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Abstract

We introduce a new class of models called multiresolution
recurrent neural networks, which explicitly model natural lan-
guage generation at multiple levels of abstraction. The mod-
els extend the sequence-to-sequence framework to generate
two parallel stochastic processes: a sequence of high-level
coarse tokens, and a sequence of natural language words (e.g.
sentences). The coarse sequences follow a latent stochastic
process with a factorial representation, which helps the models
generalize to new examples. The coarse sequences can also
incorporate task-specific knowledge, when available. In our
experiments, the coarse sequences are extracted using auto-
matic procedures, which are designed to capture compositional
structure and semantics. These procedures enable training the
multiresolution recurrent neural networks by maximizing the
exact joint log-likelihood over both sequences. We apply the
models to dialogue response generation in the technical sup-
port domain and compare them with several competing mod-
els. The multiresolution recurrent neural networks outperform
competing models by a substantial margin, achieving state-
of-the-art results according to both a human evaluation study
and automatic evaluation metrics. Furthermore, experiments
show the proposed models generate more fluent, relevant and
goal-oriented responses.

Introduction

Recurrent neural networks (RNNs) have recently shown
excellent performance on tasks such as language mod-
elling (Graves 2012; Mikolov and others 2010), machine
translation (Sutskever, Vinyals, and Le 2014; Cho and oth-
ers 2014) and speech recognition (Hinton and others 2012).
Inspired by these advances, researchers have started to inves-
tigate such models for dialogue applications (Ritter, Cherry,
and Dolan 2011; Lowe et al. 2015; Sordoni et al. 2015b;
Shang, Lu, and Li 2015; Li et al. 2016; Serban et al. 2016).
In particular, researchers have proposed several sequence-to-
sequence (Seq2Seq) encoder-decoder models for dialogue
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Figure 1: Example dialogue with coarse representations,
where arrows indicate turn change in the dialogue.

response generation. In this task, the model must generate an
appropriate response given a dialogue context. Although this
framework differs from the well-established goal-oriented
setting (Gorin, Riccardi, and Wright 1997; Young 2000;
Singh et al. 2002), these models have been applied to several
real-world applications. One example is Microsoft’s system
Xiaolic, which now interacts with millions of users every
day (Markoff and Mozur 2015). Another example is Google’s
Smart Reply system (Kannan et al. 2016). However, in spite
of recent advances, current models cannot effectively take
dialogue context into account and generate meaningful and
diverse on-topic responses (Li et al. 2016).

To overcome these problems, we construct probabilistic
models to represent and reason at several levels of abstraction.
Explicitly representing multiple levels of abstraction should
make it easier for models to remember and reason over long-
term context, and to generate appropriate responses with
compositional structure. For example, for technical support
applications, this should help the models identify the user’s
problem and generate response with appropriate, and even
complex, technical instructions. Specifically, we propose a
new class of models – called multiresolution recurrent neural
networks (MrRNNs) – that generate two parallel stochastic
sequences: a sequence of high-level coarse tokens (coarse se-
quences), and a sequence of low-level natural language words
(utterances). The coarse sequences follow a latent stochastic
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process with a factorial representation, which helps the mod-
els generalize to new examples. The coarse sequences gen-
erate the natural language utterances through a hierarchical
generation process. This generation process adds high-level,
compositional structure to the model, which helps generate
meaningful and on-topic responses. Furthermore, the coarse
sequences can incorporate task-specific knowledge. In our
experiments, the coarse sequences are defined either as noun
sequences or activity-entity pairs (predicate-argument pairs)
extracted from the natural language utterances (see Figure
1). The extraction allows training MrRNNs using the joint
log-likelihood over all observed sequences, in contrast to stan-
dard Seq2Seq models which are trained using the (marginal)
log-likelihood. We apply MrRNNs to dialogue response gen-
eration in the Ubuntu technical support domain, and compare
them with recently proposed models. MrRNNs outperform
competing approaches by a substantial margin according
to both a human evaluation study and automatic evaluation
metrics achieving a new state-of-the-art result. Furthermore,
the results indicate MrRNNs hold significant potential for
goal-oriented dialogue applications.

Model Architecture

Recurrent Neural Network Language Model

We first introduce the well-established recurrent neural net-
work language model (RNNLM) (Mikolov and others 2010;
Bengio et al. 2003). Let w1, . . . , wN be a sequence of dis-
crete variables, such as words in a document, called tokens
where wn ∈ V for set (vocabulary) V w. The RNNLM is
a probabilistic generative model, with parameters θ, which
decomposes the probability over tokens:

Pθ(w1, . . . , wN ) =

N∏

n=1

Pθ(wn|w1, . . . , wn−1). (1)

where the output distribution uses a softmax RNN:

Pθ(wn+1 = v|w1, . . . , wn) =
exp(g(hn, v))∑

v′∈V exp(g(hn, v′))
,

(2)

hn = f(hn−1, wn), g(hn, v) = OT
vhn ∀v ∈ V, (3)

where f is the hidden state update function. We will assume
it is either the LSTM or GRU gating unit (Hochreiter and
Schmidhuber 1997; Cho and others 2014).1 The gating units
may also be bidirectional. The matrix I ∈ R

dh×|V | is the
input word embedding matrix, where row i contains the em-
bedding for word index i and dh ∈ N is the word embedding
dimensionality. Similarly, the matrix O ∈ R

dh×|V | is the
output word embedding matrix. According to the model,
the probability of observing a token w at position n+ 1 in-
creases if the context vector hn has a higher dot-product
with the word embedding corresponding to token w. The
model parameters are usually learned by maximizing the log-
likelihood (equivalent to minimizing the cross-entropy) on
the training set using gradient descent.

1For the LSTM gating unit, we consider the hidden state hm to
be the input cell and memory cell concatenated.

Hierarchical Recurrent Encoder-Decoder

Our work builds upon the hierarchical recurrent encoder-
decoder model (HRED) (Sordoni et al. 2015a), which was
previously proposed for dialogue (Serban et al. 2016). HRED
decomposes a dialogue into a two-level hierarchy: a sequence
of utterances, each of which is a sequence of words. Let
w1, . . . ,wN be the sequence of utterances with length N ,
where wn = (wn,1, . . . , wn,Kn

) is the n’th utterance con-
sisting of Kn discrete tokens from vocabulary V w. HRED
decomposes the probability distribution as:

Pθ(w1, . . . ,wN ) =

N∏

n=1

Pθ(wn|w<n),

=
N∏

n=1

Kn∏

m=1

Pθ(wn,m|wn,<m,w<n). (4)

This decomposition allows HRED to capture the hierarchical
structure in natural language sequences, such as dialogue.
HRED consists of three layers. First, each utterance sequence
is encoded into a real-valued vector by an encoder RNN:

he
n,0 = 0, he

n,m = f e
θ(h

e
n,m−1, wn,m) ∀m = 1, . . . ,Kn,

where f e
θ is the encoder RNN gating function. The last hidden

state, he
n,Kn

, summarizes the utterance and is given to the
higher-level context RNN:

hc
0 = 0, hc

n = f c
θ(h

c
n−1, h

e
n,Kn

)

where f c
θ is the context RNN gating function taking two

vectors as input. The context RNN acts like a memory module
which remembers things over long time scales. As such, the
hidden state hc

n−1 summarizes the dialogue up to the (n −
1)’th utterance. This is given to the decoder RNN:

hd
n,0 = 0, hd

n,m = f d
θ (h

d
n,m−1, h

c
n−1, wn,m)

∀m = 1, . . . ,Kn,

where f d
θ is the LSTM gating function for the decoder RNN,

which takes as input three vectors. The hidden state hd
n,m is

transformed through a one-layer neural network yielding the
output vector ho

n,m. Finally, the output distribution is given
by eq. (2) where hn is replaced by ho

n,m.

Multiresolution RNN (MrRNN)

We now introduce the multiresolution recurrent neural net-
work (MrRNN). As before, let w1, . . . ,wN be the sequence
of utterances. Let z1, . . . , zN be the corresponding sequence
of (high-level) coarse constituent sequences, also of length
N , where zn = (zn,1, . . . , zn,Ln) is the n’th constituent se-
quence consisting of Ln discrete tokens from vocabulary V z .
For example, each coarse sequence zn could represent the
nouns of the corresponding utterance wn.

MrRNN is a probabilistic generative model over the se-
quences w1, . . . ,wN and z1, . . . , zN . MrRNN generates the
n’th coarse sequence zn by conditioning only on previous
coarse sequences z1, . . . , zn−1. Then, MrRNN generates the
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n’th utterance wn by conditioning on previous utterances
w1, . . . ,wn−1 and coarse sequences z1, . . . , zn. Formally:

Pθ(w1, . . . ,wN , z1, . . . , zN ) =

N∏

n=1

Pθ(zn|z1, . . . , zn−1)

Pθ(wn|w1, . . . ,wn−1, z1, . . . , zn),

where the conditional distributions decompose as:

Pθ(zn|z1, . . . , zn−1)

=

Ln∏

m=1

Pθ(zn,m|zn,1, . . . , zn,m−1, z1, . . . , zn−1)

Pθ(wn|w1, . . . ,wn−1, z1, . . . , zn)

=

Kn∏

m=1

Pθ(wn,m|wn,1, . . . , wn,m−1,w<n, z<n, zn)

The coarse sequences follow a latent stochastic process –
similar to hidden Markov models – which does not depend
on the utterances. This helps the model generalize to new
dialogues, and enables training the model efficiently.

Figure 2: Probabilistic directed graphical models for natu-
ral language generation. Variables w represent natural lan-
guage utterances. Variables z represent discrete or continu-
ous stochastic latent variables. (A): Most Seq2Seq models
follow a shallow generation process. This is problematic be-
cause it forces the model to generate compositional and long-
term structure incrementally as it samples each word. (B):
VHRED, VAELM and DrLM expand the generation process
by adding one latent variable for each utterance. (C): MrRNN
expands the generation process by adding a sequence of dis-
crete stochastic variables for each utterance, which follow
their own latent stochastic process.

The model over z1, . . . , zN is called the coarse
sub-model, and computes the conditional distribu-
tion Pθ(zn|z1, . . . , zn−1) as the standard HRED
model. The model over w1, . . . ,wN is called the nat-
ural language sub-model. This sub-model computes

Pθ(wn|w1, . . . ,wn−1, z1, . . . , zn) as the HRED model
applied to the sequences w1, . . . ,wN , but conditioned on
z1, . . . , zN . It consists of a (GRU-gated) coarse prediction
encoder RNN, which encodes the coarse tokens z1, . . . , zn:

hp
0,0 = 0, hp

n,0 = hp
n−1,Ln−1

hp
n,m = f p

θ (h
p
n,m−1, zn,m) ∀m = 1, . . . , Ln,

where f p
θ is the gating function. This RNN summarizes all

the coarse tokens up to the (n− 1)’th utterance in the vector
hp
n−1,Ln−1

. This summary is different from the context RNN
in the coarse sub-model, because it is used specifically to
generate the next natural language utterance. For this reason,
the coarse prediction encoder RNN has separate word em-
bedding parameters. The hidden state hp

n−1,Ln−1
is given as

input to the natural language decoder RNN – together with
the hidden state of the natural language context RNN. As
before, the output distribution is given by eq. (2).

For training, we assume that both z1, . . . , zN and
w1, . . . ,wN are observed and optimize model parameters
w.r.t. the joint log-likelihood over both sequences. At test
time, we generate model responses by approximating the
response with highest probability:

argmax
wn,zn

Pθ(wn, zn|w1, . . . ,wn−1, z1, . . . , zn−1)

≈ argmax
wn

Pθ(wn|w1, . . . ,wn−1, z1, . . . , zn−1, zn)

argmax
zn

Pθ(zn|z1, . . . , zn−1), (5)

where we approximate each argmax using beam search.

Relation to Other Generative Models

Figure 2 illustrates how MrRNN is related to other gen-
erative models. The standard RNNLM (Mikolov and oth-
ers 2010) follow a shallow generation process, where each
word is generated conditioned on all previous words (Fig-
ure 2, A)). The same applies to most Seq2Seq models for
dialogue (Sordoni et al. 2015b; Shang, Lu, and Li 2015;
Li et al. 2016; Serban et al. 2016) and other models (Bah-
danau, Cho, and Bengio 2015; Weston, Chopra, and Bordes
2015; Graves, Wayne, and Danihelka 2014; Kumar et al.
2016). However, this is problematic because it forces the
model to generate compositional and long-term structure
incrementally as it samples each word (Chung et al. 2015;
Serban et al. 2017). For example, if w and w′ are two utter-
ances with high probability, the model has to choose between
sampling either w or w′ at the first word where they differ.

The VHRED model (Serban et al. 2017; Bowman et al.
2016) expands the shallow generation process by adding a
multivariate continuous stochastic latent variable zn for each
utterance, conditioned on the previous utterances (Figure 2,
B)). VHRED generates an utterance by first sampling zn, and
then generates the utterance wn word by word. In contrast to
MrRNN, VHRED generates only one continuous high-level
variable per utterance, while MrRNN generates a sequence
of discrete high-level variables per utterance. By operating
on sequences of high-level variables, MrRNN can model
high-level variables through a factorial representation. This

3290



representation adds compositional structure to the generated
utterances and improves generalization to new high-level
sequences. The models also differ w.r.t. their dependency
assumptions: VHRED conditions the high-level variable on
previous utterances, while MrRNN conditions its high-level
variables on previous high-level variables. Similar to hidden
Markov models, MrRNN assumes the high-level variables fol-
low dynamics independent of the low-level variables. When
this assumption is approximately satisfied – which we will
argue is the case in the technical support domain – it will
help the models to generalize to new examples. Also related
is the DrLM model (Ji, Haffari, and Eisenstein 2016), which
generates a discrete stochastic variable zn for each utterance,
conditioned on the previous utterance. In contrast to MrRNN,
DrLM uses only a single discrete high-level variable per utter-
ance and only conditions this variable on the immediate pre-
vious utterance. Other RNNs with stochastic latent variables
include the Variational Recurrent Neural Network (Chung
et al. 2015), the Variational Recurrent Autoencoder (Fabius
and van Amersfoort 2015) and the Structured Variational
Autoencoder (SVAE) (Johnson et al. 2016). However, these
models have not been applied to natural language generation.

Experiments

We experiment on the task of language response generation
for dialogue. Given a dialogue context consisting of one or
more utterances, the model must generate the next response
in that dialogue. The specific task we consider is technical
support for the Ubuntu operating system; the data we use is
the Ubuntu Dialogue Corpus developed by Lowe et al (2015).
The corpus consists of about half a million natural language
dialogues extracted from the #Ubuntu Internet Relayed Chat
(IRC) channel. Users entering this chat channel usually have a
specific technical problem. Typically, users first describe their
problem, following which other users try to help them resolve
it. The technical problems range from software-related issues
(e.g. installing or upgrading existing software) and hardware-
related issues (e.g. fixing broken drivers), to informational
needs (e.g. finding software).

Coarse Sequence Representations

We experiment with two procedures for extracting the coarse
sequences. The first is broadly applicable to a variety of
dialogue tasks, and the second is specific to Ubuntu:

Noun Representation This procedure aims to exploit the
basic high-level structure of natural language discourse. It
is motivated by the observation that dialogues are topic-
driven and that these topics may be characterized by nouns.
As such, the procedure requires a part-of-speech tagger to
identify the nouns in the dialogue. The procedure uses a
set of 84 predefined stop words. It maps a natural language
utterance to its corresponding coarse representation by ex-
tracting all the nouns using the part-of-speech tagger, and
then removing all stop words and repeated words (keeping
only the first occurrence of a given word). Utterances with-
out nouns are assigned the ”no nouns” token. Finally, the
procedure adds the tense of each utterance to the beginning
of the coarse sequence.

Activity-Entity Representation This procedure is specific
to the Ubuntu technical support task, for which it exploits
domain knowledge related to technical problem solving.
It is motivated by the observation that most dialogues are
centered around activities and entities. For example, users
frequently state a specific problem they want to resolve,
e.g. ‘how do I install program X?’ or ‘My driver X doesn’t
work, how do I fix it?’ In response to such questions, other
users often respond with specific instructions, e.g. ‘Go to
website X to download software Y’ or ‘Try to execute com-
mand X’. In these cases, the principal information resides
in the technical entities (e.g. X, Y) and in the verbs (e.g.
execute, download). In order to capture this information,
the procedure uses a set of 192 activities (verbs) created by
manual inspection, and a set of 3115 technical entities and
230 frequent terminal commands extracted automatically
from available package managers and from the web. The
procedure extracts the verbs from each natural language
utterance, and maps the natural language to coarse repre-
sentation verbs from the activity set and entities from the
technical entity set. If the utterance does not contain any
activity, the ”none activity” token is used. The procedure
also appends a binary variable to the end of the coarse rep-
resentation indicating if a terminal command was detected
in the utterance. Finally, the procedure adds the tense of
each utterance to the beginning of the coarse sequence.

Both extraction procedures are applied separately for each ut-
terance in a dialogue. Figure 1 gives an example of extracted
representations.2

Models

We implement all models in Theano (Theano Development
Team 2016). We train all models w.r.t. the log-likelihood or
joint log-likelihood on the training set using Adam (Kingma
and Ba 2015). The models are trained using early stopping
with patience based on the validation set log-likelihood. We
choose model hyperparameters – such as the number of hid-
den units, word embedding dimensionality, and learning rate
– based on the validation set log-likelihood. We use gradient
clipping to stop the parameters from exploding (Pascanu,
Mikolov, and Bengio 2012). We define the 20,000 most fre-
quent words as the vocabulary, and map all other words to
a special unknown token. Based on several experiments, we
fix the word embedding dimensionality to size 300 for all
models. At test time, we use a beam search of size 5 for
generating the model responses.

Baseline Models We compare our models to several com-
peting models proposed previously in the literature. The first
baseline is the standard RNNLM with LSTM gating func-
tion (Mikolov and others 2010) (LSTM). This model is identi-
cal to the Seq2Seq LSTM model (Sutskever, Vinyals, and Le
2014), when the Seq2Seq LSTM model is trained to generate
every utterance conditioned on all past utterances. The sec-

2The pre-processed Ubuntu Dialogue Corpus and the coarse
representations can be downloaded at http://www.iulianserban.com/
Files/UbuntuDialogueCorpus.zip and https://github.com/julianser/
Ubuntu-Multiresolution-Tools.
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ond baseline is HRED with LSTM gating function for the de-
coder RNN; and GRU gating function for the encoder RNN
and context RNN. This model was developed specifically
for dialogue response generation (Serban et al. 2016). The
RNNLM model has 2000 hidden units with the LSTM gating
function. The HRED model has 500, 1000, and 500 hidden
units respectively for the encoder RNN, context RNN, and
decoder RNN. The third baseline is the latent variable hierar-
chical recurrent encoder-decoder (VHRED), which extends
HRED (Serban et al. 2017). We use the publicly available
responses provided by Serban et al. (2017).

In order to investigate the importance of the hierarchical
generation process, we introduce a fourth baseline, called
HRED + Activity-Entity Features. This model simplifies Mr-
RNN, such that the natural language decoder RNN is con-
ditioned only on the past coarse tokens. In other words, this
baseline has access to past activity-entity pairs – encoded
using a GRU RNN – but it does not contain a sub-model for
generating future coarse sequences. As such, the baseline has
access to the exact same information as MrRNN, but does not
make use of a hierarchical generation process. We use this
baseline to evaluate the importance of the hierarchical gen-
eration process. Based on the validation set log-likelihood,
we select the model architecture to have 500, 1000, and 2000
hidden units respectively for the encoder RNN, context RNN,
and decoder RNN. The GRU RNN, which encodes the past
coarse-level activity-entities sequences, has 500 hidden units.

MrRNN The coarse sub-model is parametrized as the
Bidirectional-HRED model (Serban et al. 2016) with 1000,
1000, and 2000 hidden units respectively for the coarse-level
encoder, context, and decoder RNNs. The natural language
sub-model is parametrized as a Bidirectional-HRED model
with 500, 1000, and 2000 hidden units respectively for the
natural language encoder, context, and decoder RNNs. The
coarse prediction encoder GRU RNN has 500 hidden units.

Evaluation Methods

It has long been known that accurate evaluation of dialogue
system responses is difficult (Schatzmann, Georgila, and
Young 2005). Liu et al. (2016) have recently shown that all
automatic evaluation metrics adopted for such evaluation,
including word overlap-based metrics such as BLEU and
METEOR, have either very low or no correlation with human
judgment of system performance. We therefore carry out
an in-lab human study to evaluate the model responses. We
recruit 5 human evaluators. We show each evaluator between
30 and 40 dialogue contexts with the ground truth response,
and 4 candidate responses (HRED, HRED + Activity-Entity
Features, MrRNN Noun, and MrRNN Activity-Entity). For
each example, we ask the evaluators to compare the candidate
responses to the ground truth response and dialogue context,
and rate them for fluency and relevancy on a scale 0 − 4.
This setup is very similar to the evaluation setup used by
Koehn and Monz (2006), and comparable to Liu et al. (2016).
Further details are given in the appendix.

We further propose a new set of evaluation metrics for the
Ubuntu domain, in order to ease reproducibility and facilitate
future evaluations. These metrics compare the activities and

Table 1: Ubuntu evaluation using F1 metrics w.r.t. activities
and entities on ground truth utterances (mean scores ± 90%
confidence intervals), and human fluency (F) and human
relevancy (R) scores given on a scale 0-4 (∗ indicates scores
significantly different from baseline models at 90% confidence)

Activity Entity Human Eval.

Model F1 F1 F R

LSTM 1.18 ±0.18 0.87 ±0.15 - -

HRED 4.34 ±0.34 2.22 ±0.25 2.98 1.01

VHRED 4.63 ±0.34 2.53 ±0.26 - -

HRED +
Act.-Ent.

5.46 ±0.35 2.44 ±0.26 2.96 0.75

MrRNN
Noun

4.04 ±0.33 6.31 ±0.42 3.48∗ 1.32∗

MrRNN
Act.-Ent.

11.43 ±0.54 3.72 ±0.33 3.42∗ 1.04

entities in the responses generated by the model with those of
the ground truth responses. The assumption is that if a model
generates responses with the same meaning as the ground
truth responses – including expert responses, which often
lead to solving the user’s problem – then the model performs
well. To compute the metrics, first the ground truth and model
responses are mapped to their respective activity-entity rep-
resentations using the automatic procedure described earlier.
Then, the overlap between their activities and entities are
measured according to F1-score. Because the activities and
entities reflect the principal instructions given in a response
– which are key to resolving the technical problem – these
metrics should correlate well with solving user problems.

Results

The results are given in Table 1. The MrRNNs perform sub-
stantially better than the baseline models w.r.t. both the hu-
man evaluation study and automatic evaluation metrics. Mr-
RNN with noun representations obtains an F1 entity score
at 6.31, while the baseline models obtain less than half F1
scores between 0.87− 2.53. Further, human evaluators con-
sistently rate its fluency and relevancy significantly higher
than all the baseline models. MrRNN with activity repre-
sentations performs obtains an F1 activity score at 11.43,
while all other models obtain less than half F1 activity scores
between 1.18 − 5.46. It also performs substantially better
than the baseline models w.r.t. the F1 entity score. In agree-
ment with these results, human evaluators rate its fluency
substantially higher than the baseline models. However, its
relevancy is rated only slightly higher than HRED. We be-
lieve this effect is caused by the human evaluators focusing
excessively on software entities in the dialogue responses –
rather than focusing on on the actions/activities, which are
critical to solving the actual technical problem posed by
the user. Furthermore, the MrRNNs outperform the HRED

3292



Table 2: Model response examples. The arrows indicate change of turn.
Dialogue Context Model Response Model Coarse Response

Hello I tried to install ubuntu studio but I get W : Failed to fetch <url
>404 Not Found when apt-get update→ the ppa you added is not
online

MrRNN Act. -Ent.: try a different mirror
MrRNN Noun: something
VHRED: but I dont know how to add it
HRED: how do I do that ?

MrRNN Act. -Ent.: no tenses
try activity no cmd
MrRNN Noun: past present tenses
ubuntu studio <url>

hi community.. is there any difference between ” /.bashrc ” ” /.bashrc.
local ”→ yes, they’re different files :-) the default /.bashrc sources
/.bashrc. local→ sorry I could undersatnd... If I write on terminal ”
gedit /.bashrc ” it opens a file but how I open ” /.bashrc. local ”→ ”
gedit /.bashrc. local ”...→ but it just open blank file nothing inside it

MrRNN Act.-Ent.: open up gedit /.bashrc, there
is a file called ” something ”
MrRNN Noun: the file is empty..
VHRED: it’s in /.bashrc or /.bashrc
HRED: what are you trying to do ?

MrRNN Act.-Ent.: present tenses
open activity gedit entity no cmd
MrRNN Noun: present tenses
community difference

Hey guys what do you in general use for irc something ubuntu xchat or
xchat-gnome ?→ without -gnome. that is just cut down→ you mean
drop xchat-gnome and go with xchat ?

MrRNN Act. -Ent.: im using xchat right now
MrRNN Noun: what is xchat-gnome ?
VHRED: correct
HRED: yes

MrRNN Act.-Ent.: present tenses
use activity xchat entity no cmd
MrRNN Noun: present tenses guys
general irc ubuntu xchat xchatgnome

when setting up rules with iptables command only writes changes this
file ” etciptables. rules ”? i ask this so i can backup before messing
anything→ sudo iptables-save something . dat to backup your rules
restore with sudo iptables-restore < something . dat

MrRNN Act. -Ent.: I don’t see any reason why
you need iptables to do that
MrRNN Noun: are you using ubuntu ?
VHRED: thx HRED: thanks

MrRNN Act.-Ent.: present tenses
look activity iptables entity no cmd
MrRNN Noun: present tenses rules
iptables command file <path>

baseline augmented activity-entity features across all metrics.
This indicates that the hierarchical generation process helps
MrRNNs generate responses by adding high-level, composi-
tional structure. Overall, the results indicate that the MrRNNs
have learned to model high-level, goal-oriented sequential
structure in the Ubuntu domain.

Model responses are shown in Table 2 together with the
generated coarse responses. The MrRNN responses are gen-
erally very coherent and topic-oriented. In contrast, responses
by the other baselines tend to be off-topic or very generic (Li
et al. 2016; Serban et al. 2016). This suggests that the hier-
archical generation process and factorial representation of
the coarse sequences help MrRNNs take dialogue context
into account and generalize to new examples. In particular,
MrRNN with activity-entity representation appears qualita-
tively to give more goal-oriented instructions in comparison
to MrRNN with noun representation. This is also shown by
the goal-oriented coarse responses generated by the coarse
sub-model. This observation indicates that the hierarchical
generation process helps MrRNN generate responses with
more high-level, compositional structure.

Related Work

Li et al. (2016) proposed a model ranking candidate responses
according to a mutual information criterion, to incorporate
dialogue context efficiently and generate on-topic responses.
In comparison, MrRNNs generate on-topic responses with-
out any additional response selection criterion, by jointly
modeling high-level and low-level semantics of the dialogue.

More generally, MrRNNs are related to hierarchical
RNNs such as the Clockwork RNN (Koutnik et al. 2014)
and memory networks (Weston, Chopra, and Bordes 2015;
Graves, Wayne, and Danihelka 2014; Kumar et al. 2016).
These models also aim to learn high-level representations,
but they lack a hierarchical generation process.

Finally, MrRNNs are related to non-neural network la-
tent variable models for dialogue, such as that of Zhai and
Williams (2014) and He et al. (2016). Learning task-specific

and temporal abstractions for dialogue was also investigated
in earlier work by Bangalore et al. (2008), by Crook et al.
(2009) and others. MrRNN contributes to this line of work
by explicitly modeling the sequence of activities and entities.

Discussion

Current sequence-to-sequence models for dialogue do not
effectively take dialogue context into account and cannot gen-
erate meaningful and diverse on-topic responses. To address
these problems, we have proposed a new class of models
called multiresolution recurrent neural networks (MrRNNs)
MrRNNs model dialogue through a two-level hierarchical
generation process over high-level coarse sequences and nat-
ural language utterances. The coarse sequences can incorpo-
rate task-specific knowledge and follow a latent stochastic
process with a factorial representation, which helps general-
ization. The hierarchical generation process allows MrRNNs
to remember and reason over long-term context, and to gener-
ate appropriate responses with compositional structure. Com-
bined with an automatic extraction procedure, the models
are trained by optimizing the joint log-likelihood over the
sequences at each level. We have applied MrRNNs to dia-
logue response generation for the Ubuntu technical support
domain. We have evaluated them through a human evaluation
study and via automatic evaluation metrics. According to
both human evaluators and automatic evaluation, MrRNNs
improve substantially over competing models. Thus, by rep-
resenting information at different levels of abstraction and
jointly optimizing the generation process across abstraction
levels, MrRNNs are able to generate more fluent, relevant
and goal-oriented responses. The results indicate that it is not
simply a matter of adding additional features for prediction –
MrRNNs outperform a competitive model augmented with
past coarse sequences as as features – rather, it is the com-
bination of representation and generation at multiple levels
that yields the improvements.

MrRNNs are a general framework applicable to any prob-
lem where coarse abstractions are available. We conjecture
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that MrRNNs may be effective in broader natural language
generation tasks, such as generating prose and persuasive
argumentation, and other tasks involving discrete sequences,
such as music composition.
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