis-
tic information beyond the atomic surface word representa-
tions. We exploit the following features that captures varying
granularity of the subword information. Figure 2 presents an
example of the subword features and how the overlapping
feature space highlights the similarity between the related
words.

• Instead of using a surface word index, Huang et al. (2013)
used letter trigrams for word hashing. As such, the di-
mension of the vocabulary table is reduced. Additionally,
the trigrams capture certain morphological information
when similar words access overlapping feature space. For
example, in Figure 2(a), “absorptive” and “absorption”
both share the features “#ab”, “abs”, “bso”, “sor”, “orp”,
“rpt”. The letter trigrams shared between the words in-
dicate that the words can potentially be related to each
other. Letter trigrams are often generalized as character
n-grams in many works (Cavnar, Trenkle, and others ;
Bojanowski et al. 2016). We limit the order of n-grams to
three to avoid sparsity issues with higher order n-grams.

• Bian et al. (2014) showed that root and affix informa-
tion can be very useful for understanding the semantics
and derivative morphology of a word. For example, in
Figure 2(b), “absorbent”, “absorbable”, “absorbed” and
“absorbingly” all have the same root “sorb”. The various
affixes provide derivational morphology that change the
meaning of the words yet they remain semantically simi-
lar because of the root word.

• Different from prior work that conflates derivational and
inflectional morphology, we explicitly handle inflectional
forms (i.e., non-derivational) of words by mapping them
to a normalized root.2 For nouns, we map them to their
singular forms, e.g., “liquids” gets normalized to “liq-
uid”. For verbs, we map them to their infinitive forms,
e.g., “absorbing”, “absorbs” and “absorbed” gets nor-
malized to “absorb”.

Besides the above features, it is also possible to extract
additional subword features. We can even extract certain
task-specific or domain-specific features when we have such
knowledge available. In this paper, we focus on using the
above well-motivated features and focus the rest of the pa-
per on learning general word embeddings.

2This is similar to the effects of lemmatization in studies like
Trask et al. (2015), often information from derivational morphol-
ogy is removed in lemma-based embeddings.
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Figure 1: Our model for learning word embeddings. The context words are “as the vegan gelatin substitute absorbs”, and the
current word is “liquid”. Two example negative samples are “year” and “make”. For subword features, we use different colors
to indicate different types of features (see Figure 2 for more details).

(a) Letter Trigrams

(b) Root and Derivational Affixes

(c) Inflectional Affixes

Figure 2: Subword features

3.2 Learning Context Embeddings

There are several variants of the convolution architectures,
which are shown effective in modeling word sequences
(Shen et al. 2014; Sun et al. 2015; Gao et al. 2014; Yih,
He, and Meek 2014). In our model, we use xi to represent
the input features of the i-th context word, where xi is a
d-dimensional column vector. The vector representation of
convolutional layer y can be defined as:

yi = σ(�x̃i + ξ)

where yi is the i-th component of the convolutional layer,
and � and ξ are weight parameters. Here x̃i is an nd-
dimensional column vector, which is defined as follows:

x̃i = xi:i+n−1 = [xT
i , x

T
i+1, . . . , x

T
i+n−1]

T

We note that such a representation of convolutional fea-
ture learning is able to capture structured context informa-
tion by preserving certain ordering information amongst the
context words. To combine the local information of word n-
grams, we use a max-pooling layer, which can be formulated
as:

c(j) = max
i=1,2,...,t−n+1

{yi(j)}
where t is the number of context words and c is the out-
put representation from the max-pooling layer, which essen-
tially exploits all the information of convolutional features
captured by previous layers. This layer results in a context
embedding. Here, the j-th entry in the context embedding is
obtained by taking the max of the j-th entries of all repre-
sentations learned from the convolutional layer.

3.3 Learning Current Word Embeddings

While convolutional neural networks can capture word or-
dering information, it is not necessary to use such an ar-
chitecture to handle single words. Following the study of
DSSM (Song et al. 2014), we utilize a two layered fully-
connected neural network to learn current word embeddings
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and the negative samples separately from the contextual em-
bedding. Different from their work, our subword feature
layer encodes morphosyntactic properties that improves the
emedding quality. For the first layer, we have:

q = σ(ς1x+ τ1)

where x contains the subword features of the current word,
which is also a d-dimensional vector. ς1 and τ1 are the pa-
rameters of first fully-connected layer. After this non-linear
projection, x is reduced to a vector q. This vector is set as
input to another fully connected layer, resulting in w:

w = σ(ς2q + τ2)

where ς2 and τ2 are the parameters of second fully-
connected layer. Now this representation w is exactly the
current word embeddings. We set the dimensions to be of
the same size for both the context embedding and the current
word embedding such that we can calculate their similarity.

3.4 Conditional Probability Based on Softmax

Following (Song et al. 2014), to measure the similarity be-
tween current word and context words, i.e., p(w|c), we de-
fine the softmax function with the similarity layer as follows:

p(w|c) = exp(γ · s(w, c))
exp(γ · s(w, c)) +∑

w′
j∈W exp(γ · s(w′j , c))

where s(w, c) is the similarity function between the current
word and its context words and γ is a temperature parameter
that can magnify the influence of s(·, ·). We select negative
samples w′j from the collection of words W and calculate
their similarity with context words.3

We define the loss function as the negative log-likelihood
for each pair of current word w and its surrounding context
words c. Following previous work (Gutmann and Hyvärinen
2012; Mnih and Kavukcuoglu 2013; Mikolov et al. 2013b;
Cao, Lu, and Xu 2015), we use negative sampling when
training our model.

The loss function associated with a particular (w, c) pair
is given as:

l(w, c; θ) = − log p(w|c) = log(1+
∑

j

exp(−γ·Δj(w, c)))

where Δj(w, c) is the similarity difference between the pos-
itive sample and the j-th negative sample:

Δj(w, c) = s(w, c)− s(w′j , c)

and θ consists of the neural network parameters:

θ = {�, ξ, ς1, τ1, ς2, τ2}
We define the similarity function s(·, ·) as the cosine simi-
larity between two vectors.

The overall loss function defined over the corpus is:

L(θ) =
∑

(w,c)∈D
log(1 +

∑

j

exp(−γ ·Δj(w, c)))

where D refers to the entire training corpus.
3The negative samples here refer to words that are randomly

selected from the vocabulary where the current word is excluded.

4. Experiments

In this section, we describe the benchmarks and baseline al-
gorithms, and then present and discuss the performance of
our model.

4.1 Tasks

We conduct experiments on three tasks, word visualization,
word similarity and word analogy, to assess the efficacy
of the word embeddings trained using our approach. Our
source codes will be released at http://shelson.top.

4.1.1 Word Visualization An intuitive way to understand
the performance of a word embedding model is to visualize
the resulting embeddings. We project our word emebeddings
into a 2-dimensional space using the t-SNE toolbox (Van der
Maaten and Hinton 2008). Words that share similar seman-
tics will appear closer to each other in the 2-dimensional
space allowing us to make qualitative assessment of the re-
sulting word embeddings.

4.1.2 Word Similarity We evaluated our word embed-
dings using several word similarity datasets, viz., Word-
Sim353 (Finkelstein et al. 2001), MEN (Bruni et al. 2012),
MT (Radinsky et al. 2011), Rel122 (Szumlanski, Gomez,
and Sims 2013) and RG (Rubenstein and Goodenough
1965). Each dataset contains pairs of words together with
their similarity scores. We use Spearman’s rank correlation
coefficient (Zar 1972) to evaluate the performance for each
baseline algorithm.

ρ = 1− 6 ·∑ϕ
i=1(βi − β̂i)

2

ϕ(ϕ2 − 1)

where βi is the benchmark similarity score between the two
word embeddings in the i-th instance, and β̂i is the cosine
similarity between two words in the i-th instance based on
the embeddings produced by each algorithm; ϕ refers to the
total number of instances.

4.1.3 Word Analogy To assess the capability of our word
embeddings for semantic deduction, we evaluate them using
the word analogy task. This task provides three words a, b,
u and requires a fourth word to be generated to satisfy the
statement “a is to b that is similar to u is to v”. For example,
given “China is to Beijing as Japan is to ”, the model
should generate “Tokyo” as the correct answer.

To find the most suitable word v based on word embed-
dings, Mikolov et al. (2013) introduced the 3CosAdd func-
tion that finds the optimal embedding v∗ for the word v∗
using the following:

v∗ = argmax
v

cos(v, b)− cos(v, a) + cos(v, u)

where cos(·, ·) refers to the cosine similarity function. Alter-
natively, Levy et al. (2014) proposed the 3CosMul function:

v∗ = argmax
v

cos(v, b) · cos(v, u)
cos(v, a) + 0.001

where a, b, u and v are the embeddings of word a, b, u and
v, and the objective is to find the best embedding of v∗ as
word v∗.
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In this paper, we evaluate our embeddings using both
3CosAdd and 3CosMul on two datasets of analogy questions
proposed by Microsoft (Mikolov, Yih, and Zweig 2013) and
Google (Mikolov et al. 2013a).

4.2 Experimental Settings

In this section, we describe the baseline systems, the train-
ing data and discuss the implementation details. We com-
pare our word embeddings against the following baseline
approaches:

• Skipgram4 is an effective model for learning word embed-
dings (Mikolov et al. 2013a; 2013b). The model learns
word embeddings by maximizing the conditional proba-
bility of a context word given the current word.

• Char n-gram5 (Bojanowski et al. 2016) is a variant based
on Skipgram model, which enriches word embeddings
with character n-gram information. Fused by character n-
grams, morphological information has been incorporated
into word embeddings. This model reported good perfor-
mance on small training datasets.

• GloVe6 is another state-of-the-art model for learning word
embeddings (Pennington, Socher, and Manning 2014). It
leverages global count information aggregated from the
entire corpus as word-word occurrence matrix to learn
word embeddings.

• DSSM7 is a model that explicitly learns the representa-
tions for both current word and its context using stan-
dard multi-layer neural networks (Song et al. 2014). In
their model, they used letter trigrams as the hashed repre-
sentation of the input layer. Empirically, their model has
been shown to be effective at the word analogy task. This
model is the closest to our approach. Unlike their model,
we employ a convolutional layer for the context to capture
structural context information and used more subword in-
formation in our input layer.

We use the publicly available enwik9 corpus as the train-
ing data; it consists of the first 1 billion (1× 109) characters
from Wikipedia8. We preprocess the corpus by lowercasing
all words, keeping only words that contain alphabetical let-
ters, removing the stop-words and selecting the top 50K fre-
quent words.

To make a fair comparison, the context window size t is
set to 5 from both sides as discussed in (Song et al. 2014)
and we use the same dimension of word embeddings for
each baseline algorithm and our model. For our model and
DSSM, we set γ as 100, batch size as 1024, learning rate
as 0.02, the number of negative samples as 100 and iteration
epoch as 20. We train our model on one Nvidia GTX TITAN
X GPU card. We use flatcat toolkit9 (Grönroos et al. 2014) to

4https://code.google.com/archive/p/word2vec/
5https://github.com/facebookresearch/fastText
6http://nlp.stanford.edu/projects/glove/
7http://research.microsoft.com/en-us/projects/dssm/
8http://mattmahoney.net/dc/enwik9.zip
9http://www.cis.hut.fi/projects/morpho/

Figure 3: Visualization of word embeddings by t-SNE

Model
ρ× 100 F. et al. B. et al. R. et al. S. et al. R. et al.

WS353 MEN MT Rel122 RG
skipgram (neg=10) 63.2 59.8 61.8 53.3 64.0
skipgram (neg=100) 59.5 58.1 60.8 53.8 64.1
char n-gram 59.5 21.7 60.3 51.0 51.3
GloVe 62.6 65.1 60.2 48.8 58.1
DSSM 51.1 41.5 44.1 31.6 37.7
Our Model 65.7 69.0 64.8 57.6 72.7

Table 1: Performance on word similarity task

obtain words’ root/affix information. Besides, for every al-
gorithm, we used the same training corpus without shuffling
the dataset10, and we only exploit the current word embed-
dings – that is, we do not merge them with the embeddings
learned from the contexts11.

4.3 Results

4.3.1 Results of Word Visualization Figure 3 shows the
2-dimensional projections of our word embeddings. We
highlighted several regions and magnified them so that we
can see them clearly. We observe that one of these clusters
comprises common person names. Another cluster contains
semantically related words, such as months, colors, coun-
tries, as well as states in the US.

This simple visualization provides a qualitative assess-
ment to semantic word clusters learned by our word embed-
dings.

4.3.2 Results of Word Similarity Table 1 shows the em-
pirical results on the word similarity task. We set the hyper-
parameter for number of negative samples as 10 and 100 for
the skipgram model. From the results, the skipgram model
yields a higher performance when the number of negative
samples is set to 10. We also observe that the skipgram and
GloVe model can outperform one another when evaluated
on different datasets. The DSSM model does not perform
well for the word similarity task, and char n-gram model
falls behind skipgram and GloVe. Our model significantly
outperforms all baseline approaches on every dataset.

10Empirically, we found that shuffling the dataset before training
may lead to better results.

11As noted by Levy et al. (2015), merging the context word em-
bedding and the current word embedding for the same word may
lead to better results.
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Google Microsoft
Model 3CosAdd 3CosMul 3CosAdd 3CosMul
skipgram (neg=10) 29.1 27.9 22.8 22.6
skipgram (neg=100) 30.4 29.9 22.9 22.6
char n-gram 38.0 38.0 38.7 38.8
GloVe 41.1 33.9 28.0 24.5
DSSM 31.6 31.8 41.4 41.7
Our Model 43.7 44.0 52.5 52.8
Our Model (w/o inflection) 38.0 38.1 46.5 46.9

Table 2: Performance on word analogy task

4.3.3 Results of Word Analogy Table 2 describes the per-
formance of each model on word analogy task. Microsoft’s
DSSM performs better than char n-gram on the Microsoft
dataset, while char n-gram is better than DSSM on the
Google dataset. Skipgram yields relatively lower results
on both datasets, especially when the number of negative
samples is set to 10, whereas GloVe has a better perfor-
mance than skipgram model. Our model consistently outper-
forms all baseline approaches on both Microsoft and Google
dataset.

One important reason is that our model encodes rich sub-
word information, which is helpful for understanding such
analogy questions as “apple is to apples as pear is to pears”.
Since we exploit inflection features for words, it might be
the case that certain information required for performing the
word analogy task might have already be present in the input
feature representations. One might hypothesize that adding
such features may improve the similarity of two variants of
a word, such as “apple” and “apples”. However, we note
that the performance of the word analogy task is decided by
the difference between word embeddings. For example, we
are interested in measuring “vector(apple)-vector(apples)”
and “vector(pear)-vector(pears)”. While adding inflection
features can improve the similarities between “apple” and
“apples”, it is not clear how this would affect the difference
between their learned word vector representations.

To understand whether the improvement our model ob-
tained is simply due to the addition of such inflection fea-
tures, we performed further experiments by discarding in-
flection features. The last row of Table 2 reports the result of
our model without the inflection features; our model yield
poorer results across both datasets when inflection features
are excluded. However, our degenerated model still outper-
forms all other baseline models.

From both Table 1 and Table 2 we can see that while
the skipgram model is good at the word similarity task and
the DSSM works well on the word analogy task, our model
learns embeddings which remain robust for both task across
all datasets.

4.4 Discussion

4.4.1 Effect of Convolutional Feature Learning and Im-
portance of Subword Information We conduct experi-
ments to illustrate the effectiveness of convolutional layers
versus fully-connected layers and to understand the impor-
tance of subword information.

We compare the DSSM approach with a simple version
of our model – Our Model (l), which only exploits let-

DSSM OurModel(l) OurModel(l+r) OurModel(l+r+n)
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(a) Performance on Word Similarity
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Microsoft-3CosMul

(b) Performance on Word Analogy

Figure 4: The effects of convolutional learning and impor-
tance of subword information

Google Microsoft
Model 3CosAdd 3CosMul 3CosAdd 3CosMul
DSSM 31.6 31.8 41.4 41.7
DSSM (l+r+n) 41.7 41.7 48.5 48.9
Our Model (l+r+n) 43.7 44.0 52.5 52.8

Table 3: Performance comparison (on word analogy task)
between Our Model (l+r+n) and DSSM (l+r+n) when all
subword features are considered

ter trigrams as input features. The only difference between
these two models is that the convolutional layers are used
in our model when modeling context, while DSSM con-
sists of fully-connected layers for modeling context. Figure
4 shows that the convolutional feature learning leads to bet-
ter results, confirming the effectiveness of the convolutional
layers in capturing structured context information as com-
pared to fully-connected layers.

Aside from performance gains, Our Model (l) saves
roughly 40% running time when compared with the DSSM
model. Our Model (l+r) shows the additive results when we
extend the letter trigrams with root/affix information and
Our Model (l+r+n) yields the best results by further extend-
ing the model with the inflection features. These results con-
firm the importance of subword information when learning
word embeddings.

We also compare Our Model and DSSM when all the sub-
word features (i.e., l+r+n) are considered. Table 3 shows
the results on word analogy task. Our Model (l+r+n) per-
forms better than DSSM (l+r+n) on such a task. Such re-
sults demonstrate the effectiveness of the convolutional fea-
ture learning. We also conduct experiments on word similar-
ity task. Our Model (l+n+r) consistently outperforms DSSM
(l+r+n).

4.4.2 Performance v.s. Training Set Size To understand
the robustness of our model, we conducted experiments on
a smaller training corpus, enwik812, which is a collection of
the first 100 million (1 × 108) characters in wikipedia (i.e.,
the first 10% of enwik9).

From Table 4, we see that our model (enwik8) trained
on a smaller training corpus performs relatively well on the
Microsoft dataset as compared to the model trained on en-
wik9. Subword information plays a crucial role in mitigat-

12http://mattmahoney.net/dc/enwik8.zip
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Google Microsoft
Model 3CosAdd 3CosMul 3CosAdd 3CosMul
skipgram (neg=100) 6.2 6.1 6.6 6.5
char n-gram (epoch=1) 13.0 12.3 17.2 16.3
char n-gram (epoch=5) 36.7 36.7 41.5 42.0
GloVe 13.9 9.3 9.3 6.2
DSSM 28.2 28.2 37.4 37.7
Our Model 37.7 37.7 50.0 50.2

Our Model (enwik9) 43.7 44.0 52.5 52.8

Table 4: Performance on word analogy task trained on en-
wik8
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(a) Performance over negative samples

Dimensions
50 100 200

Pe
rfo

rm
an

ce
-ρ

0.2

0.3

0.4

0.5

0.6

0.7
WS353
MEN
MT
Rel122
RG

(b) Performance over dimensions

Figure 5: Performance over negative samples or dimensions
on word similarity task

ing the lack of of training data. The same robustness to data
sparsity is evident when we see that DSSM that uses letter
trigrams outperforms the skipgram model when trained on
the enwik8 corpus. Our model has the capability to integrate
heterogeneous subword information to overcome the insuf-
ficient data issue, thus leading to an improved performance.

Interestingly, to overcome the data sparsity issue, the per-
formance of the char n-gram model can be improved when
the training epoch is enlarged within a certain range. The
best performing results are achieved when the number of
epoch is set to 5. We also change the training epoch hyper-
parameter of GloVe, but there is almost no improvement.

4.4.3 Performance v.s. Dimensions or Negative Samples
We explore the relation between the performance of our
model on the word similarity task with varying number
of negative samples and the dimensions. Figure 5 shows
how the performance fluctuates on the word similarity task
when different negative samples and different dimensions
are used.

We observe that the performance of our model degrades
when the number of negative samples is either too small or
too large. Our model obtains optimal results when the num-
ber of negative samples is set to a value between 50 and 100.
Regarding the dimension of the word embeddings, the best
performance can be obtained when the dimension is set to a
value between 100 and 200.

5. Conclusion

In this paper, we proposed a novel approach for learning
word embeddings. The model is able to integrate various
subword information effectively into the learning process
of word embeddings, and at the same time can capture cer-

tain structured information from the context. Particularly, we
illustrated the effectiveness of convolutional feature learn-
ing and importance of subword information when learning
word embeddings, and present a comprehensive analysis on
the performance with varying hyperparameters. We demon-
strated that our model outperforms state-of-art word embed-
ding approaches and empirically investigated the effects of
several variables that can affect the quality of word embed-
dings. In the future, we will explore other subword informa-
tion, and investigate its integration with alternative neural
architectures that are capable of capturing structured con-
textual information. We are also interested in investigating
methods for effectively exploiting subword information for
learning word embeddings for certain languages other than
English (such as Chinese).
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