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Abstract

Learning context representations is very promising to im-
prove translation results, particularly through neural net-
works. Previous efforts process the context words se-
quentially and neglect their internal syntactic structure.
In this paper, we propose a novel neural network based
on bi-convolutional architecture to represent the source
dependency-based context for translation prediction. The pro-
posed model is able to not only encode the long-distance
dependencies but also capture the functional similarities for
better translation prediction (i.e., ambiguous words trans-
lation and word forms translation). Examined by a large-
scale Chinese-English translation task, the proposed ap-
proach achieves a significant improvement (of up to +1.9
BLEU points) over the baseline system, and meanwhile out-
performs a number of context-enhanced comparison system.

1 Introduction

Learning context representation for translation prediction
has attracted much attention in statistical machine transla-
tion (SMT). Many research works model the target context
as monolingual language models for SMT (Shen, Xu, and
Weischedel 2008; Mikolov 2012; Vaswani et al. 2013). Re-
cently, the main focus is shifting from a monolingual context
to a bilingual context, for example, the bilingual language
model (BiLM) (Crego and Yvon 2010; Niehues et al. 2011;
Garmash and Monz 2014) and operation sequence model
(OSM) based on Minimum Translation Units (MTU) (Dur-
rani, Schmid, and Fraser 2011; Durrani et al. 2013). How-
ever, their works relied on the traditional n-gram method,
which is limited to relatively small windows and lacks gen-
eralization abilities in semantics (Mikolov et al. 2013) due
to data sparsity (Guta et al. 2015). On the other hand,
many efforts have been made on learning representations
of bilingual context with neural networks (Auli et al. 2013;
Liu et al. 2013; Hu et al. 2014; Devlin et al. 2014).

Auli et al. and Hu et al. employed recurrent neural net-
works to represent the bilingual context either in word level
or in phrase (i.e., MTU) level for SMT. However, their mod-
els are used for post-processing via n-best rescoring instead
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of translation decoding, because of the recurrence on the tar-
get side. Most notably neural network joint model (NNJM)
described in (Devlin et al. 2014), which encodes n-gram
words in target side and “relevant” words in the source side
using a feed-forward neural network (FFNN), breaks down
the recurrence on the target side and thus can be integrated
into translation decoding. However, these models can not
capture long-distance dependencies among the source-side
words, due to the nature of window-based FFNN1.

More recently, Meng et al. and Zhang, Zhang, and Hao
modeled long-distance dependencies by encoding the entire
source sentence with neural networks. Meng et al. achieved
this by using Convolutional Neural Networks (CNN) to
summarize informative features from source sentences, but
their method only used the sentences shorter than 40 words
for faster training, due to the variant length of sentences.
Zhang, Zhang, and Hao proposed a chunk-based counter-
part for this issue, in which the number of chunks without
linguistic guarantee needs be predefined and tuned as an ad-
ditional hyperparameter. Furthermore, these methods repre-
sent the entire source sentence as a fixed vector for trans-
lations at different time steps rather than a dynamic vector
as the attention mechanism in (Bahdanau, Cho, and Bengio
2015; Luong, Pham, and Manning 2015; Liu et al. 2016).

In this paper, we propose an alternative approach to cap-
turing long-distance dependencies with clues from a source-
side dependency tree, inspired by the success of work on en-
code sentences non-sequentially (Levy and Goldberg 2014;
Tai, Socher, and Manning 2015; Eriguchi, Hashimoto, and
Tsuruoka 2016). The proposed model is able to be inte-
grated into decoding; also, it makes use of the source-side
long-distance dependencies, and learns the dynamical con-
text representation for translation prediction at different time
steps. In particular, instead of encoding the source words
sequentially, it encodes the context structurally depending
on source-side dependency tree. This can not only encode
the long-distance dependencies for better ambiguous words
translation (Chan, Ng, and Chiang 2007; Carpuat and Wu
2007), but also capture the functional similarities for better
word forms translation (Levy and Goldberg 2014), which

1It is possible to enlarge the window to cover the entire source
sentence, but this does not lead to further improvements as shown
in (Devlin et al. 2014).
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is verified in our experiments (§5.5). To this end, firstly an
aligned bilingual parallel sentence pair with source-side de-
pendency is converted into a novel dependency-based bilin-
gual compositional sequence (DBiCS) (§2); then a unique
bi-convolutional neural network (BiCNN) is presented to
learn semantic representations for DBiCS units (§3); and
finally a DBiCS based neural network language model
(DBiCSNNLM) is further designed to predict translation
based on the learned representations (§4).

This paper makes the following contributions:
• It proposes a novel neural network based approach to en-

coding context with source-side dependency information.
Instead of sequentially encoding the source words, we en-
code them in a dependency structure. The proposed model
can encode the long-distance dependencies and capture
the functional information for better translation prediction
(i.e., ambiguous words and word forms translation).

• Intensive experiments on NIST Chinese-English transla-
tion tasks show that the proposed DBiCSNNLM achieves
significant and substantial improvements (of 1.9 BLEU
points on average) over the baseline system, and mean-
while advances a number of methods on bilingual context
representation, particularly including NNJM (§5).

2 Dependency-Based Bilingual

Compositional Sequence (DBiCS)

Suppose an aligned bilingual sentence is represented as
〈f = fJ

1 , e = eI1, A〉, where J (I) denotes the source (target)
length and A denotes the alignment between the sentence f
and e. In order to make the proposed approach simple, the
alignment A is preprocessed to suffice that, each target word
is aligned to one source word as shown in Figure (1), i.e.,
A = {a1, · · · , aI} with ai ∈ {1, · · · , J}. In addition, the
dependency tree of a sentence f is denoted as Tf .

A dependency-based bilingual compositional sequence
(DBiCS) is defined upon an aligned bilingual sentence
〈f , e, A〉 and its source dependency tree Tf . A DBiCS is an
ordered sequence of tuples, called dependency-based bilin-
gual compositional unit (DBiCU), which is used to segment
the bilingual sentence with the order respecting to e while
retaining the dependencies in Tf . In this paper, we employ
the minimum translation units to segment the aligned bilin-
gual sentence following (Durrani, Schmid, and Fraser 2011).
In addition, although it is possible to consider all kinds of
dependencies from the dependency tree, we only keep three
of them for simplicity, which are parent, siblings, and chil-
dren. In this way, each DBiCU is corresponding to a MTU
augmented with three kinds of dependencies.

Formally, suppose 〈M i
e,M

i
f 〉 denotes the ith MTU for

〈f , e, A〉, then its corresponding DBiCU Ui is defined as the
following tuple of words:

Ui = 〈M i
e ‖ PA, SI,M i

f , CH〉, (1)

where PA, SI , CH denote the parent, siblings and children
words of M i

f in a dependency tree; ‘‖’ is used to split the
words in a DBiCU into the target part and the source part.

For example, in Figure 1, the first MTU is 〈today, jintian〉.
Then in the source-side dependency tree Tf , the parent, sib-

zhongguo jintian gongbu le qunian de chengguo

today china announced last year `s results 

Chinese dependencies 

Chinese sentence
(pinyin)

Word alignment
English sentence

Figure 1: Chinese-English parallel sentence pair with Chi-
nese dependencies and word alignment.

lings and children of “jintian” are “gongbu”, “zhongguo,
le, chengguo”, and “ε” (no child), which are respectively
marked in blue, green and purple in Figure 2. Therefore, the
corresponding DBiCU 〈today‖gongbu, zhongguo, le, cheng-
guo, jintian, ε〉, as shown in Figure 2.

Our DBiCU is defined on a minimum translation unit and
thus it is closely related to (Hu et al. 2014), but ours encodes
the dependency structure from the source side dependency
tree instead of sequential words. Moreover, our DBiCS is
similar to that in (Devlin et al. 2014), where an unit is a
word pair 〈ei, fai〉 augmented with n-gram contexts of both
ei and fai . Note that in order to highlight the contribution
of the source dependency context in this paper, our DBiCS
excludes both n-gram contexts of Me and Mf , even if they
might lead to further improvements.

In summary, given a tuple 〈f , e, A, Tf 〉, we can obtain its
unique DBiCS as follows: we firstly identify the ordered
MTU sequence according to A; and then we can convert
each MTU to its corresponding DBiCU by looking up the
dependencies in Tf and thus get the interested DBiCS. For
the example in Figure 1, we can obtain its DBiCS as shown
in Figure 2, which consists of 6 ordered DBiCUs.

3 BiCNN Architecture for DBiCU

This section will introduce a new variant of the standard
convolutional neural network (CNN) (Collobert et al. 2011)
called the Bi-Convolutional neural network (BiCNN). The
BiCNN consists of two interactional CNNs, and each of
them processes either a source-side or a target-side part of
DBiCU. Learning semantic representation for each DBiCU
considers mutual influence between source-side and target-
side part of DBiCU, thus alleviating unconformity between
the bilingual vector space, as shown in Figure 3.

Input Layer: The input layer includes two matrices for a
DBiCU U. One matrix is Us = {w1, ..., wi} for the source-
side part of U, the other matrix is Ut = {w1, ..., wj} for the
target-side part of U. Each of them is a matrix Cn×d, d is the
dimension of word embedding, n is the length of Us or Ut

2.
For example, a DBiCU 〈last year‖chengguo, ε, qunian, de〉,
whose source-side part and target-side part are less
than 10 words, is converted into a new DBiCU
〈/, /, /, /, /, /, /, /, last, year ‖/, /, /, /, /, /,chengguo, ε, qunian,
de〉 after padding “/’, which denotes a special word. In
the paper, two hyperparameters are set n = 10, d = 100,

2We find that source-side and target-side length of 99% DBiCU
are less than 10 words. So we filter the DBiCUs whose source-side
or target-side is greater than 10.

3167



gongbu jintian le zhongguochengguo
china

chengguo qunian de
last year

zhongguo lejintian chengguo
announced
gongbu qunian chengguo de

`s
gongbu zhongguo jintian chengguole qunian

results
gongbu zhongguo le jintianchengguo

today
U1 U2 U3 U4 U5 U6

Figure 2: Dependency-based bilingual compositional sequence of Figure 1.

convolution layer

pooling layer

convolution layer

pooling layer

output Layer

source part of DBiCU

input layer
/  /  /  / /  / f1 f2 f3 f4 /  /  /  /  /  /  /  / e1e2

target part of DBiCU

Figure 3: The Bi-Convolutional neural network (BiCNN) for
learning semantic representation of DBiCU.

source-side and target-side of a DBiCU are represented as a
matrix of the dimension 10× 100, respectively.

Convolutional Layer A convolutional layer in the net-
work contains two filters Wm ∈ Rd×k, and m = {0, 1},
corresponding to the source-side context and the target-side
context respectively. Let the filter window size be t (e.g.,
t=3), the filter Wm generates the feature ymi as follows:

ymk = σ(Wm([wi + wi+1 + wi+2]+

[wj + wj+1 + wj+2]) + b)
(2)

where σ is a non-linear activation function (e.g. Relu), and b
is a bias term. After the filter traverses the input matrix from
wi to wi+t−1 and also from wj to wj+t−1 (1≤i≤n-t+1 and
1≤j≤n-t+1), the output of the feature map ym is:

ym = [ym1 , ym2 , ..., ymn−t+1] (3)

We will denote the feature maps of source-side context and
target-side context by y0 and y1, respectively.

Pooling Layer: The pooling operation (max, average,
etc.) is commonly used to extract robust features from con-
volution. For the output feature map of the convolution
layers, column-wise max over windows of t=2 consecutive
columns is performed (Zhang, Zhang, and Hao 2015):

pmi = max[ym2i−1, y
m
2i ] (4)

After the max pooling traverses each window from ym2i to
ym2i+1, 1≤i≤n/2-t+1, the output of the feature map pm is:

pm = [pm1 , pm2 , ..., ymn/2−t+1] (5)

Then the pooling layer output are p0 and p1, respectively.
Output Layer: The output layer is typically a fully con-

nected layer multiplied by a matrix. In the paper, row-wise
averaging from pooling layers is performed without any pa-
rameters for simplicity, whereby the semantic representation
V of a DBiCU is a vector obtained:

V = average(p0 + p1) (6)

where p0 and p1 are the output of the second pooling layer.
Therefore, the above BiCNN plays a role of function ϕ

parameterized by θ1, which maps a DBiCU U into V :

V = ϕ(U ; θ1) (7)

Note that V in Eq.(6) is a vector rather than a scalar, which
will be transformed into a scalar to score a translation later.

4 Translation Prediction with DBiCS

Representation

In the section, we will firstly propose the entire model based
on DBiCS to score a translation hypothesis, and then present
the training process of the proposed model.

4.1 DBiCSNNLM

The proposed model can be illustrated in Figure 4 (left),
which mainly consists of two components: 1) an inlayer
BiCNN as presented in the last section is used to learn se-
mantic representations for the DBiCUs in a DBiCS, and 2)
an outlayer FFNN is used to predict the next DBiCU given
the previous DBiCUs.

Given a f and its dependency tree Tf , for any translation
e with alignment A, we can obtain its corresponding DBiCS
denoted as {U1, · · · , Ul} with length l. Then we define the
following model to score 〈f , e, A, Tf 〉:

l∏

i=4

P (Ui | Ui−1, Ui−2, Ui−3; θ) =

l∏

i=4

exp
(
φ(Vi, Vi−1, Vi−2, Vi−3; θ2)

)

Z(Ui−1, Ui−2, Ui−3; θ)
(8)

with Z(Ui−1, Ui−2, Ui−3; θ) as the normalization:
∑

Ū

exp
(
φ(V̄ , Vi−1, Vi−2, Vi−3; θ2)

)
(9)

where V=ϕ(U ; θ1) is defined as in Eq.(7); φ is a feedfor-
ward neural network parameterized by θ2; and θ=〈θ1, θ2〉
denotes all the model parameters including those in both
BiCNN and feedforward neural networks. Since the BiCNN
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Generate DBiCS

zhongguo jintian gongbu le qunian de chengguo

today china announced last year `s results 

P(U4|U1, U2, U3)

FFNN

BiCNN
U1 U2 U3 U4

V3 V4V2 V1 

historical hidden layer vector

compositional representation of DBiCU

predicted DBiCU hidden layer vector
P(U4|U1, U2, U3)

chengguo qunian de
last year

zhongguo lejintian chengguo
announced
gongbu qunian chengguo de

`s
U1 U2 U3

gongbu zhongguo jintian chengguole qunian
results

U4

Figure 4: The architecture of DBiCSNNLM (left) and an example of DBiCSNNLM (right).

part learns semantic representations for a DBiCS and the
feedforward part is factorized over 4 DBiCUs similar to
an n-gram language model, the model is called the DBiCS
based neural network language model, DBiCSNNLM.

Figure 4 (right) is used as an example of how the pre-
sented DBiCSNNLM works on the DBiCS. If the target
translation hypothesis “announced last year ’s result” is
evaluated, its DBiCS is shown {U1, U2, U3, U4} in Figure 4
(right). When the predicted DBiCU is U4 and the preced-
ing historical DBiCUs (assume 4-gram) are {U1, U2, U3},
the prediction process is finished by two steps: First, the in-
layer BiCNN inside the DBiCSNNLM is used to learn se-
mantic representation for each DBiCU Ui (i.e., U1, U2, U3,
and U4). Then these semantic representations are treated as
specific context representations at the current time step, by
which the outlayer FFNN can give the conditional probabil-
ity for the predicted DBiCU U4, e.g., P (U4|U1, U2, U3).

Since Eq.(8) is factorized over the DBiCUs, it is straight-
forward to incrementally calculate the DBiCSNNLM scores
of a partial translation hypothesis during the decoding pro-
cess. Suppose we have already calculated DBiCS of a partial
translation hypothesis e′, and e′ is being expanded with a
phrase pair 〈f i2

i1
, ej2j1〉 to be a new partial translation hypoth-

esis. Firstly, we can generate the DBiCS of 〈f i2
i1
, ej2j1〉. Then

the DBiCS of the new translation hypothesis is obtained by
extending the preceding DBiCS of e′ with the DBiCS of
〈f i2

i1
, ej2j1〉. Consequently, the DBiCSNNLM scores of the

new translation hypothesis can be accumulated by Eq.(8).
Because the above decoding process involves in

frequent compuatation of the normalization term,
Z(Ui−1, Ui−2, Ui−3; θ), the naive implementaion makes
the decoding very inefficient. To address this issue, we
employ the technique of self-normalization, which forces
the normalization term to be close to one during the training
(see next Subsection), following (Vaswani et al. 2013;
Devlin et al. 2014). As a result, one can ignore
Z(Ui−1, Ui−2, Ui−3; θ) in Eq.(8) to speedup the decoding.

4.2 DBiCSNNLM Training

Although the proposed DBiCSNNLM consists of BiCNN
and FFNN, they are not isolated from each other and thus be-

ing optimized their parameters θ = 〈θ1, θ2〉 jointly, where θ1
is the parameters of FFNN and θ2 is parameters of BiCNN.

Given aligned bilingual corpus with source-dependency
trees, we can obtain many DBiCSs, each of which is cor-
responding to one bilingual sentence pair. Based on these
DBiCSs, we can collect a set of 4-DBiCU tuples, which
is denoted as U={〈U i

1, U
i
2, U

i
3, U

i
4〉|i=1, · · · , N}. Formally,

we maximize the regularized log-likelihood on Eq.(8), with
the self-normalization term as its regularization:

�(U ; θ) =
N∑

i=1

(
logP (Ui | Ui−1, Ui−2, Ui−3; θ)−

α log2 Z(Ui−1, Ui−2, Ui−3; θ)
)

(10)
where α is the regularizer and it is set to be 0.1 as the (Devlin
et al. 2014).

However, since a DBiCU U is a tuple of words, it is inef-
ficient to exactly calculate Z(Ui−1, Ui−2, Ui−3; θ). Instead,
inspired by (Vaswani et al. 2013), we employ the noise con-
trastive estimation to approximate it:

Z(Ui−1, Ui−2, Ui−3; θ) ≈∑

Ū∈NB(Ui)

exp
(
φ(V̄ , Vi−1, Vi−2, Vi−3; θ2)

)
(11)

where NB(Ui) denotes the neighborhood of a gold DBiCU,
i.e. Ui=〈M i

e‖PA, SI,M i
f , CH〉. Observing that the align-

ment A and source-dependency tree Tf are fixed once
the bilingual corpus is given, we specify the NB(Ui)
as the set of DBiCUs: each DBiCU is with form of
〈M ′

e‖PA, SI,M i
f , CH〉, satisfying |M ′

e|=|M i
e|; and it is

generated by the IBM Model 1 distribution (Brown et al.
1993), inspired by (Cherry 2016).

We employ the stochastic gradient descent as the opti-
mization algorithm, and the gradient of loss is calculated via
the standard backward propagation (Bengio et al. 2003).

5 Experiments

5.1 Data Settings

We built a phrase-based Chinese-to-English SMT system
by using Moses (Koehn et al. 2007), and contains a hier-
archical reordering model (Galley and Manning 2008) and
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a 5-gram LM trained on the Xinhua portion of Gigaword
corpus using the srilm toolkit 3. The training data contains
1.46 million sentence pairs from the LDC dataset4. The stan-
ford dependency parser (Chang et al. 2009) was used to
generate the dependency tree of Chinese. Word alignments
were generated with the GIZA++ toolkit 5. The Minimum
error rate training (MERT) (Och 2003) was used to opti-
mize the feature weights on the NIST02 test set, and test
on the NIST03/NIST04/NIST05 test set. Translation quality
is evaluated by case-insensitive BLEU-4 metric (Papineni et
al. 2002). Paired bootstrap sampling (Koehn 2004) was per-
formed to test the significance in BLEU score differences.
The reported results were averaged over three MERT runs.

Most models had a vocabulary size of 50k. We used
word2vec toolkit 6 to generate each word (100 dimensions)
for historical DBiCUs, and each word (500 dimensions) for
predicted DBiCU. These parameters were optimized by 10
epochs of stochastic gradient descent, using minibatch size
500 and a learning rate of 1.

5.2 Effect of DBiCS

System MT03 MT04 MT05 Avg

baseline 34.59 35.41 33.12 34.37
+BiLM 35.11† 35.79† 33.56† 34.80†
+OSM 35.24† 36.05† 33.83† 35.04†
+DBiLM 35.31† 35.75† 33.80† 34.95†
+DBiCSLM 35.53†* 36.17†* 34.14†* 35.28†*

Table 1: Chinese-English NIST Results. “+” stands for
adding the corresponding model to the baseline system.
AVG = average BLEU scores for test sets. “†” means that
the model significantly outperforms the baseline systems
with p < 0.05. “*” indicates that the model is significantly
better than +BiLM, +OSM and +DBiLM with p < 0.05.

In order to test the effectiveness of DBiCS, we learn a
5-gram DBiCS language model (DBiCSLM) using SRILM
toolkit, thus being in contrast with the 5-gram bilingual
language model (BiLM) (Niehues et al. 2011), 5-gram op-
eration sequence model (OSM) (Durrani et al. 2013) and
5-gram Dependency-Based BiLM (DBiLM) (Garmash and
Monz 2014) trained using the SRILM Toolkit.

In Table 1, it is observed that the DBiCSLM is +0.9 points
higher than the baseline, which shows that the proposed
DBiCS can improve the performance of machine translation.
Moreover, the performance improves upon the BiLM, OSM
and DBiLM by +0.48, 0.24 and +0.31 BLEU points in the
same settings, respectively. These results further verify the
effectiveness of the proposed DBiCS.

5.3 Effect of DBiCSNNLM

To have a comprehensive view on the capacity of DBiC-
SNNLM, we compare it with two neural network models.

3http://www.speech.sri.com/projects/srilm/download.html
4LDC2002E18, LDC2003E07, LDC2003E14, Hansards por-

tion of LDC2004T07, LDC2004T08 and LDC2005T06.
5http://www.statmt.org/moses/giza/GIZA++.html
6https://code.google.com/archive/p/word2vec/

System MT03 MT04 MT05 Avg

baseline 34.59 35.41 33.12 34.37
+NNJM 35.74† 36.79† 34.29† 35.60†
+DBiCSFFNN 35.56† 36.61† 33.92† 35.36†
+DBiCSNNLM 36.43†* 37.57†* 34.84†* 36.28†*

Table 2: Chinese-English NIST Results. “†” means that the
model significantly outperforms the baseline systems with p
< 0.05. “*” means that the model is significantly better than
+NNJM and +DBiCSFFNN with p < 0.05.

The first one is the well-known NNJM (Devlin et al., 2014),
and the other is called DBiCSFFNN, which is a feed for-
ward neural network but treating each DBiCU instead of
word as a token. In Table 2, it is observed that the pro-
posed DBiCSNNLM is +1.9 points higher than the baseline,
which shows that our model can effectively represent con-
text with source-side dependency information for improving
machine translation. Then the DBiCSNNLM gains +0.68
and +0.92 BLEU points over the NNJM and DBiCSFFNN
respectively. These results indicate that out neural network
architecture can more effectively encode context informa-
tion for better translations than NNJM and DBiCSFFNN.

System MT03 MT04 MT05 Avg

baseline+NNLM 35.13 36.22 33.58 34.97
+NNJM 35.82† 36.56† 34.5† 35.63†
+DBiCSFFNN 35.74† 36.86† 34.16† 35.59†
+DBiCSNNLM 36.76†* 37.97†* 35.21†* 36.64†*

Table 3: Chinese-English NIST Results with a 5-gram neu-
ral network language model (NNLM) (Vaswani et al. 2013)
over the target words of training data. “†” means that the
model significantly outperforms the baseline+NNLM sys-
tems with p < 0.05. “*” means that the model is significantly
better than +NNJM and +DBiCSFFNN with p < 0.05.

To further verify the generality of the proposed DBiC-
SNNLM, we implement it on top of another neural sys-
tem, baseline+NNLM, which is augmented with a NNLM
over the baseline. In Table 3, we find that +DBiCSNNLM
achieves significant improvements baseline+NNLM, and it
gains over both +NNJM and +DBiCSFFNN as expected.
In addition, we find that baseline+NNLM+NNJM is com-
parable to baseline+NNJM as depicted in Table 2. This
shows that the gains of NNLM are absorbed into those of
NNJM. On the other hand, DBiCSNNLM is orthogonal to
NNLM, because baseline+NNLM+DBiCSNNLM still gains
over baseline+DBiCSNNLM.

5.4 Effect on K-best Rescoring

We also apply the presented DBiCSNNLM to rescore the
1000-best translation results produced by the baseline and
make a comparison to Structured Output Layer (SOUL) (Le,
Allauzen, and Yvon 2012) model, NNJM (Devlin et al.
2014), jointly translation and reordering model with feed-
forward neural network (JTRFFNN) (Guta et al. 2015), and
minimum translation modeling with recurrent neural net-
work (MTURNN) (Hu et al. 2014).
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Ref: these dangerous people have seriously affected the 
normal immigration policy

Baseline: these dangerous elements seriously affected the 
normal immigration policy

This work: these dangerous people seriously affected the normal immigration policy

Src:
weixian fenzi yanzhong yingxiang le zhengchang de yimin zhengcezhexie

Example1: Translation Prediction on Ambiguous Words.

NNJM : these dangerous elements have seriously affected the normal immigration policy

(pinyin) :

Ref: turkey is an important us ally in nato. it is now resisting
pressures to join the us - led war against iraq

Baseline: turkey is a key nato ally of the united states , is now 
resisted pressure to join the us - led war plan against iraq

This work: turkey is  a   key   nato ally  of   the   united  states  ,   is  resisting pressure  to join  the  us - led  war plan against iraq

Example2: Translation Prediction on Word Forms

Src:
shi zhongyaomeiguo xialingdaode dui zuozhangtuerqi beiyue mengyou

,
xian zheng kangju yali

,
yi jiaru demei yi

NNJM: turkey is a key nato ally of the united states , is to resist pressure to join the us - led war plan against iraq

(pinyin):

Figure 5: Output Sample Sentences.

System MT03 MT04 MT05 Avg

baseline(Dec) 34.59 35.41 33.12 34.37
SOUL 34.73† 35.96† 33.42† 34.70†
NNJM 35.02† 36.10† 33.72† 34.94†
JTRFFNN 34.81† 35.76† 33.26† 34.60†
MTURNN 35.10† 36.16† 33.89† 35.05†
DBiCSNNLM 35.21†* 36.40†* 33.77† 35.12†*

Table 4: Comparison of the proposed DBiCSNNLM in
1000-best rescoring results with other models. “†” means
that the model significantly outperforms the baseline sys-
tems with p < 0.05. “*” indicates that the model is signifi-
cantly better than all the Comparison systems with p < 0.05.

In the Table 4, it is observed that the proposed DBiC-
SNNLM performs well when used for rescoring the baseline
results (+0.69), and the gain is on average better than SOUL
(+0.36), NNJM (+0.12), JTRFFNN (+0.3) and MTURNN
(+0.11). These results mean that the DBiCSNNLM has a
greater distinguishing ability to select better translation from
1000-best lists. Meanwhile, it is observed that the corre-
sponding results in Table 4 are on average inferior to that
of Table 2. It indicates that our method provides more trans-
lation information in the decoding than in the rescoring.

5.5 Sample Analysis

In Example 1 of Figure 5, we compare our model with
both baseline and NNJM on the translation of an ambiguous
word. By using BiCNN to encode the long-distance depen-
dencies “yingxiang, yanzhong le zhengce, fenzi, zhexie weix-
ian” as a context, our model can correctly translate “fenzi”
into “people” instead of “elements” as both baseline and
NNJM do. Note that the last word “zhengce” is very infor-
mative for the correct translation, but it is far away from
”fenzi” such that it is not easy to be focused on by NNJM

with a window-based FFNN.
In addition, the Example 2 of Figure 5 shows that our

model can even distinguish those words with the same mean-
ing but different word forms while both baseline and NNJM
fail. To figure out the details, we calculate the DBiCSNNLM
scores in Eq.(8) for three candidate DBiCUs corresponding
to “resisting”, “resisted” and “to resist” during the decoding
process. Then we found that the model score (log) of “re-
sisting” is -3.64, while those of “resisted” and “to resist” are
-4.67 and -4.03. As a result, our model can correctly trans-
late the “kangju” into “resisting” instead of “resisted” and
“to resist”, since the feature weight of DBiCSNNLM is pos-
itive after tuning. The main reason why our model can trans-
late the accurate word form is that it encodes a dependency
structure with neural networks. Therefore, the learned neu-
ral model can distinguish the different translations of word
form , which is in line with the functional similarity findings
in (Levy and Goldberg 2014).

Therefore, these examples realize our intuition: encoding
a dependency structure with neural networks is able to cap-
ture not only the long-distance dependencies for ambigu-
ous words translation but also functional similarity for word
forms translation.

6 Conclusion and Future Work

In this paper, we proposed a novel approach to encoding the
source-side long-distance dependency information for trans-
lation prediction. The proposed DBiCSNNLM can dynami-
cally represent contexts for translation prediction at different
time steps. By explicitly encoding the dependency structure,
our model not only encodes the long-distance dependencies
but also captures the functional information for better trans-
lation prediction on both ambiguous words and word forms.
The experiments showed that the DBiCSNNLM can signif-
icantly improve translation performance over a strong base-
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line, and verify the effectiveness of structure clues in the
context. In the future, we will explore richer syntactic or se-
mantic information from the context to improve translation.
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