
S2JSD-LSH: A Locality-Sensitive Hashing Schema for Probability Distributions

Xian-Ling Mao,♠ Bo-Si Feng,♠ Yi-Jing Hao,♠ Liqiang Nie,♥ Heyan Huang,♠∗, Guihua Wen♣
♠Department of Computer Science, Beijing Institute of Technology, China
♥Department of Computing, National University of Singapore, Singapore

♣Department of Computer Science and Technology, South China University of Technology, China
{maoxl, 2120160986, 2220150504, hhy63}@bit.edu.cn

nieliqiang@gmail.com, crghwen@scut.edu.cn

Abstract

To compare the similarity of probability distributions, the
information-theoretically motivated metrics like Kullback-
Leibler divergence (KL) and Jensen-Shannon divergence
(JSD) are often more reasonable compared with metrics for
vectors like Euclidean and angular distance. However, exist-
ing locality-sensitive hashing (LSH) algorithms cannot sup-
port the information-theoretically motivated metrics for prob-
ability distributions. In this paper, we first introduce a new ap-
proximation formula for S2JSD-distance, and then propose a
novel LSH scheme adapted to S2JSD-distance for approxi-
mate nearest neighbors search in high-dimensional probabil-
ity distributions. We define the specific hashing functions, and
prove their local-sensitivity. Furthermore, extensive empirical
evaluations well illustrate the effectiveness of the proposed
hashing schema on six public image datasets and two text
datasets, in terms of mean Average Precision, Precision@N
and Precision-Recall curve.

In the past decade, we have witnessed an explosive growth
of data on the Internet. Billions of data are publicly available
on the Web, and it brings both challenges and opportuni-
ties to traditional algorithms developed on small to median
scale data sets. Particularly, nearest neighbor search has be-
come a key ingredient in many large-scale machine learning
and data management tasks. In large-scale applications, it
is usually time-consuming or impossible to return the ex-
act nearest neighbors to a given query. Fortunately, approx-
imate nearest neighbors (ANN) (Indyk and Motwani 1998;
Liu et al. 2014b) are enough to achieve satisfactory perfor-
mance in many applications, such as the image retrieval task
in search engines. Moreover, ANN search is usually more
efficient than exact nearest neighbor search to solve large-
scale problems. Hence, ANN search has attracted more and
more attention in this big data era (Heo et al. 2015).

Due to the low storage cost and fast retrieval speed, hash-
ing is one of the popular solutions for ANN search (Liu
et al. 2014a; Andoni et al. 2014; Zhen et al. 2016). The
hashing techniques used for ANN search are usually called
similarity-preserving hashing, and its basic idea is to trans-
form the data points from the original feature space into
a binary-code Hamming space, where the similarity in the
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original space is preserved. More specifically, the Hamming
distance between the binary codes of two points should be
small if these two points are similar in the original space.
Otherwise, the Hamming distance should be as large as pos-
sible. With the binary-code representation, the storage cost
can be substantially reduced and the query speed can be dra-
matically improved for ANN search (Indyk and Motwani
1998; ODonnell, Wu, and Zhou 2014). For example, if we
encode each image with 256 bits, we can store a data set of
1 million images with only 32M memory.

The existing hashing methods can be mainly divided
into two categories (ODonnell, Wu, and Zhou 2014; An-
doni and Razenshteyn 2015): data-independent methods and
data-dependent methods. Data-dependent hashing methods
(Liu et al. 2014a; Zhang et al. 2015) learn hash functions
from the training data; Data-independent hashing methods
like locality sensitive hashing (LSH), use simple random
projections which are independent of the training data for
hash functions. More details refer to (Wang et al. 2014;
2016) for a brief survey. Compared with the data-dependent
methods, data-independent methods are dynamic, and allow
dynamically updates to the point set. The dynamic feature
of data-independent methods facilitates many tasks such as
image retrieval where crawled images are feed persistently.

Existing data-independent hashing methods depend on
two crucial elements: 1) Data type; 2) Distance metric. For
vector-type data, we can use Euclidean distance (l2), Man-
hattan distance (l1), and angular metric (arccos) etc., to
measure the distance between two vectors. Based on these
metrics, various hashing methods are developed. Particu-
larly, based on lp distance with p ∈ [0, 2), lots of LSH meth-
ods have been proposed, such as p-stable LSH (Datar et al.
2004), Leech lattice LSH (Andoni and Indyk 2006), Spher-
ical LSH (Terasawa and Tanaka 2007), and Beyond LSH
(Andoni et al. 2014). Also, angular metric (arccos) is a pop-
ular measure for vectors, and many LSH methods based on
angular metric have been developed, e.g. Random Projection
(PR) (Charikar 2002; Andoni and Indyk 2006), Super-bit
LSH (Ji et al. 2012), Kernel LSH (Kulis and Grauman 2012),
Concomitant LSH (Eshghi and Rajaram 2008), and Hyper-
plane hashing (Jain, Vijayanarasimhan, and Grauman 2010).
Moreover, Chi-squared Distance and Bregman divergence
have also been used as similarity functions to develop cor-
responding hashing algorithms for vectors (Gorisse, Cord,
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and Precioso 2012; Mu and Yan 2010). For set-type data,
Jaccard Coefficient based LSH include Min-hash (Broder et
al. 1997), K-min Sketch (Li, Owen, and Zhang 2012), Min-
max hash (Ji et al. 2013), B-bit minwise hashing (Li, Konig,
and Gui 2010), and Sim-min-hash (Zhao, Jégou, and Gravier
2013) etc.

However, as far as we know, few prior LSH work
is devoted to the distance for probability distributions.
Probability-distribution-type data is widespread, such as
topics in topic modeling (Chen et al. 2015), color histogram
or normalized bag of visual words in image processing
(Karpathy and Fei-Fei 2015). Intuitively, we can simply use
the existing LSH methods for vectors to process the prob-
ability distributions if taking the probability distributions
as general vectors. For example, the work (Krstovski et al.
2013) first reducts Hellinger divergence to Euclidean dis-
tance, and then use existing ANN techniques, such as LSH
and k-d tree, to accelerate search in the probability simplex.
However, the solution does not consider the special attribu-
tions of probability distributions, such as Non-negative and
Sum-equal-one. Thus, it is not optimal solution. Further-
more, when comparing the similarity of probability distri-
butions, the information-theoretically motivated metrics like
Kullback-Leibler divergence (KL), Jensen-Shannon diver-
gence (JSD) and S2JSD (Endres and Schindelin 2003) are
often more reasonable compared with metrics for vectors
like Euclidean (l2) and angular (θ) distance. For example,
in the K nearest neighbors (KNN) search task, p@5 results
of five metrics on four public datasets in the form of proba-
bility distribution by brute-force search are as follows

Datasets Distance Measures
θ l2 KL JSD S2JSD

Local-Patch 0.848 0.850 0.832 0.852 0.852
CIFAR100-100 0.198 0.194 0.212 0.218 0.218
CIFAR100-20 0.342 0.322 0.348 0.346 0.346

CIFAR10 0.493 0.478 0.522 0.528 0.528

The results shows that the information-theoretically moti-
vated metrics over probability distributions perform better
than metrics for vectors.

Most the information-theoretically motivated metrics,
such as JSD and KL, are not the well-defined distance met-
rics, which do not satisfy triangle inequality; Lemma 1 in
the paper (Charikar 2002) says: “for any similarity function
that admits a locality sensitive hash function family, its dis-
tance function satisfies triangle inequality.”, thus LSH for
JSD or KL does not exist since there isn’t a triangular in-
equality. Fortunately, Endres and Schindelin (2003) have in-
troduced a new metric for probability distributions, called
S2JSD. S2JSD has been proved that it satisfies the symme-
try, non-negativity and triangle inequality, i.e. it is a distance
metric. Thus, in this paper, we will study the hashing schema
based on S2JSD-distance for probability distributions by de-
veloping a new approximation formula S2JSDnew

aprx.
We make the following contributions in this paper:

• We propose a new approximation formula S2JSDnew
aprx

for S2JSD-distance, tailored for the S2JSD hashing
method. It is symmetric, and has better approximation
performance.

• We develop a novel similarity-preserving hashing schema

for S2JSDnew
aprx, which can be applied to probability dis-

tributions.

• We have released our codes to facilitate other researchers
to repeat our experiments and validate their own ideas 1.

Preliminary

In this section, we present an overview of the locality-
sensitive hashing (LSH) schema. The LSH algorithm was
first introduced in (Indyk and Motwani 1998), to solve the
near neighbor search problem. It is based on the definition
of LSH family H , a family of hash functions mapping simi-
lar input items to the same hash code with higher probability
than dissimilar items. Let S be the domain of the objects and
D the distance measure between objects. Formally, an LSH
family is defined as follows:

Definition 1 (Locality-sensitive hashing). A function family
H = {h : S → U} is called (r1, r2, p1, p2)-sensitive, with
r1 < r2 and p1 > p2, for D if for any v, q ∈ S

• if D(q, v) ≤ r1 then PH [h(q) = h(v)] ≥ p1,
• if D(q, v) > r2 then PH [h(q) = h(v)] ≤ p2.

Intuitively, the definition states that nearby objects (those
within distance r1) are more likely to collide (p1 > p2) than
objects that are far apart (those with a distance greater than
r2).

Given an LSH family H , the LSH scheme amplifies the
gap between the high probability p1 and the low probability
p2 by concatenating several functions. In particular, for a
given integer K, let us define a new function family G =
{g : S → UK} such that g(v) = (h1(v), ..., hK(v)), where
hi ∈ H .

Distance Metric for Probability Distributions

First, we investigate a distance measure for probability dis-
tributions, which is suitable to develop a Locality Sensitive
Hashing method.

Endres and Schindelin (2003) introduced a metric for
probability distributions, which is bounded, information-
theoretically motivated, and it is a close relative of the capac-
itory discrimination and Jensen-Shannon divergence (JSD)
(Endres and Schindelin 2003). The distance measure is the
square root of two times the Jensen-Shannon divergence,
called S2JSD, as follows:

S2JSD(P,Q) =
√
2JSD

=

√√√√ N∑
i=1

(pi log
2pi

pi + qi
+ qi log

2qi

pi + qi
) (1)

where P and Q are two known distributions, N is the di-
mensionality of P and Q, and pi and qi are respectively the
values of the ith component of P and Q. S2JSD has been
proved that it satisfies the symmetry, non-negativity and tri-
angle inequality, i.e. it is a distance metric. Also, Endres and
Schindelin (2003) have proved that S2JSD distance can be
approximated asymptotically by

1https://www.dropbox.com/s/2yral5h23lwzipp/src.zip?dl=0
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S2JSD ≈ S2JSD
ES
aprx =

√√√√ 1

4

N∑
j=1

(pj − qj)2

qj
(2)

Obviously, the approximation breaks the symmetry of
S2JSD, which shows the approximation is not a real distance
metric. To overcome the shortcoming, in this paper, we will
propose a new approximation of S2JSD distance, which sat-
isfies the symmetry.

First, we can expand S2JSD-distance by a term-by-term
Taylor series to yield

S2JSD =

√√√√ N∑
i=1

pi log
2pi

pi + qi
+ qi log

2qi

pi + qi

=

√√√√ N∑
i=1

inf∑
v=1

1

2v(2v − 1)
(pi + qi)(

pi − qi

pi + qi
)2v

=

√√√√ inf∑
v=1

N∑
i=1

1

2v(2v − 1)
(pi + qi)(

pi − qi

pi + qi
)2v (3)

where v is the index of Taylor series expansion, N is the
dimension of a probability distribution. Then, by using first
order approximation, we can obtain

S2JSD ≈ S2JSDnew
aprx =

√√√√1

2

N∑
i=1

(pi − qi)2

pi + qi
(4)

Unlike S2JSDES
aprx, our proposed approximation

S2JSDnew
aprx does not break the symmetry of S2JSD;

Meanwhile, it’s easy to prove that S2JSDnew
aprx satisfies

triangle inequality. Furthermore, we will observe that our
proposed approximation S2JSDnew

aprx is closer to S2JSD
than the approximation S2JSDES

aprx with large probability
for high-dimensional probability distributions by following
simulation.

As we know, if parameter α = 1, we can obtain ran-
domly probability distributions through symmetry Dirichlet
distribution, i.e. Dir(α =1). For each dimensionality d (d ∈
{2, 3, ..., 1000}), we sample respectively 1,000,000 <P, Q>
pairs of d-dimensional probability distributions from Dir(α
=1), then we compute the value of S2JSD (Eq.(1)), Endres’
approximation S2JSDES

aprx (Eq.(2)) and our approximation
S2JSDnew

aprx (Eq.(4)) for each pair. For a <P, Q> pair, if
(|S2JSDES

aprx−S2JSD| > |S2JSDnew
aprx−S2JSD|), the

S2JSDnew
aprx is closer to S2JSD than S2JSDES

aprx, which
means the proposed new approximation is better, and the
pair is called as Intended Pair. We count the number of
the Intended Pairs, then divide it by total number of pairs,
called Intended Pair Ratio. Figure 1 shows the values of
the Intended Pair Ratio at each dimensionality when the di-
mensionality d changes from 2 to 1000. From the figure, we
observe that the proposed new approximation S2JSDnew

aprx

is better than Endres’ approximation S2JSDES
aprx with large

probability, especially when the dimensionality is high. For
example, when the dimensionality is 100, the Intended Pair
Ratio is 98.455%, which means the proposed approximation
S2JSDnew

aprx is closer to S2JSD than S2JSDES
aprx with about

98.455% probability.

Figure 1: Simulation Results over 1,000,000 sampling <P,
Q> pairs respectively at each dimension.

In a word, compared with S2JSDES
aprx, the proposed new

approximation S2JSDnew
aprx has two merits: (i) Symmetry;

(ii) Better approximation. Furthermore, without log func-
tion, S2JSDnew

aprx is more appropriate than S2JSD to de-
velop a LSH algorithm. Thus, in this paper, we will de-
velop a novel locality sensitive hashing algorithm based on
S2JSDnew

aprx distance while keeping the same effectiveness
as S2JSD distance.

The Proposed Hashing Algorithm
Borrowing the idea in the p-stable LSH (Datar et al. 2004;
Wang et al. 2014), the line la is chosen as the projection-
space. This line is obtained by projecting all points on a ran-
dom vector a whose each entry is the absolute value of a
sample chosen independently from a standard normal distri-
bution. We uniformly partition this line with respect to the
S2JSDnew

aprx distance, i.e. each partition interval [Yi−1, Yi]
has the same length, W:

∀i ∈ N, S2JSDnew
aprx(Yi−1, Yi)

def
=

√
1

2

(Yi−1 − Yi)2

Yi−1 + Yi
= W

(5)
We can rewrite Eq.(5):

Yi = Yi−1 +W 2(

√
4Yi−1

W 2
+ 1 + 1), i ∈ N (6)

If Y0 = 0, we get:
Yi = f(i) = i(i+ 1)W 2, i ∈ N (7)

Now, we want to define hash functions ha such that:
∀p ∈ K+d, ha(p) = i ⇐⇒ Yi−1 ≤ a · p < Yi (8)

where K+d is the point set, where each point is a probability
distribution with d dimensionality. For any y = a ·p, we have
to calculate the integer i such that i ≤ ⌊

f−1(y)
⌋
< i + 1.

From Eq.(7), we get the inverse function:

i = gw(Yi) = f−1(Yi) =

√
4Yi

W 2 + 1− 1

2
, i ∈ N,

(9)
For any a · p, if let Yi = a · p, Eq.(9) be reformed as:

∀a · p ∈ R+, i = 	gw(a · p)
 =
⎢⎢⎢⎣
√

4a·p
W 2 + 1− 1

2

⎥⎥⎥⎦
(10)

3246



i.e. we can define the hash functions as follows:

ha(p) = 	gw(a · p)
 =
⎢⎢⎢⎣
√

4a·p
W 2 + 1− 1

2

⎥⎥⎥⎦ (11)

The previous construction of the hash functions holds by
setting Y0 = b because all points are shifted by b, i.e.,

ha,b(p) = �gw(a · p) + b� =
⎢⎢⎢⎣
√

4a·p
W2 + 1− 1

2
+ b

⎥⎥⎥⎦ (12)

where b ∈ Unif(0, 1). The family of such hash functions
be denoted as H , called S2JSD-LSH.

S2JSD-LSH: A Locality Sensitive Function

According the results in (Datar et al. 2004), for a fixed a, b,
if the hash function ha,b has the form of ha,b(v) =

⌊
a·v+b

r

⌋
,

it follows the proposition below.
Proposition 1 (p-stable distribution property). Let fp(t)
(p ∈ (0, 1]) denote the probability density function of the ab-
solute value of the p-stable distribution, b is a real number
chosen uniformly from the range [0, r]. Given two vectors
v1, v2, and a random vector a where each entry is drawn
from a p-stable distribution, a·(v1−v2) is distributed as cX
where c = ‖v1 − v2‖p and X is a random variable drawn
from a p-stable distribution. It follows that:

P = p(c) =

∫ r

0

1

c
fp(

t

c
)(1− t

r
)dt (13)

For a fixed parameter r, P decreases monotonically with c.
We now illustrate that the original LSH schema (Defini-

tion 1) still holds for S2JSD-LSH hash family H .
Theorem 1 (S2JSD-LSH sensitivity). The S2JSD-LSH hash
function family H , defined in Eq.(12), is (r1, r2, p1, p2)-
sensitive.

Proof. Let us define P as the probability of the hash func-
tions to be locality-sensitive:

P = PH [ha,b(p) = ha,b(q)]

= Pa,b

[ ∃n, n ≤ gw(a · p) + b < n+ 1

n ≤ gw(a · q) + b < n+ 1

]

For all a, without loss of generality and for the sake of
demonstration clarity, let us consider a · p ≤ a · q, a and b
are independent. Then P may be computed using marginal-
ization over b with the following integral bounds. From the
two inequalities above, we have: n ≤ gw(a · p) + b ≤
gw(a · q) + b < n+ 1, so that bounds on b are:

n− gw(a · p) ≤ b < n+ 1− gw(a · q) (14)

and we also have:

0 ≤ gw(a · q)− gw(a · p) ≤ 1 (15)

Integrating on the random variable b leads to:∫ n+1−gw(a·q)

n−gw(a·p)
db = 1− (gw(a · q)− gw(a · p)) (16)

P can be rewrited as:

P = Pa

[
0 ≤ 1− (gw(a · q)− gw(a · p)) ≤ 1

]
(17)

Considering the expression Eq.(7) and the relation between
hash function ha,b and interval bounds Yn in Eq.(8), we can
then rewrite,

P = Pa

[
0 ≤ a(p − q) ≤ 2(n+ 1)W 2

]
(18)

Because each entry of a in S2JSD-LSH is from standard nor-
mal distribution which is a stable distribution, we can make
use of Proposition 1 (r = 2(n+ 1)W 2) to get:

P = p(c) =

∫ 2(n+1)W 2

0

1

c
f(

t

c
)(1− t

2(n+ 1)W 2
)dt (19)

At the same time, P decreases monotonically with respect
to c, reminding that r1 < r2, if we set p1 = p(r1) and p2 =
p(r2), then p2 < p1. This concludes the proof of Theorem 1:
The S2JSD-LSH hash function family H is (r1, r2, p1, p2)-
sensitive.

Experiments

Data Sets and Evaluation Protocols

Six publicly available image datasets, namely CIFAR10,
CIFAR100-20, CIFAR100-100, Local-Patch, MNIST and
COVTYPE, and two crawled text datasets are used to com-
pare the proposed approach against state-of-the-art meth-
ods. CIFAR102 dataset consists of 60K 32x32 colour im-
ages in 10 classes. Every image is represented by a 512-
dimensional GIST feature vector. CIFAR-100 is just like the
CIFAR-10, except that it has 20 “coarse” and 100 “fine”
superclasses, denoted as CIFAR100-202 and CIFAR100-
1002. Local-Patch3 contains roughly 300K 32x32 image
patches from photos of Trevi Fountain (Rome), Notre Dame
(Paris) and Half Dome (Yosemite). For each image patch,
we compute a 128-dimensional SIFT vector as the holis-
tic descriptor. MNIST4 consists of a total of 70000 hand-
written digit samples, each with 780 features. COVTYPE5

is a common benchmark featuring 54 dimensions. The fea-
ture vectors of all image datasets are probability distribu-
tions by L1-normalization.

Moreover, probability distributions with labels are gener-
ated by a topic model over two labeled text datasets. First,
we crawled nearly all the questions and associated answer
pairs (QA pairs) of two top categories of Yahoo! Answers:
Computers & Internet and Health. This produced forty-three
sub-categories from 2005.11 to 2008.11, and an archive of
6,345,786 QA documents. We refer the Yahoo! Answers
data as Y Ans. The second dataset contains 2.1G microblogs
with 3503 hashtags, which removed microblogs without
hashtag and hashtags whose idf is less than 50, downloaded
from Twitter website in six days, denoted as TW. We built

2http://www.cs.toronto.edu/ kriz/cifar.html
3http://phototour.cs.washington.edu/
4http://yann.lecun.com/exdb/mnist/
5https://archive.ics.uci.edu/ml/datasets/Covertype
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Table 1: mAP on eight datasets. The best mAP is shown in
bold face.

Local-Patch CIFAR100-100

#Bits sblsh l2 S2JSD-LSH sblsh l2 S2JSD-LSH
8 0.3369 0.3246 0.3849 0.0114 0.0101 0.0122

16 0.3485 0.3246 0.3588 0.0129 0.0101 0.0139

32 0.3522 0.3246 0.3628 0.0169 0.0101 0.0151
64 0.3640 0.3246 0.3685 0.0153 0.0101 0.0203

128 0.3786 0.3246 0.3755 0.0214 0.0101 0.0203
256 0.3804 0.3246 0.3825 0.0228 0.0101 0.0232

CIFAR100-20 CIFAR10

#Bits sblsh l2 S2JSD-LSH sblsh l2 S2JSD-LSH
8 0.0533 0.0502 0.0563 0.1035 0.1002 0.1128

16 0.0546 0.0502 0.0554 0.1072 0.1002 0.1167

32 0.0606 0.0502 0.0559 0.1112 0.1002 0.1244

64 0.0615 0.0502 0.0604 0.1283 0.1002 0.1333

128 0.0657 0.0502 0.0667 0.1391 0.1002 0.1453

256 0.0689 0.0502 0.0717 0.1413 0.1002 0.1430

MNIST COVTYPE

#Bits sblsh l2 S2JSD-LSH sblsh l2 S2JSD-LSH
8 0.1125 0.1004 0.1429 0.4016 0.3649 0.4078

16 0.1818 0.1004 0.1654 0.4171 0.3649 0.4197

32 0.2431 0.1004 0.2227 0.4214 0.3649 0.4221

64 0.2971 0.1004 0.2993 0.4220 0.3649 0.4192
128 0.3123 0.1004 0.3242 0.4343 0.3649 0.4357

256 0.3664 0.1004 0.3710 0.4390 0.3649 0.4396

Y Ans TW

#Bits sblsh l2 S2JSD-LSH sblsh l2 S2JSD-LSH
8 0.8793 0.8712 0.9031 0.8513 0.8334 0.8647

16 0.8817 0.8712 0.9085 0.8582 0.8334 0.8691

32 0.8835 0.8712 0.9140 0.8645 0.8334 0.8711

64 0.8846 0.8712 0.9238 0.8693 0.8334 0.8725

128 0.8907 0.8712 0.9274 0.8736 0.8334 0.8777

256 0.8963 0.8712 0.9323 0.8748 0.8334 0.8882

“probability distribution-label” database over the two text
data sets above by Labeled LDA algorithm (Ramage et al.
2009), which can automatically obtain a topic (i.e. a prob-
ability distribution) for a label. Specifically, to increase the
number of points with same labels in probability space, we
split separately the two datasets into 12 pieces (TW) and
30 pieces (Y Ans), and train separately Labeled LDA over
each piece. After training, Y Ans consists of 1,380 points
in 46 classes, and every point is represented by a 153,827-
dimensional probability distribution; TW consists of 12,139
points in 3,503 classes, and every point is represented by a
189,841-dimensional probability distribution.

In this paper, the state-of-the-art methods, Super-bit LSH
(sblsh) (Ji et al. 2012) and p-stable LSH (l2) (Datar et al.
2004; Wang et al. 2016), are chosen to evaluate the effec-
tiveness of the proposed methods. Super-bit LSH (sblsh) is
based on angular distance for vectors, while p-stable LSH
(l2) is based on Euclidean distance for vectors. For all the
baselines, we set the parameters by following the sugges-
tions in the corresponding papers.

All the experimental results are averaged over 10 random
training/test partitions. For each partition, we randomly se-
lect 100 points with their tags as queries, and the remaining
points and tags as reference database. We use mean Aver-
age Precision (mAP), p@N and Precision-Recall curve to
illustrate performances of different methods.

All experiments are conducted on our workstation with
Intel(R) Xeon(R) CPU X7560@2.27GHz and 32G memory.

Table 2: p@5 on eight datasets. The best p@5 is shown in
bold face.

Local-Patch CIFAR100-100

#Bits sblsh l2 S2JSD-LSH sblsh l2 S2JSD-LSH
8 0.342 0.333 0.335 0.012 0.014 0.018

16 0.393 0.333 0.387 0.030 0.014 0.016
32 0.475 0.333 0.522 0.038 0.014 0.032
64 0.648 0.333 0.652 0.044 0.014 0.064

128 0.740 0.333 0.757 0.096 0.014 0.098

256 0.825 0.333 0.792 0.106 0.014 0.120

CIFAR100-20 CIFAR10

#Bits sblsh l2 S2JSD-LSH sblsh l2 S2JSD-LSH
8 0.058 0.058 0.059 0.086 0.104 0.146

16 0.072 0.058 0.066 0.122 0.104 0.160

32 0.094 0.058 0.112 0.222 0.104 0.212
64 0.126 0.058 0.138 0.228 0.104 0.246

128 0.166 0.058 0.170 0.294 0.104 0.310

256 0.240 0.058 0.258 0.374 0.104 0.380

MNIST COVTYPE

#Bits sblsh l2 S2JSD-LSH sblsh l2 S2JSD-LSH
8 0.130 0.104 0.246 0.332 0.054 0.364

16 0.370 0.104 0.506 0.462 0.054 0.472

32 0.596 0.104 0.600 0.550 0.054 0.514
64 0.760 0.104 0.748 0.658 0.054 0.674

128 0.882 0.104 0.876 0.804 0.054 0.848

256 0.902 0.104 0.922 0.858 0.054 0.889

Y Ans TW

#Bits sblsh l2 S2JSD-LSH sblsh l2 S2JSD-LSH
8 0.648 0.612 0.639 0.530 0.520 0.530

16 0.681 0.612 0.697 0.603 0.520 0.628

32 0.763 0.612 0.795 0.671 0.520 0.655
64 0.788 0.612 0.807 0.713 0.520 0.748

128 0.826 0.612 0.838 0.796 0.520 0.819

256 0.894 0.612 0.923 0.880 0.520 0.907

Figure 2: Impact of parameter W in S2JSD-LSH over
CIFAR100-100 and MNIST datasets at code size of 8, 16,
32, 64, 128 and 256 bits.

Parameter W

Figure 2 shows the effect of the partition interval W in
S2JSD-LSH hash functions (Eq.(11)) at different code size
on the CIFAR100-100 and MNIST. As we can see, the
trend of mAP values decreases when W changes from 0.1 to
1.0, and our method can achieve the best accuracy synthet-
ically when W = 0.2 on both datasets. Similar trends have
been observed over other datasets. In the following experi-
ments, we set parameter W = 0.2 for S2JSD-LSH.

Experimental Results

The mAP values for different methods with different code
sizes on eight datasets are shown in Table 1. The value of
each entry in the tables is the mAP of a combination of a
method under a specific code size. The best mAP among
sblsh, l2 and S2JSD-LSH under the same setting is shown in
bold face. From the table, we can make following observa-
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Figure 3: Precision-recall curve on eight data sets.
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tion: For all datasets, S2JSD-LSH performs better than sblsh
and l2 under most settings, which shows that the proposed
method is effective. For example, for sblsh over CIFAR10
dataset, mAP at 128 bits is 0.1391, and mAP at 256 bits is
0.1413; Meanwhile, for S2JSD-LSH, mAP at 128 bits and
256 bits are 0.1453 and 0.1430 respectively. Also, for sblsh
over Y Ans dataset, mAP at 8 bits is 0.8793, and mAP at
64 bits is 0.8846; Meanwhile, for S2JSD-LSH, mAP at 8
bits and 64 bits are 0.9031 and 0.9238 respectively. Obvi-
ously, the mAP values of S2JSD-LSH are better than the
corresponding ones of sblsh. This shows that S2JSD-LSH is
effective to capture the similarity information in probability-
distribution-type data.

Many applications such as search engines only care about
the correctness of the top-n results, and p@N is a common
measure for it. The p@5 values for different methods with
different code sizes on eight datasets are shown in Table 2,
and we can obtain similar conclusions with mAP values in
Table 1. The best p@5 among sblsh, l2 and S2JSD-LSH un-
der the same setting is shown in bold face. In Table 2, we
have observed: For all datasets, S2JSD-LSH performs bet-
ter than sblsh and l2 under most settings, which shows that
the proposed hashing schema is effective. For example, for
sblsh over COVTYPE dataset, p@5 at 128 bits is 0.804, and
p@5 at 256 bits is 0.858; Meanwhile, for S2JSD-LSH, p@5
at 128 bits and 256 bits are 0.848 and 0.889 respectively.
Also, for sblsh over TW dataset, p@5 at 128 bits is 0.796,
and p@5 at 256 bits is 0.880; Meanwhile, for S2JSD-LSH,
p@5 at 128 bits and 256 bits are 0.819 and 0.907 respec-
tively. Obviously, the mAP values of S2JSD-LSH are bet-
ter than the corresponding ones of sblsh. Moreover, p@10,
p@15 and p@20 values have similar trends, which are omit-
ted for space saving.

Note that the mAP and p@5 values for l2 do not vary with
different hash bits on each dataset. After checking the hash
codes generated by l2, we found nearly all hash codes are the
same, which means the hashing method l2 lacks the ability
to distinguish probability-distribution-type data.

Figure 3 shows the precision-recall curves for code sizes
ranging from 8 bits to 256 bits on eight datasets. Once again,
we can easily find that proposed method S2JSD-LSH signif-
icantly outperforms other state-of-the-art methods.

Conclusion

The existing data-independent hashing methods mainly fo-
cus on vector-type and set-type data. In this paper, we in-
vestigate the practicability of hashing methods for probabil-
ity distributions, and propose a novel S2JSD-distance based
hashing schema by introducing a new approximation for-
mula for S2JSD-distance. The experiments show that pro-
posed algorithms are more effective than the state-of-the-art
baselines.
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