
Dual-Clustering Maximum Entropy with
Application to Classification and Word Embedding

Xiaolong Wang, Jingjing Wang, Chengxiang Zhai
University of Illinois

Urbana, IL 61801
{xwang95, jwang112, czhai}@illinois.edu

Abstract

Maximum Entropy (ME), as a general-purpose machine
learning model, has been successfully applied to various
fields such as text mining and natural language processing.
It has been used as a classification technique and recently
also applied to learn word embedding. ME establishes a dis-
tribution of the exponential form over items (classes/words).
When training such a model, learning efficiency is guaran-
teed by globally updating the entire set of model parame-
ters associated with all items at each training instance. This
creates a significant computational challenge when the num-
ber of items is large. To achieve learning efficiency with af-
fordable computational cost, we propose an approach named
Dual-Clustering Maximum Entropy (DCME). Exploiting the
primal-dual form of ME, it conducts clustering in the dual
space and approximates each dual distribution by the cor-
responding cluster center. This naturally enables a hybrid
online-offline optimization algorithm whose time complex-
ity per instance only scales as the product of the feature/word
vector dimensionality and the cluster number. Experimental
studies on text classification and word embedding learning
demonstrate that DCME effectively strikes a balance between
training speed and model quality, substantially outperforming
state-of-the-art methods.

1 Introduction

Maximum Entropy (ME), also known by a variety of other
names, including log-linear, Gibbs, exponential, softmax
and multinomial logistic regression models, is one of the
most widely applied machine learning techniques in various
fields. As a classification method, ME has seen wide-scale
applications in text mining and natural language process-
ing, such as text classification (Nigam, Lafferty, and Mc-
Callum 1999), part-of-speech tagging (Ratnaparkhi 1996)
and machine translation (Berger, Pietra, and Pietra 1996).
In neural networks, ME (softmax) is the building block of
network architectures to transform a vector of signals into
probabilities (Collobert and Weston 2008), and has been ex-
plored to learn neural probabilistic language models (Bengio
et al. 2003). In recent literature, a number of word embed-
ding algorithms have been proposed based on ME, includ-
ing skip-gram, continuous bag-of-words (CBOW) (Mikolov

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

et al. 2013; Mikolov and Dean 2013) and log-bilinear mod-
els (Mnih and Hinton 2007), among others.

ME establishes a distribution of the exponential form over
items (classes/words) (See Equation (1)). Scalability be-
comes a crucial challenge when the number of items is large,
which occurs nowadays in many real-world problems. For
example, in a text classification problem of predicting the
publishing venue for research papers, the number of classes
can easily exceed thousands on datasets such as ACM digital
library1; for word embedding, commonly used training cor-
pora, with the English Gigaword2 as an example, typically
have a vocabulary of hundreds of thousands, if not millions
of words.

The main computational difficulty in ME comes from the
fact that one has to enumerate all items in order to obtain
either the probability of a single item or the correspond-
ing gradient (Mnih and Teh 2012). Consequently conven-
tional ME optimization techniques such as iterative scal-
ing (Berger, Pietra, and Pietra 1996; Darroch and Ratcliff
1972) and gradient-based algorithms (Tsuruoka, Tsujii, and
Ananiadou 2009; Gao et al. 2007) are very slow to train with
large numbers of items. In practice, sampling-based meth-
ods (Gutmann and Hyvärinen 2010; Mnih and Teh 2012;
Bengio and Senécal 2008) are often adopted since the com-
plexity does not hinge on the number of items. However, one
drawback they possess is the inevitable sampling variance.
Furthermore, only the model parameters associated with the
sampled items get updated at each training instance, while
the majority of the model is left unchanged, which leads to
inefficient learning.

To achieve learning efficiency with affordable computa-
tional cost, we propose a Dual-Clustering Maximum En-
tropy (DCME) approach. It optimizes ME in a primal-dual
fashion, where the multinomial dual distribution for each
instance is exploited. The key step of DCME is to cluster
the dual distributions and to approximate each of them by
the corresponding cluster center. The dual clustering pro-
ceeds by alternating between an online update of each in-
stance’s cluster assignment and an offline calculation3 of

1http://dl.acm.org/
2https://catalog.ldc.upenn.edu/LDC2011T07
3In this paper, the term “offline” is equivalent to “batch compu-

tation”.

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

3323

the cluster centers. This gives rise to an efficient updating
scheme which splits the computation of the model subgra-
dient into an online part and an offline part. Our proposed
DCME enjoys two desirable properties: (1) The model pa-
rameters associated with all items are updated at each train-
ing instance, which ensures learning efficiency; and (2) The
computational cost per instance scales as the product of the
feature/word vector dimensionality4 and the number of clus-
ters, which yields fast training speed.

2 Background

Maximum Entropy Framework

The general formulation of ME is simple. For a data instance
t, ME establishes a distribution over N items:

Pt(i;Θ) =
exp(ft(i;Θ))

N∑
j=1

exp(ft(j;Θ))

, i = 1, . . . , N. (1)

where ft(i;Θ) is the scoring function with model parame-
ters Θ, which quantifies the affinity between instance t and
item i5. In this paper, we investigate ME in two settings,
namely, multi-class classification and word embedding.

For N -class classification, the dataset D consists of
a collection of instances {(xt, it)} with xt being a D-
dimensional feature vector and it a label chosen from items
1, . . . , N . The model W = [w1, . . . ,wN] is a D×N matrix
which specifies the scoring function as:

Classification: ft(j;Θ) = ft(j;W) = wT
j xt (2)

In the word embedding setting, we focus our dis-
cussion on the continuous bag-of-words algorithm
(CBOW) (Mikolov et al. 2013), but the analysis eas-
ily extends to other models as well. As a language
modeling technique, it predicts the target word from
a vocabulary of size N given its surrounding context.
The t-th training instance contains a stream of words
wt,−c, wt,−(c−1), . . . , wt,0, . . . , wt,c−1, wt,c with the target
word it = wt,0. CBOW calculates the compatibility
between the j-th word in the vocabulary and the context as:

Embedding: ft(j;Θ) = ft(j;V,H) = f(vj , h̄t) = vT
j h̄t

where h̄t =
1

2c

∑
−c≤p≤c,p �=0

hwt,p (3)

The model parameters V = [v1, . . . ,vN] and H =
[h1, . . . ,hN] are two D × N matrices of the “input” and
“output” vector representations of words, respectively.

Optimization of ME

Various algorithms for ME have been studied in the litera-
ture. They approach the optimization by solving either the
primal or the dual problem. The primal form maximizes the
log-likelihood of the dataset. Methods of this direction, as

4To be precise, by taking advantage of sparsity, the complexity
depends only on the number of non-zero elements in the vector.

5In the context of energy-based models, −ft(i;Θ) is often re-
ferred as the energy function (Bengio et al. 2003).

surveyed in (Malouf 2002; Yuan, Ho, and Lin 2012), include
iterative scaling algorithms (Berger, Pietra, and Pietra 1996;
Darroch and Ratcliff 1972), coordinate descent (Huang et
al. 2010), stochastic gradient descent (Tsuruoka, Tsujii, and
Ananiadou 2009) and Quasi-Newton method (Gao et al.
2007), just to name a few. Their training complexity per in-
stance is O(DN). This is a consequence of having to enu-
merate all items when computing the probability of a single
item or the corresponding gradient. On the other hand, an-
other line of research tackles the problem by maximizing the
entropy of dual distributions. Constraint optimization tech-
niques, such as exponentiated gradient (Collins et al. 2008)
and dual coordinate descent (Yu, Huang, and Lin 2011), are
investigated. Since the dimensionality of dual distributions
is in fact the same as the number of items, their training
complexity is still linear in N . Consequently, all these al-
gorithms are impractical with large numbers of items due to
the prohibitively expensive computational cost.

Learning with Large Item Number

Scaling algorithms for learning when the number of items
N is large have become a recent research direction with
focus on maintaining the training complexity sublinear in
N . Among them, hierarchical approaches explore a tax-
onomy (of items) and convert the problem into a series
of binary predictions along the tree branches, which po-
tentially reduces the complexity from O(N) to O(logN).
Though efforts have been made in large multi-class (ex-
treme) classification (Choromanska and Langford 2015;
Choromanska, Agarwal, and Langford 2013) and word em-
bedding (Morin and Bengio 2005; Mnih and Hinton 2009;
Mikolov et al. 2013), finding balanced tree structures that
provide an effective partition of items is difficult by itself,
and thus their use is limited in practice. Another work of ex-
treme classification, (Yen et al. 2016), has developed a fast
active set algorithm for max-margin classifiers by exploiting
the sparsity of feature vectors. The training speed-up, nev-
ertheless, is generally insignificant for dense data represen-
tations such as word embeddings. To the best of our knowl-
edge, the most effective approaches for training ME mod-
els with a large N are sampling-based methods, for instance
(Bengio and Senécal 2008), offering a trade-off between
speed and precision. In addition, as pointed out by (Mnih
and Teh 2012), noise-contrastive estimation (NCE) (Gut-
mann and Hyvärinen 2010) is regarded as the state-of-the-art
sampling algorithm which employs the idea of “learning by
comparison”: It reduces the N -item ME problem to a binary
classification between samples from the training data and
“noise” from the proposal distribution, and is guaranteed to
converge to the solution of ME. Yet in practice, a slightly
simpler variant, negative sampling (NS) (Mikolov and Dean
2013), is proposed to train CBOW and skip-gram though
mathematically it does not solve ME. However, one draw-
back is that algorithms of this kind inevitably suffer from
sampling variance. More crucially, the computational effi-
ciency is gained at the expense of only updating the model
parameters associated with the sampled items, while the due
change of the rest is discarded. Learning efficiency is there-
fore sacrificed.

3324

3 Dual-Clustering Maximum Entropy

In this section, we present a Dual-Clustering Maximum En-
tropy (DCME) approach which has two advantages regard-
ing learning and computational efficiency: (1) The model pa-
rameters associated with all items are updated at each train-
ing instance; and (2) The time complexity is independent of
N .

Primal-dual ME

Different from existing approaches, DCME solves the ME
problem in a primal-dual fashion. Suppose that the dataset D
has M instances and N items where the t-th instance selects
the it-th item. We start the derivation from the primal ME
formulation which maximizes the log-likelihood:

M∑
t=1

log(Pt(it;Θ)) =
M∑
t=1

(
ft(it;Θ)− log

N∑
j=1

exp ft(j;Θ)
)

=
M∑
t=1

(
ft(it;Θ)−At(Θ)

)
(4)

where At(Θ) is referred to as the log-partition func-
tion and its conjugate dual is revealed by the following
lemma (Hiriart-Urruty and Lemaréchal 1993; Wainwright
and Jordan 2008):

Lemma 3.1. Assume P(i; s) = exp(si)/
N∑

j=1

exp(sj) and

A(s) = log
N∑

j=1

exp(sj), the conjugate duality between the

log-partition function and negative entropy states:

A(s) = max
μ∈ΔN

{
N∑

j=1

μjsj −
N∑

j=1

μj log μj}

= max
μ∈ΔN

{Eμ[sj] +H(μ)} (5)

where the simplex set ΔN = {p ∈ R
N : pj ≥ 0,

N∑
j=1

pj = 1}
and the maximizer is attained at:

μ∗j = P(j; s), 1 ≤ j ≤ N (6)

Proof. We use the following equivalence:

Eμ[sj] +H(μ) = −
N∑

j=1

μj log
μj

P(j; s)
+ log

N∑
j=1

exp(sj)

= −DKL(μ||P) +A(s)

where DKL(μ||P) is the Kullback-Leibler (KL) divergence
and note DKL(μ||P) ≥ 0 and DKL(P ||P) = 0. It follows
that μ∗ = argmin

μ∈ΔN

DKL(μ||P) = P .

In view of Lemma 3.1, we arrive at the primal-dual form
of ME:

max
Θ

min
μt∈ΔN
1≤t≤M

M∑
t=1

(
ft(it;Θ)−Eμt

[ft(j;Θ)]−H(μt)
)

(7)

where μt is the dual distribution for instance t.

Dual Distribution Clustering

Lemma 3.1 implies that μ∗t is determined by ft(j;Θ). In
less mathematical terms, similar instances choose similar
items (in probabilities). As real-world data generally pos-
sesses a clustering structure instead of being randomly dis-
tributed, it is expected that the optimal dual distributions μ∗t
for t = 1, . . . ,M also form clusters. For the text classifi-
cation example of venue prediction, if papers are grouped
by topics, those in the same group should have similar
chance of getting published at a particular venue; For learn-
ing word embedding, we anticipate contexts of similar se-
mantics yield target word distributions that can be clustered
together.

Therefore, it is worth exploring the cluster structure of
dual distributions to reduce complexity. DCME rests on the
idea of “approximation by clustering”: By clustering the
dual distributions into K groups, each μt is assigned to a
cluster ct ∈ {1, . . . ,K}, and is then approximated by the cor-
responding cluster center αct ∈ ΔN which best represents
the group. The optimization problem of DCME can thus be
formulated as:

DCME: max
Θ

min
αk∈ΔN
1≤k≤K

min
1≤ct≤K
1≤t≤M

M∑
t=1

Qt(αct ;Θ) (8)

where Qt(αct ;Θ) = ft(it;Θ)−Eαct
[ft(j;Θ)]−H(αct)

)

Online-Offline Optimization

We employ Gauss-Seidel coordinate descent to solve (8).
Three blocks of variables, namely, the model parameters
Θ, the cluster centers {αk}, and the instances’ cluster as-
signments {ct}, are successively updated while keeping oth-
ers constant. In particular, we devise a hybrid online-offline
algorithm which breaks the computational bottleneck and
leads to a time complexity that only scales as O(DK), as
opposed to O(DN) in conventional ME algorithms.

Updating cluster assignments (Online) DCME approx-
imates μt by αct , and the cluster assignment ct is solved
by:

argmin
1≤k≤K

−Eαk [ft(j;Θ)]−H(αk) (9)

However, a naı̈ve computation would cost O(DN + KN)
time. It takes O(D) to evaluate ft(j;Θ) for every item
1 ≤ j ≤ N 6; For each cluster, another O(N) is required
to calculate Eαk

[ft(j;Θ)] and H(αk) by enumeration.
Fortunately, when the scoring function is linear in the fea-

ture/context vector, the cost can be reduced to O(DK) per
instance. To see this, from (2) and (3) we have:

Classification: Eαk [ft(j;W)] = (Wαk)
Txt (10)

Embedding: Eαk [ft(j;V,H)] = (Vαk)
T h̄t (11)

The trick we apply here trades memory for time: By storing
Wαk, Vαk and H(αk) for K clusters in the offline update,

6In word embedding, one can compute the scoring function in
O(D) time. Note that the asymptotic complexity of computing h̄t

in every sliding windows is O(D) (independent of window size)
with the sum

∑
−c≤p≤c hwt,p maintained by adding the new word

and subtracting the past word.

3325

it is merely a D-dimensional dot product to calculate (10)
and (11), and therefore the cost to online update ct by (9) is
O(DK).

Updating cluster centers (Offline) We update the cluster
center αk as well as the cached Wαk, Vαk and H(αk)
only in the offline computation. Let Ik denote the index set
of instances in the k-th cluster, αk satisfies:

argmin
α∈ΔN

−Eα

[
1

|Ik|
∑
t∈Ik

ft(j;Θ)

]
−H(α) (12)

Invoking Lemma 3.1 again, (12) has the following closed-
form solution:

αk,j =
1

Z
exp

(1

|Ik|
∑
t∈Ik

ft(j;Θ)
)

(13)

where a normalization term Z is applied to keep
N∑

j=1

αk,j =

1. By the linearity of ft(j;Θ), we express (13) as:

Classification: αk,j =
1

Z
exp

(
wT

j
1

|Ik|
∑
t∈Ik

xt

)
(14)

Embedding: αk,j =
1

Z
exp

(
vT
j

1

|Ik|
∑
t∈Ik

h̄t

)
(15)

which computes αk with O(D|Ik| + DN) cost. In addi-
tion, it takes O(DN) and O(N) to update Wαk, Vαk and
H(αk), respectively. If one only performs the offline up-
date for cluster k until that the number of instances assigned
to cluster k, |Ik| = βN for a constant β (1 for example),
we can obtain an average time complexity of O(D) per in-
stance.

Updating model parameters (Online/Offline) To opti-
mize Θ with subgradient descent:

Classification:
∂Qt

∂wj
= 1[it = j]xt︸ ︷︷ ︸

(a)

+(−αct,jxt)︸ ︷︷ ︸
(b)

(16)

Embedding:
∂Qt

∂vj
=

︷ ︸︸ ︷
1[it = j] h̄t +

︷ ︸︸ ︷
(−αct,jh̄t) (17)

∂Qt

∂h
w

(t)
p

=
1

2c
(vit −Vαct) (18)

for all − c ≤ p ≤ c, p �= 0

where 1[it = j] is the indicator function which evaluates to
1 when it = j and 0 otherwise. In the following, we de-
vise a hybrid online-offline algorithm which has an average
expense of O(D) time per instance.

First, Term (a) in (16) and (17) only changes the model pa-
rameters associated with the correct item it, namely wit and
vit , and can be updated online in O(D) time. Similarly, for
word embedding (18), ∂Qt/∂H can also be updated online
with O(D) cost by keeping track of the sum of ∂Qt/∂hw for
all overlapping instances using a sliding window technique.

Second, Term (b) in (16) and (17) changes the model pa-
rameters of all N items. We make two crucial observations
here: (1) Term (b) of different items share the same direction
−xt (or −h̄t); and (2) The scale vector αct only depends on

the cluster assignment ct. Thus it is logical to perform of-
fline update of Term (b). The computation for instances in
Ik is performed together with the (offline) updating for the
center of cluster k. In other words, the calculation of Term
(b) for all items 1 ≤ j ≤ N and instances t ∈ Ik is triggered
only when |Ik| = βN . And such “lazy” computation yields
an average O(D) expense per instance.

Tuning online/offline computation The overall complex-
ity per instance is O(DK) time, which is appealing as it
does not hinge on N . Nevertheless, an inherent limitation in
learning is the delay of computing Term (b) until |Ik| ≥ βN
in (16) and (17) , especially for items with large values αk,j .
A heuristic improvement we find effective in practice tunes
the computation between online and offline updates. By sort-
ing items (using a heap) with decreasing αk,j , Term (b) of
the top Q items are updated online while the others are up-
dated offline. The resulting average cost per instance be-
comes O(DK +DQ+ logQ). Computational efficiency is
preferred with a small Q while the priority shifts to learning
efficiency with a large Q.

4 DCME Algorithm

Overall Procedures

We summarize the learning procedure of DCME in Algo-
rithm 1. DCME assigns each training instance t to a dual
cluster ct and performs the online model update. Once the
size of a dual cluster reaches βN , an offline model up-
date as well as the update of the dual cluster center are ap-
plied. Although the algorithm has a similar complexity as
the sampling-based approaches such as noise contrastive es-
timation (NCE) and negative sampling (NS), DCME allows
the entire model to learn from every training instance. In
other words, the model parameters associated with all items
get updated when a new training instance arrives, which
yields superior performance over existing methods, as will
be shown in the experimental study.

Algorithm 1: DCME algorithm
Input: M instances, a constant β, cluster number K, and top

item number Q
Output: Model Θ
Initialize K clusters {αk} ;
while Θ is not optimal do

– Select an index t from {1, . . . ,M}
– Find the cluster assignment ct by (9)

– Perform online update of Term (a) (and Term (b) of the
top Q items) in (16) (or (17)). For embedding, also
update H by (18).

– Add t to Ict ;
if |Ict | ≥ βN

– Perform offline update of Term (b) in (16) (or (17)).
– Update cluster center αct and empty Ict

end

3326

Connection with K-means

So far, readers might have already been aware of the re-
semblance between the dual distribution clustering and the
K-means algorithm. The following theorem formally proves
their connection:

Theorem 4.1. The dual distribution clustering in DCME is
a generalized K-means algorithm using KL-divergence as
the distance measurement in the simplex. Moreover, it con-
verges as fast as K-means.

Proof. Using Lemma 3.1, the dual clustering satisfies:

min
αk∈ΔN ,1≤k≤K
1≤ct≤K,1≤t≤M

M∑
t=1

DKL(αct ||Pt) (19)

which minimizes the within-cluster KL-divergence between
αct and Pt. It is the same minimization objective as K-
means except that DCME measures the distance in the sim-
plex space with KL-divergence7. To illustrate this, notice
that the dual clustering proceeds by alternating between the
following two steps (See Figure 1):

– Update ct = argmink DKL(αk||Pt), and t is assigned to
the cluster whose center is nearest to pt by kl-divergence.

– Update αk = argminα
∑

t∈Ik DKL(α||Pt) where the
cluster center is found as the point in the simplex with the
least within-cluster distance.

General convergence results for the subgradient methods can
be applied. Specifically, the above two-step algorithm con-
verges to the local minimum of the problem (19) as fast as
the K-means algorithm (Bottou and Bengio 1995),

Figure 1: Dual Clustering in the Simplex with KL-
divergence

It is easy to see that the least within-cluster distance (19)
is also in fact the difference between the objective functions
of DCME (8) and the primal ME (4) for a given Θ.

Connection with Dual ME

The DCME is reminiscent of the dual ME, and we show the
following results in the classification setting:

7Technically, KL-divergence is not a true metric of distance.

Theorem 4.2. The dual form of DCME in classification is:

max
αk∈ΔN ,1≤k≤K
1≤ct≤K,1≤t≤M

M∑
t=1

H(αct) (20)

subject to
M∑
t=1

1[it = j] xt =
M∑
t=1

αct,jxt, 1 ≤ j ≤ N

The proof is omitted because it is very similar to the
derivation of dual ME. However, the dual form of DCME
provides us with intuition of how DCME works: To approx-
imate Pt, the cluster center is restricted to reproduce the ob-
served statistics. Comparing it with the dual ME where μt
is in place of αct , we see that the dual DCME has more
restricted constraints. A limiting case that DCME becomes
identical to ME is when K = M , i.e. each instance is a
singleton cluster with the only member being itself.

5 Experiments

We conduct experiments on tasks of text classification and
word embedding, evaluating the proposed DCME approach
by examining its computational and learning efficiency.
For comparison, we implement two sampling-based ap-
proaches, noise contrastive estimation (NCE) and negative
sampling (NS), as well as the maximum likelihood estima-
tion using gradient descent (GD). In order for DCME and
the sampling-based approaches to have comparable training
speed, we set both the cluster number K of DCME and the
sampling number of NCE and NS to 20, and also control
the interval between offline updates in DCME with β = 1.
Two variants of DCME, DCME-Q0 and DCME-Q10, are
developed, the latter of which applies the online/offline tun-
ing with Q = 10. All the algorithms are run with 20 threads
in parallel on a 64-bit Linux machine with the Intel Xeon
3.60GHz CPU (20 core). Our code is implemented in C and
available for download at: https://github.com/dragonxlwang/
dcme

Evaluation on Text Classification

We employ the ME model to predict the publishing venue
of research papers using the abstract. A public dataset ACM
Digital Library is investigated. It has 162, 460 papers pub-
lished at 1, 236 conferences. We hold out 10% of the doc-
uments for testing. Each paper is represented by the word
count features of the top 30, 000 frequent words.

Figure 2a shows the learning curves of algorithms trained
at each epoch, and Table 2c reports the training speed. It
is clear that GD does not scale well to large number (thou-
sands or more) of items. DCME is 17-20 times faster than
GD while the ratio is around 26 for sampling-based ap-
proaches. But it does give an estimation about the upper-
bound performance by leveraging the exact gradient infor-
mation. The curve of GD converges in the least number of
iterations while the test accuracy is the highest.

DCME, on the other hand, achieves a computational effi-
ciency similar to that of the sampling-based approaches, but
the accuracy is considerably higher. Particularly, Figure 2a
validates that DCME benefits from tuning the computation
between online and offline updates. When Q = 10, more

3327

(a) Comparison of Test Accuracy for Classification
Trained on ACM Digital Library Dataset

(b) Comparison of Log-Likelihood for Embedding
Trained on NYT Dataset

DCME-Q10 DCME-Q0 NCE NS GD
9.50 7.94 6.21 6.16 165.91

(c) Time Cost (Second) per Epoch in Classification

DCME-Q10 DCME-Q0 NCE NS
33.49 25.59 22.22 20.80

(d) Time Cost (Minute) per Epoch in Embedding

Figure 2: Performance on Text Classification and Word Embedding

model parameters are updated online and there is thus less
delay than that of DCME-Q0. We also note that NCE and
NS produce larger variances, which is expected due to their
sampling nature.

Evaluation on Word Embedding

For the word embedding task, we explore the New York
Times (NYT) corpus from the English Gigaword (Fifth Edi-
tion). It has a total of 1.35 billion words with 10.84 million
unique terms. We retain the top 1 million frequent terms in
the vocabulary. To assess the performance, a randomly sam-
pled 1× 10−4 of the text is withheld for testing. We train the
word embeddings using CBOW with a context window size
of 10 and embedding dimensionality of 100.

We plot the test set average log-likelihood of each epoch
in Figure 2b, and report the time-per-epoch statistics in Ta-
ble 2d. We do not evaluate GD in word embedding as it
takes more than days to run one epoch. The time costs for
other algorithms are similar. The results show that DCME
remarkably outperforms NCE and NS. However, DCME-Q0
exhibits a large performance variance. One possible expla-
nation is as follows. For N as large as 1 million, the interval
between offline updates is so long that it creates two unde-
sirable effects: (1) The delay results in a biased model which
contributes to a large training error; (2) The offline com-
putation changes the model drastically, as measured by the
norm of the model difference, causing inconsistency when
another thread accesses the model while the offline update is
still in progress8. For DCME-Q10, minimal variance is ob-

8The model parameters are shared by all threads and there is
no mutex locks on writing to the model, which is a common prac-
tice for efficiency in implementations including word2vec (https:
//code.google.com/p/word2vec/) and ours.

served. Indeed, it offers the best trade-off between learning
and computational efficiency.

Model Semantic Syntactic Overall
DCME-Q10 −8.676 −8.648 −8.654
DCME-Q0 −8.712 −8.647 −8.663

NCE −8.784 −8.782 −8.783
NS −8.765 −8.679 −8.699

Table 1: Log-Likelihood on Semantic-Syntactic Word Rela-
tionship Dataset

To assess the quality of the trained embeddings, we use
the word analogy task, which examines whether the embed-
dings learn the semantic/syntactic relationships of words.
For instance, the question which word is similar to “small”
in the same sense as “biggest” to “big” can be solved by
predicting the target word with a context vector hbiggest −
hbig + hsmall. We evaluate the trained word embeddings
after 15 epochs. And the results on the Semantic-Syntactic
Word Relationship test set (Mikolov et al. 2013) are summa-
rized in Table 1, where the best performance is highlighted
in bold. Again, it confirms that DCME achieves better model
quality than sampling-based NCE and NS.

6 Conclusions

We propose a novel optimization method, Dual-Clustering
Maximum Entropy (DCME), which solves the Maximum
Entropy problem in its primal-dual form. Although it has
a similar complexity as the sampling-based approaches, it
allows the entire model to learn from every training in-
stance, which we believe is the first algorithm that is effi-
cient both in learning and computation. DCME exploits the

3328

dual clustering and approximates dual distributions by clus-
ter centers. It maintains an affordable complexity using a hy-
brid online-offline optimization algorithm. Empirical stud-
ies demonstrate that DCME outperforms state-of-the-art al-
gorithms such as NCE and NS in learning tasks with large
numbers of items. A promising future research direction is to
investigate the nonparametric mixture models for dual clus-
tering. By taking advantages of probabilistic latent cluster
assignments and learning the number of clusters from the
data, we expect a better approximation for dual distributions.

Acknowledgment

This work is supported in part by the National Science
Foundation under Grant Numbers CNS-1513939 and CNS-
1408944.

References

Bengio, Y., and Senécal, J.-S. 2008. Adaptive impor-
tance sampling to accelerate training of a neural probabilis-
tic language model. IEEE Transactions on Neural Networks
19(4):713–722.
Bengio, Y.; Ducharme, R.; Vincent, P.; and Jauvin, C. 2003.
A neural probabilistic language model. journal of machine
learning research 3(Feb):1137–1155.
Berger, A. L.; Pietra, V. J. D.; and Pietra, S. A. D. 1996. A
maximum entropy approach to natural language processing.
Computational linguistics 22(1):39–71.
Bottou, L., and Bengio, Y. 1995. Convergence properties of
the k-means algorithms. In Advances in Neural Information
Processing Systems, 585–592.
Choromanska, A.; Agarwal, A.; and Langford, J. 2013. Ex-
treme multi class classification. In NIPS Workshop: eXtreme
Classification, submitted.
Choromanska, A. E., and Langford, J. 2015. Logarithmic
time online multiclass prediction. In Advances in Neural
Information Processing Systems, 55–63.
Collins, M.; Globerson, A.; Koo, T.; Carreras, X.; and
Bartlett, P. L. 2008. Exponentiated gradient algo-
rithms for conditional random fields and max-margin
markov networks. Journal of Machine Learning Research
9(Aug):1775–1822.
Collobert, R., and Weston, J. 2008. A unified architecture
for natural language processing: Deep neural networks with
multitask learning. In Proceedings of the 25th international
conference on Machine learning, 160–167. ACM.
Darroch, J. N., and Ratcliff, D. 1972. Generalized iterative
scaling for log-linear models. The annals of mathematical
statistics 1470–1480.
Gao, J.; Andrew, G.; Johnson, M.; and Toutanova, K.
2007. A comparative study of parameter estimation meth-
ods for statistical natural language processing. In ANNUAL
MEETING-ASSOCIATION FOR COMPUTATIONAL LIN-
GUISTICS, volume 45, 824.
Gutmann, M., and Hyvärinen, A. 2010. Noise-contrastive
estimation: A new estimation principle for unnormalized
statistical models. In AISTATS, volume 1, 6.

Hiriart-Urruty, J.-B., and Lemaréchal, C. 1993. Convex
analysis and minimization algorithms II: Advanced theory
and bundle methods. Springer-Verlag, New York.
Huang, F.-L.; Hsieh, C.-J.; Chang, K.-W.; and Lin, C.-J.
2010. Iterative scaling and coordinate descent methods for
maximum entropy models. Journal of Machine Learning
Research 11(Feb):815–848.
Malouf, R. 2002. A comparison of algorithms for maxi-
mum entropy parameter estimation. In proceedings of the
6th conference on Natural language learning-Volume 20, 1–
7. Association for Computational Linguistics.
Mikolov, T., and Dean, J. 2013. Distributed representations
of words and phrases and their compositionality. Advances
in neural information processing systems.
Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013. Ef-
ficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781.
Mnih, A., and Hinton, G. 2007. Three new graphical mod-
els for statistical language modelling. In Proceedings of the
24th international conference on Machine learning, 641–
648. ACM.
Mnih, A., and Hinton, G. E. 2009. A scalable hierarchical
distributed language model. In Advances in neural informa-
tion processing systems, 1081–1088.
Mnih, A., and Teh, Y. W. 2012. A fast and simple al-
gorithm for training neural probabilistic language models.
arXiv preprint arXiv:1206.6426.
Morin, F., and Bengio, Y. 2005. Hierarchical probabilistic
neural network language model. AISTATS 2005 246.
Nigam, K.; Lafferty, J.; and McCallum, A. 1999. Us-
ing maximum entropy for text classification. In IJCAI-99
workshop on machine learning for information filtering, vol-
ume 1, 61–67.
Ratnaparkhi, A. 1996. A maximum entropy model for part-
of-speech tagging. Association for Computational Linguis-
tics.
Tsuruoka, Y.; Tsujii, J.; and Ananiadou, S. 2009. Stochastic
gradient descent training for l1-regularized log-linear mod-
els with cumulative penalty. In Proceedings of the 47th An-
nual Meeting of the ACL, 477–485. Association for Compu-
tational Linguistics.
Wainwright, M. J., and Jordan, M. I. 2008. Graphical mod-
els, exponential families, and variational inference. Founda-
tions and Trends in Machine Learning 1(1-2):1–305.
Yen, I. E.; Huang, X.; Ravikumar, P.; Zhong, K.; and
Dhillon, I. S. 2016. Pd-sparse: A primal and dual sparse
approach to extreme multiclass and multilabel classification.
In Proceedings of the 33nd International Conference on Ma-
chine Learning, 3069–3077.
Yu, H.-F.; Huang, F.-L.; and Lin, C.-J. 2011. Dual coordi-
nate descent methods for logistic regression and maximum
entropy models. Machine Learning 85(1-2):41–75.
Yuan, G.-X.; Ho, C.-H.; and Lin, C.-J. 2012. Recent ad-
vances of large-scale linear classification. Proceedings of
the IEEE 100(9):2584–2603.

3329

