
Joint Copying and Restricted Generation for Paraphrase

Ziqiang Cao,1,2 Chuwei Luo,3 Wenjie Li,1,2 Sujian Li4
1Department of Computing, The Hong Kong Polytechnic University, Hong Kong

2Hong Kong Polytechnic University Shenzhen Research Institute, China
3School of Computer Science, Wuhan University, China

4Key Laboratory of Computational Linguistics, Peking University, MOE, China
{cszqcao, cswjli}@comp.polyu.edu.hk

luochuwei@whu.edu.cn
lisujian@pku.edu.cn

Abstract

Many natural language generation tasks, such as ab-
stractive summarization and text simplification, are
paraphrase-orientated. In these tasks, copying and
rewriting are two main writing modes. Most previous
sequence-to-sequence (Seq2Seq) models use a single
decoder and neglect this fact. In this paper, we develop
a novel Seq2Seq model to fuse a copying decoder and
a restricted generative decoder. The copying decoder
finds the position to be copied based on a typical at-
tention model. The generative decoder produces words
limited in the source-specific vocabulary. To combine
the two decoders and determine the final output, we
develop a predictor to predict the mode of copying or
rewriting. This predictor can be guided by the actual
writing mode in the training data. We conduct exten-
sive experiments on two different paraphrase datasets.
The result shows that our model outperforms the state-
of-the-art approaches in terms of both informativeness
and language quality.

Introduction

Paraphrase is a restatement of the meaning of a text using
other words. Many natural language generation tasks are
paraphrase-orientated. For example, abstractive summariza-
tion is to use a condensed description to summarize the main
idea of a document, while text simplification is to simplify
the grammar and vocabulary of a document. In paraphrase,
copying and rewriting are two main writing modes. Re-
cently, the encoder-decoder structure (aka. SeqsSeq model)
has become more and more popular in many language gen-
eration tasks (Bahdanau, Cho, and Bengio 2014; Shang, Lu,
and Li 2015). In such a structure, the source text is encoded
by the encoder as a context vector. Then, a decoder decodes
the semantic information in the vector and outputs the tar-
get text. Studies such as (Rush, Chopra, and Weston 2015;
Hu, Chen, and Zhu 2015) have applied the popular SeqsSeq
model initially used in machine translation (Bahdanau, Cho,
and Bengio 2014) to the paraphrase task. Despite the com-

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

petitive performance, these models seldom take into account
the two major writing modes of paraphrase.

On the one hand, due to the nature of the task, keywords
of the source text are usually reserved in the target text.
However, with only one decoder generating over the en-
tire vocabulary, a typical Seq2Seq model fails to reflect the
copying mode. As a result, many keywords provided in the
source text may be overlooked in the target text. In addition,
certain keywords like named entities are often rare words
and masked as unknown (UNK) tags in Seq2Seq models,
which unavoidably causes the decoder to generate a number
of UNK tags. Although not aiming to explicitly explore the
copying mechanism, the work of (Rush, Chopra, and We-
ston 2015) finds that it largely improves the performance to
add the input-related hand-crafted features to guide the gen-
eration.

On the other hand, rewriting also plays a significant role in
paraphrase. In this writing mode, although the target words
are not the same as the source words, there are semantic
associations between them. For example, “seabird” is pos-
sibly generalized as “wildlife” in summarization, and “the
visually impaired” can be converted into “people who can
not see” in text simplification. The decoders in most previ-
ous work generate words by simply picking the likely target
words that fit the contexts out of a large vocabulary. This
common practice suffers from two problems. First, the com-
putation complexity is linear to the vocabulary size. In order
to cover enough target words, the vocabulary size usually
reaches 104 or even 105. Consequently, the decoding pro-
cess becomes quite time-consuming. Moreover, the decoder
sometimes produces the named entities or numbers which
are common but do not exist in or even irrelevant to the in-
put text, and in turn the meaningless paraphrases.

In this paper, we develop a novel Seq2Seq model called
CoRe, which captures the two core writing modes in para-
phrase, i.e., Copying and Rewriting. CoRe fuses a copy-
ing decoder and a restricted generative decoder. Inspired by
(Vinyals, Fortunato, and Jaitly 2015), the copying decoder
finds the position to be copied based on the existing attention
mechanism. Therefore, the weights learned by the attention
mechanism have the explicit meanings in the copying mode.
Meanwhile, the generative decoder produces the words re-

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

3152

stricted in the source-specific vocabulary. This vocabulary
is composed of a source-target word alignment table and a
small set of frequent words. The alignment table is trained in
advance, and many frequent rewriting patterns are included
in it. It seems better to update the alignment table accord-
ing to the learned attention weights. However, with the sup-
plement of a few frequent words, experiments (see Table:2)
show that more than 95% of the target words have already
been covered by our decoders. While the output dimension
of our generative decoder is just one tenth of the output di-
mension used by the common Seq2Seq models, it is able
to generate highly relevant words concerning rewriting. To
combine the two decoders and determine the final output, we
develop a predictor to predict the writing mode of copying or
rewriting. Since we know the actual mode at each output po-
sition in a training instance, we introduce a binary sequence
labeling task to guide the learning of this predictor, which
takes advantages of the supervision derived from the writing
modes.

To the best of our knowledge, the work most relevant to
ours is the COPYNET (Gu et al. 2016) which also explores
the copying mechanism. However, COPYNET adds an ad-
ditional attention-like layer to predict the copying weight
distribution. This layer then competes with the output of
the generative decoder. Therefore, it is not easy for COPY-
NET to explain the contributions of copying and genera-
tion. Compared with our model, COPYNET introduces a
lot of extra parameters and ignores the supervision derived
from the writing modes. Moreover, the generative decoder
of COPYNET is only allowed to produce frequent words.
As a result, the rewriting patterns are discarded to a large
extent.

We conduct extensive experiments on two different para-
phrase tasks, i.e., abstractive summarization and text sim-
plification. The result shows that both informativeness and
sentence quality of our model outperform the state-of-the-
art Seq2Seq models as well as the statistical machine trans-
lation approaches.

The contributions of our work are as follows:

• We develop two different decoders to simulate major hu-
man writing behaviors in paraphrase.

• We introduce a binary sequence labeling task to predict
the current writing mode, which utilizes additional super-
vision.

• We add restrictions to the generative decoder in order to
produce highly relevant content efficiently.

Background: Seq2Seq Models and Attention

Mechanism

Seq2Seq models have been successfully applied to a series
of natural language generation tasks, such as machine trans-
lation (Bahdanau, Cho, and Bengio 2014), response gener-
ation (Shang, Lu, and Li 2015) and abstractive summariza-
tion (Rush, Chopra, and Weston 2015). With these models,
the source sequence X = [x1, · · · , xn] is converted into a
fixed length context vector c, usually by a Recurrent Neural

Network (RNN) encoder, i.e.,

hτ = f(xτ ,hτ−1) (1)
c = φ(h1, · · ·hn) (2)

where {hτ} are the RNN states, f is the dynamics function,
and φ summarizes the hidden states, e.g., choosing the last
state hn.

The decoder unfolds the context vector c into the target
RNN state st through the similar dynamics in the encoder:

st = f(yt−1, st−1, c) (3)

Then, the predictor is followed to generate the final se-
quence, usually using a softmax classifier:

p(yt|y<t,X) =
exp(wtψ(yt−1, st, ct))∑

yt′∈V exp(wt′ψ(yt−1, st, ct))
(4)

where yt is the predicted target word at the state t, wt is the
corresponding weight vector, and ψ is an affine transforma-
tion. V is the target vocabulary, and it is usually as large as
104 or even 105.

To release the burden of summarizing the entire source
into a single context vector, the attention mechanism (Bah-
danau, Cho, and Bengio 2014) uses a dynamically changing
context ct to replace c in Eq. 3. A common practice is to rep-
resent ct as the weighted sum of the source hidden states:

αtτ =
eη(st−1,hτ)∑n

τ ′=1 e
η(st−1,hτ′)

, ∀τ ∈ [1, n] (5)

ct =
∑n

τ=1
αtτhτ (6)

where αtτ reflects the alignments between source and target
words, and η is the function that shows the correspondence
strength for attention, usually approximated with a deep neu-
ral network.

Method

As illustrated in Figure 1, CoRe is based on the encoder-
decoder structure. The source sequence is transformed by
a RNN Encoder into the context representation, which is
then read by another RNN Decoder to generate the target
sequence.

Encoder

We follow the work of (Bahdanau, Cho, and Bengio 2014)
to build the encoder. Specifically, we use the Gated Recur-
rent Unit (GRU) as the recurrent unit, which often performs
much better than the vanilla RNN. The bi-directional RNN is
introduced to make the hidden state hτ aware of the contex-
tual information from both ends. Then, we use the attention
mechanism to build the context vector as Eq. 2. However,
unlike most previous work, we re-use the learned alignments
(Eq. 5) in the decoders.

Decoder

Instead of using the canonical RNN-decoder like (Bah-
danau, Cho, and Bengio 2014), we develop two distinct de-
coders to simulate the copying and rewriting behaviors, re-
spectively.

3153

Figure 1: Model overview.

The Copying Decoder (C) picks the words from the
source text. In paraphrase, most keywords from the original
document will be reserved in the output. This decoder cap-
tures this fact. Since the attention mechanism is supposed to
provide the focus of source text during generation, for the
copying behavior, the weights learned by Eq. 5 can be inter-
preted as the copying probability distribution. Therefore, the
output of the copying decoder is as follows:

pC(yt|y<t,X) =

{
αtτ , if yt = xτ
0, otherwise (7)

Most previous work uses the attention mechanism as a mod-
ule to build the context vector. In contrast, our copying de-
coder provides the explicit meanings (i.e., the copying prob-
ability distribution) to the learned alignment. Notice that,
this decoder only generates words in the source, i.e., the vo-
cabulary for this decoder is VC = X. We observe that quite
a number of low-frequency words in the actual target text
are extracted from the source text. Therefore, the copying
decoder largely reduces the chance to produce the unknown
(UNK) tags.

The Restricted Generative Decoder (G), on the other
hand, restricts the output in a small yet highly relevant vo-
cabulary according to the source text. Specifically, we train
a rough alignment table A based on the IBM Model (Dyer,
Chahuneau, and Smith 2013) beforehand. This table is able
to capture many representative rewriting patterns, such as
“sustain → injury”, and “seabird → wildlife”. Our pilot ex-
perimental results show that the alignment table covers most
target words which are not extracted from the source. To fur-
ther increase the coverage, we supplement an additional fre-
quent word table U1. Putting together, the final vocabulary
for this decoder is limited to:

VG = A(X) ∪U (8)

In our experiments, we retain 10 most reliable alignments
for a source word, and set |U| = 2000. As a result, VG

is only one tenth of the vocabulary V used by the common
canonical RNN-decoder in size. The output of this decoder

1We add the UNK tag in this table

is formulated by Eq. 9 which is similar to Eq. 4, except for
the reduced vocabulary:

pG(yt|y<t,X) =
exp(wT

t ψ(yt−1, st, ct))∑
yt′∈VG

exp(wT
t′ψ(yt−1, st, ct))

(9)

Compared with the generation on the large vocabulary V,
the restricted decoder not only runs much faster but also pro-
duces more relevant words.

To combine the two decoders, we introduce a binary se-
quence labeling task to decide whether the current target
word should come from copying or rewriting. Specifically,
for each hidden state st, we compute a predictor λt to rep-
resent the probability of copying at the current generation
position:

λt = σ(wCst) (10)

where σ is the sigmoid function and wC is the weight pa-
rameters. λt measures the contributions of the two decoders,
and the final combined prediction probability is:

p(yt|y<t,X) = λtpC + (1− λt)pG (11)

It is noted that λt has the following actual supervision in the
training set:

λ∗t =

{
1, if target word at t exists in the source
0, otherwise (12)

Therefore, we can utilize this supervision to guide the writ-
ing mode prediction.

The common canonical RNN-decoder outputs the proba-
bility distribution over the reserved target word vocabulary
V. Since the computation complex of a Seq2Seq model is
linear to the output dimension of the decoder, a large amount
of infrequent target words have to be discarded to ensure
a reasonable vocabulary size. As a result, a target sentence
may contain many UNK tags, and thus unreadable. By con-
trast, the output dimension of our generative decoder is to-
tally independent on the reserved target word vocabulary.
Therefore, we opt to reserve all the target words in the train-
ing set. Experiments demonstrate that our model runs effi-
ciently and rarely generates the UNK tags.

3154

Learning

The cost function ε in our model is the sum of two parts, i.e.,

ε = ε1 + ε2 (13)

The first one ε1 is the difference between the output {yt}
and the actual target sequence {y∗t }. As the common prac-
tice, we use Cross Entropy (CE) to measure the difference
of probability distributions:

ε1 = −
∑

t
ln(p(y∗t |y<t,X)) (14)

In most existing Seq2Seq models, ε1 is the final cost func-
tion. However, in our model, we include another cost func-
tion ε2 derived from the prediction of writing modes. As
shown in Eq. 10, a binary sequence labeling process in our
model predicts whether or not the current target word is
copied. ε2 measures the performance in this task,

ε2 = −(
∑

t
(λ∗t ln(λt) + (1− λ∗t) ln(1− λt))) (15)

ε2 utilizes the additional supervision of the training data. The
experiments show that this cost function accurately balances
the proportion of the words derived from copying and gen-
eration.

Given the cost function ε, we use the RmsProp (Tieleman
and Hinton 2012) optimizer with mini-batches to tune the
model weights. RmsProp is a popular method to train recur-
rent neural networks.

Experiments

Dataset

We test our model on the following two paraphrase-
orientated tasks,
1. One-sentence abstractive summarization
2. Text simplification
One-sentence summarization is to use a condensed sentence
(aka. highlight) to describe the main idea of a document.
This task facilitates efficient reading. Text simplification
modifies a document in such a way that the grammar and
vocabulary is greatly simplified, while the underlying mean-
ing remains the same. It is able to make the scientific docu-
ments easily understandable for outsiders. We build datasets
for both tasks based on the existing work.

One-sentence Abstractive Summarization: For this
task, we need a corpus that consists of <document,highlight
(one-sentence summary)> pairs. We modify an existing cor-
pus that has been used for the task of passage-based ques-
tion answering (Hermann et al. 2015). In this work, a col-
lection of news documents and the corresponding highlights
are downloaded from CNN and Daily Mail websites. For
each highlight, we reserve the original sentences that have
at least one word overlap with the source text. Therefore,
if a document holds multiple highlights, the source text for
each highlight can be different.

Text Simplification: Simple English Wikipedia2 arti-
cles represent a simplified version of traditional English

2http://simple.wikipedia.org

Wikipedia articles. (Kauchak 2013) built a<Wikipedia text,
Simple English Wikipedia text> corpus according to the
aligned articles. We eliminate the non-English words in the
corpus, and remove the pairs where the source and the target
are exactly the same.

The basic information of the two datasets are presented in
Table 1. As can be seen, each dataset has a large vocabulary
size. In the summarization dataset, the target length is much
shorter than the source length, while in the simplification
dataset, their lengths are similar.

In addition, we compute the target word coverage ratio
based on different vocabulary sets, as shown in Table 2. It
appears that both datasets hold a high copying ratio. When
we restrict the generative decoder to produce the source
alignments, more than 85% target words can be covered.
When combined with 2000 frequent words, the coverage ra-
tio of our model is already close to that using the vocabulary
of 30000 words.

Statistics Summarization Simplification
Training# 986637 132609
Validation# 51759 6700
Test# 42003 3393
Source Length 71.0 24.3
Target Length 12.6 20.9
Vocab Size 116130 123304

Table 1: Statistics of the two datasets.

Vocabulary Summarization Simplification
X 79.2 78.1
X ∪A(X) 89.2 85.8
X ∪A(X) ∪U 95.3 96.0
|V| = 30000 96.3 95.4

Table 2: Target word coverage ratio (%) on the test set.

Implementation

Turned on the validation dataset, we set the dimension of
word embeddings to 256, and the dimension of hidden states
to 512. The initial learning rate is 0.05 and the batch size is
32. Our implementation is based on the standard Seq2Seq
model dl4mt3 under the Theano framework4. We leverage
the popular tool Fast Align (Dyer, Chahuneau, and Smith
2013) to construct the source-target word alignment table
A. The vocabulary of our generative decoder is restricted
in the top 10 alignments of the source words plus 2000 fre-
quent words. Although our model is more complex than the
standard attentive Seq2Seq model, it only spends two thirds
of the time in both training and test.

Evaluation Method

Informativeness is evaluated using ROUGE5 (Lin 2004),
which has been regarded as a standard automatic summa-

3https://github.com/nyu-dl/dl4mt-multi
4http://deeplearning.net/software/theano/
5ROUGE-1.5.5 with options: -n 2 -m -u -c 95 -x -r 1000 -f A -p

0.5 -t 0.

3155

rization evaluation metric. ROUGE counts the overlapping
units such as the n-grams, word sequences and word pairs
between the candidate text Y and the actual target text T.
As the common practice, we take ROUGE-1 and ROUGE-2
scores as the main metrics. They measure the uni-gram and
bi-gram similarities, respectively. For example, the f-score
of ROUGE-2 is computed as follows:

ROUGE − 2f - score =
2×∑

b∈Y min{NY(b), NT(b)}∑
b∈YNY(b) +

∑
b∈TNT(b)

(16)

where b stands for a bi-gram. NY(b), NT(b) are the num-
bers of the bi-gram b in the candidate text and target text,
respectively. Since we do not try to control the length of the
generated sentences, we use the f-score rather than the recall
for comparison.

We conduct text quality evaluation from several points of
view. We use SRILM6 to train a 3-gram language model on
the entire target datasets, and compute the perplexity (PPL)
of the generated text. The lower PPL usually means higher
readability. We also perform the statistical analysis on the
average length of the target text, UNK ratio and copy ratio.
We assume that the good sentences ought to have the similar
length and copying ratio to the answers (refer to Table 1 and
2), and their UNK ratio should be low.

Baselines

We compare the proposed model CoRe with various typical
methods. At first, we introduce the standard baseline called
“LEAD”. It simply selects the “leading” words from the
source as the output. According to the averaged target length
in Table 1, we choose the first 20 words for summarization
and 25 for simplification. We also introduce the state-of-the-
art statistical machine translation system Moses (Koehn et
al. 2007) and the Seq2Seq model ABS (Rush, Chopra, and
Weston 2015). Moses is the dominant statistical approach
to machine translation. It takes in the parallel data and
uses co-occurrence of words and phrases to infer translation
correspondences. For fair comparison, when implementing
Moses, we also employ the alignment tool Fast Align and
the language model tool SRILM. ABS is a Seq2Seq model
with the attention mechanism. It is similar to the neural ma-
chine translation model proposed in (Bahdanau, Cho, and
Bengio 2014). ABS has achieved promising performance on
another one-sentence summarization benchmark.

Note that, we would like to but fail to take COPYNET (Gu
et al. 2016) into comparison. Its source code is not publicly
available.

Performance

The results of different approaches are presented in Table 3.
In this table, the metrics that measure informativeness and
text quality are separated. Let’s look at the informativeness
performance first. As can be seen, CoRe achieves the high-
est ROUGE scores on both summarization and text simpli-
fication. In contrast, the standard attentive Seq2Seq model

6http://www.speech.sri.com/projects/srilm/

ABS is slightly inferior to Moses. It even performs worse
than the simple baseline LEAD in terms of ROUGE-2 in
summarization. Apparently, introducing the copying and re-
stricted generation mechanisms is critical for the paraphrase-
oriented tasks.

Then, we check the quality of the generated sentences.
According to PPL, the sentences produced by CoRe resem-
ble the target language the most. It is interesting that LEAD
extracts human-written text in the source. Nevertheless, its
PPL is considerably higher than CoRe on both datasets. It
seems that CoRe indeed captures some characteristics of
the target language, such as the diction. We also find that
the PPL of Moses is the largest, and its generated length
reaches the length of the source text. Moses seems to con-
duct word-to-word translation. This practice is acceptable
in text simplification, but totally offends the summarization
requirement. Although not manually controlled, the lengths
of the outputs in ABS and CoRe are both similar to the ac-
tual one, which demonstrates the learning ability of Seq2Seq
models. In addition, Table 3 shows that compared to ABS,
CoRe generates far fewer UNK tags and its copying ratio
is closer to the actual one. The former verifies the power of
our two decoders, while the latter may be attributed to the
supplement of the supervision of writing modes.

Case Study

In addition to the automatic sentence quality measurements,
we manually inspect what our model actually generates.
In text simplification, we observe that the paraphrase rules
of Simple Wikipedia are relatively fixed. For example,
no matter how the article in Wikipedia illustrates, Simple
Wikipedia usually adopts the following pattern to describe a
commune:

#NAME is a commune . it is found in #LOCATION .

CoRe grasps many frequent paraphrase rules, and there are
more than 130 cases where the generation results of CoRe
exactly hit the actual target sentences. Therefore, we focus
more on the analysis of the summarization results next. In
summarization, although most target words come from the
copying decoder, we find CoRe tends to pick keywords from
different parts of the source document. By contrast, the stan-
dard attentive Seq2Seq model often extracts a large part of
continuous source words. Meanwhile, the restricted genera-
tion decoder usually plays the role to “connect” these key-
words, such as to change the tenses, or to supplement arti-
cle words. Its behavior resembles a human summarizer to a
large extent. Table 4 gives some examples generated by dif-
ferent models. We find that the sentence generated by CoRe
is fluent and satisfies the need of summarization. The only
difference from the actual target is that CoRe does not as-
sume “told @entity3” is important enough and simplifies it
to “said”. It is the common way that human summarizes. No-
tably, CoRe changes the starting word from “another” to “a”,
which is actually more preferred for an independent high-
light. Looking at other models, Moses almost repeats the
content of the source text. As a result, it is the longest one
and fails to catch the main idea. ABS indeed compresses the
source text. It however focuses on the wrong place, i.e., the

3156

Data Model Informativeness Text Quality
ROUGE-1(%) ROUGE-2(%) PPL Length UNK(%) Copy(%)

Summarization

LEAD 28.1 14.1 176 19.9 0 100
Moses 27.8 14.1 214 73.0 0∗ 99.6
ABS 28.1 12.4 113 13.7 0.88 92.0
CoRe 30.5 16.2 95 14.0 0.14 88.6

Simplification

LEAD 66.4 49.4 66.5 20.8 0 100
Moses 70.9 52.1 70.3 24.4 0∗ 97.6
ABS 68.4 50.3 69.5 22.7 5.6 87.7
CoRe 72.7 55.3 60.9 19.6 2.3 85.9

Table 3: Performance of different models. ∗Moses simply ignore the unknown words.

Source another @entity34 military official who spoke on the condition of anonymity told @entity3 that the fall of
@entity11 is not imminent

Target a @entity34 military official tells @entity3 the fall of @entity11 is not imminent

Moses another @entity34 military official condition of anonymity told @entity3 the fall of @entity11 is not imminent

ABS the @entity34 military official spoke on the condition of anonymity

CoRe a @entity34 military official said the fall of @entity11 is not imminent

Table 4: Generation example in summarization. We use colors to distinguish the word source, i.e., copying , alignment or

common words .

attributive clause. Therefore, its output does not even form a
complete sentence.

Related Work

The Seq2Seq model is a newly emerging approach. It was
initially proposed by (Kalchbrenner and Blunsom 2013;
Sutskever, Vinyals, and Le 2014; Cho et al. 2014) for
machine translation. Compared with the traditional statis-
tical machine translation approaches (e.g., (Koehn et al.
2007)), Seq2Seq models require less human efforts. Later,
(Bahdanau, Cho, and Bengio 2014) developed the atten-
tion mechanism which largely promoted the applications
of the Seq2Seq models. In addition to machine translation,
Seq2Seq models achieved the state-of-the-art performance
in many other tasks such as response generation (Shang, Lu,
and Li 2015) Some researches (e.g., (Rush, Chopra, and We-
ston 2015; Hu, Chen, and Zhu 2015)) have directly applied
the general Seq2Seq model (Bahdanau, Cho, and Bengio
2014) to the paraphrase-oriented task. However, the exper-
iments of (Rush, Chopra, and Weston 2015) demonstrated
that the introduction of hand-crafted features significantly
improved the performance of the original model. Conse-
quently, the general Seq2Seq model used for machine trans-
lation seemed not suitable for the paraphrase task which in-
volves both copying and rewriting.

Limited work has explored the copying mechanism.
(Vinyals, Fortunato, and Jaitly 2015) proposed a pointer
mechanism to predict the output sequence directly from the
input. In addition to the different applications, their model
cannot generate items outside of the set of input sequence.
Later, (Allamanis, Peng, and Sutton 2016) developed a con-
volutional attention network to generate the function name
of the source code. Since there are many out-of-vocabulary
(OOV) words in the source code, they used another atten-

tion model in the decoder to directly copy a code token.
In Seq2Seq generation, the most relevant work we find is
COPYNET (Gu et al. 2016) which has been explained in the
introduction.

Some existing work has tried to modify the output di-
mension of the decoder to speed up the training process. In
training, (Cho, Memisevic, and Bengio 2015) restricted the
decoder to generate the words from the actual target words
together with a sampled word set. (Nallapati et al.) supple-
mented the 1-nearest-neighbors of words in the source text,
as measured by the similarity in the word embedding space.
Notice that, these models still decoded on the full vocabulary
during test. In comparison, our restricted generative decoder
always produces the words in a small yet highly relevant vo-
cabulary.

Conclusion and Future Work

In this paper, we develop a novel Seq2Seq model called
CoRe to simulate the two core writing modes in paraphrase,
i.e., copying and rewriting. CoRe fuses a copying decoder
and a restricted generative decoder. To combine the two de-
coders and determine the final output, we train a predictor
to predict the writing modes. We conduct extensive experi-
ments on two different paraphrase-oriented datasets. The re-
sult shows that our model outperforms the state-of-the-art
approaches in terms of both informativeness and language
quality. At present, our model focuses on producing a single
sentence. We plan to extend it to generate multi-sentence
documents.

Acknowledgments

The work described in this paper was supported by Re-
search Grants Council of Hong Kong (PolyU 152094/14E),
National Natural Science Foundation of China (61272291,

3157

61672445) and The Hong Kong Polytechnic University (G-
YBP6, 4-BCB5, B-Q46C). The correspondence authors of
this paper are Wenjie Li and Sujian Li.

References

Allamanis, M.; Peng, H.; and Sutton, C. 2016. A con-
volutional attention network for extreme summarization of
source code. arXiv preprint arXiv:1602.03001.
Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural ma-
chine translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473.
Cho, K.; Van Merriënboer, B.; Bahdanau, D.; and Ben-
gio, Y. 2014. On the properties of neural machine
translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259.
Cho, S. J. K.; Memisevic, R.; and Bengio, Y. 2015. On using
very large target vocabulary for neural machine translation.
Dyer, C.; Chahuneau, V.; and Smith, N. A. 2013. A sim-
ple, fast, and effective reparameterization of ibm model 2.
Association for Computational Linguistics.
Gu, J.; Lu, Z.; Li, H.; and Li, V. O. 2016. Incorporat-
ing copying mechanism in sequence-to-sequence learning.
arXiv preprint arXiv:1603.06393.
Hermann, K. M.; Kocisky, T.; Grefenstette, E.; Espeholt, L.;
Kay, W.; Suleyman, M.; and Blunsom, P. 2015. Teaching
machines to read and comprehend. In Advances in Neural
Information Processing Systems, 1693–1701.
Hu, B.; Chen, Q.; and Zhu, F. 2015. Lcsts: A large scale
chinese short text summarization dataset. arXiv preprint
arXiv:1506.05865.
Kalchbrenner, N., and Blunsom, P. 2013. Recurrent contin-
uous translation models. In EMNLP, volume 3, 413.
Kauchak, D. 2013. Improving text simplification language
modeling using unsimplified text data. In ACL (1), 1537–
1546.
Koehn, P.; Hoang, H.; Birch, A.; Callison-Burch, C.; Fed-
erico, M.; Bertoldi, N.; Cowan, B.; Shen, W.; Moran, C.;
Zens, R.; et al. 2007. Moses: Open source toolkit for statis-
tical machine translation. In Proceedings of the 45th annual
meeting of the ACL on interactive poster and demonstration
sessions, 177–180. Association for Computational Linguis-
tics.
Lin, C.-Y. 2004. Rouge: A package for automatic evaluation
of summaries. In Proceedings of the ACL Workshop, 74–81.
Nallapati, R.; Zhou, B.; glar Gulçehre, Ç.; and Xiang, B.
Abstractive text summarization using sequence-to-sequence
rnns and beyond.
Rush, A. M.; Chopra, S.; and Weston, J. 2015. A neural
attention model for abstractive sentence summarization. In
Proceedings of EMNLP, 379–389.
Shang, L.; Lu, Z.; and Li, H. 2015. Neural respond-
ing machine for short-text conversation. arXiv preprint
arXiv:1503.02364.

Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence
to sequence learning with neural networks. In Advances in
neural information processing systems, 3104–3112.
Tieleman, T., and Hinton, G. 2012. Lecture 6.5-rmsprop:
Divide the gradient by a running average of its recent magni-
tude. COURSERA: Neural Networks for Machine Learning
4(2).
Vinyals, O.; Fortunato, M.; and Jaitly, N. 2015. Pointer
networks. In Advances in Neural Information Processing
Systems, 2692–2700.

3158

