
 
 

Abstract 
We address the coarse-grained disambiguation of the spatial 
prepositions as the first step towards spatial role labeling us-
ing deep learning models. We propose a hybrid feature of 
word embeddings and linguistic features, and compare its 
performance against a set of linguistic features, pre-trained 
word embeddings, and corpus-trained embeddings using 
seven classical machine learning classifiers and two deep 
learning models. We also compile a dataset of 43,129 sam-
ple sentences from Pattern Dictionary of English Preposi-
tions (PDEP). The comprehensive experimental results sug-
gest that the combination of the hybrid feature and a convo-
lutional neural network outperforms state-of-the-art meth-
ods and reaches the accuracy of 94.21% and F1-score of 
0.9398. 

 Introduction   
Evolution has shaped complex visual-spatial processing 
capabilities such as object recognition, object search and 
navigation through space almost in all advanced species. It 
has also equipped humans with the discriminative ability of 
expressing and communicating spatial knowledge through 
language (Landau and Jackendoff 1993). One of the ambi-
tious goals of Artificial Intelligence is to simulate this cog-
nitive process to improve the applications of spatial 
knowledge. These applications include human-robot inter-
actions, natural language interfaces, machine vision, text-
to-scene conversion systems, geographical information 
systems, question answering systems, search engines, and 
spatial databases. This process entails various underlying 
sub-processes such as detecting, representing, grounding, 
planning, and inferring the spatial relations. The first step 
in simulating this process is to detect the spatial signals 
embedded within a given utterance. 

 In English, these signals can employ various syntactic 
categories such as verbs, adverbs, adjectives, nouns, pro-
nouns, and prepositions. Nevertheless, most of the spatial 
relations in English are canonically lexicalized as preposi-
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tions or prepositional phrases. The spatial prepositions 
appear in locative expressions which convey information 
about the spatial configuration of two or more objects in 
some space, and consist of a preposition, its objects, and 
the subject that the prepositional phrase modifies (Her-
skovits 1985). The object of the preposition is called land-
mark or relatum and the subject is called trajectory or loca-
tum. A locative expression can be formalized as a predi-
cate-argument structure. For instance, an utterance such as 
the laptop is on the desk can be represented as on(laptop, 
desk). At first sight, the formalization process appears rela-
tively straightforward using the following heuristic. The 
word with preposition Part-Of-Speech (POS) tag within the 
prepositional phrase is the predicate, the noun phrase oc-
curring before the preposition is the relatum, and the noun 
phrase following the preposition is the locatum. However, 
beside the challenges of locating the relatum and locatum 
(i.e., co-references, compound prepositions, compound 
locative expressions, etc.), it is not a trivial task to decide 
whether the preposition conveys spatial information.  

Spatial prepositions can be classified into locative and 
directional prepositions. Locative prepositions describe the 
position of a located object in relation to a set of reference 
objects whereas directional prepositions describe a change 
of position or direction of the located object. Locative 
prepositions are categorized to projective and topological 
prepositions. Projective prepositions such as above, in 
front of, and to the left of stipulate the information regard-
ing the direction of a located object in respect to a refer-
ence object whereas topological prepositions such as in, 
on, and near convey information about the topological 
arrangements among the objects, and can be further classi-
fied to simple topological prepositions such as in and on 
and proximity topological prepositions such as near and 
far from (Coventry and Garrod 2004). 

Polysemy (i.e., capacity of a word to have multiple se-
mantically relevant but distinct senses) is a common fea-
ture of the prepositions. The task of deciding the sense of a 
word in a given context is called word sense disambigua-
tion and is considered as an AI-complete problem (Navigli 
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2009). Spatial prepositions usually show high polysemy 
and can have up to 25 different senses (e.g. upon with 8 
spatial and 17 non-spatial senses) (Litkowski and Har-
graves 2007; Tratz and Hovy 2009). We address the 
coarse-grained disambiguation of the spatial prepositions 
as the first step towards spatial role labeling. Given a prep-
osition within a sentence, the goal is to decide whether the 
preposition has a spatial sense in that context. For example, 
none of the following examples adapted from (Dittrich et 
al. 2015; Kordjamshidi, Otterlo, and Moens 2011) carry 
spatial signals. Examples (2) and (5) are idioms referring to 
getting old and feeling ill, and the rest of the examples 
have either abstract relatum or locatum. 
(1) She is always in my heart. 
(2) Peter is over the hill. 
(3) The senator is at the far left of the political spectrum. 
(4) The thought in the back of my mind. 
(5) She felt under the weather. 

In this paper, we propose a hybrid feature of word em-
beddings and linguistic features, and compare its perfor-
mance against a set of linguistic features, pre-trained word 
embeddings, and corpus-trained embeddings using seven 
classical machine learning classifiers and two deep learn-
ing models. We show that the combination of the hybrid 
feature and a convolutional neural network outperforms the 
state-of-the-art methods. The paper is organized as follows. 
We first overview the related works and then discuss the 
employed features. We then explain the learning models 
and the dataset, respectively. Finally, we describe the ex-
perimental setup and discuss the results. 

Related Works 
Dittrich et al. (2015) proposed a fast disambiguation 
scheme for spatial prepositions based on a few heuristics 
which utilize WordNet (Miller 1998). This scheme can 
recognize the most common metaphoric uses of the prepo-
sitions, and abstract locatums and relatums. Kordjamshidi, 
Van Otterlo, and Moens (2011) used a few linguistic fea-
tures including words, lemmas, dependency relations, 
POS-tags, and sematic roles to train a Naive Bayes and 
maximum entropy classifiers to disambiguate the spatial 
prepositions. They reached the accuracy of 88% and F1-
score of 0.88 on the TPP dataset (Litkowski and Hargraves 
2007). Yu et al. (2015) developed a classification rule dis-
covery scheme for preposition disambiguation and reached 
the accuracy of 93.2% for the on preposition. OHara and 
Wiebe (2009) address the preposition sense disambiguation 
using semantic role resources such as WordNet, FrameNet 
and OpenCyc. Dahlmeier, Ng, and Schultz (2009) showed 
that joint learning of the senses and the semantic roles of 
prepositional phrase can enhance the accuracy. 

A few works are carried out on SemEval 2007 dataset 
consisting of 25,000 sample sentences and 32 prepositions 
(Litkowski and Hargraves 2007). Ye and Baldwin (2007) 
employed a set of features consisting of POS-tags, Word-
Net synsets, and named entities on context windows of 7 
words, and reached the F1-score of 0.861. Hovy, Tratz, and 
Hovy (2010) used seven rules to select a set of discrimina-
tive words from the given sentence and then used them to 
extract 17 features as the inputs to a maximum entropy 
classifier. They reached the accuracy of 91.8% on coarse-
grained classification task. As far as our knowledge is con-
cerned, this is the first work that applies deep learning 
models to disambiguate the spatial prepositions. 

Features 
We use four sets of features including the engineered lin-
guistic features, pre-trained universal word embeddings, 
corpus-trained word embeddings, and the hybrid features. 

Linguistic Features 
The linguistic features consist of twelve engineered fea-
tures including five lexical features, four syntactic features 
and three semantic features. For a given symmetric win-
dow W: [wi-k,...,wi,...,wi+k] of size 2k+1 centered on the 
preposition (i.e., k words to the left and k words to the right 
of the preposition), these features are as follows. 
Lexical Features 
(1) The unigrams:  

U: [wi-k,...,wi,...,wi+k] 
(2) The lemmas:     

L: [li-k,...,li,...,li+k] 
(3) The 1-skip-bigrams:  

B: [wi-k wi-k+1, wi-k wi-k+2,...,wi wi+1,...,wi+k-1 wi+k] 
(4) The probability of unigrams occurring in spatial exam-
ples:  

PU: [ps(wi-k),...,ps(wi),...,ps(wi+k)] 
(5) The probability of 1-skip-bigrams occurring in spatial 
examples:  

PB: [ps(wi-k+1|wi-k),...,ps(wi+1|wi),...,ps(wi+k|wi+k-1)] 
Syntactic Features 
(6) The word level POS-tags of the words:  

POSW: [posw(wi-k),..., posw(wi),..., posw(wi+k)] 
(7) The phrase level POS-tags of the words:  

POSP: [posp(wi-k),..., posp(wi),..., posp(wi+k)] 
(8) The phrase level POS-tags of the immediate ancestors 
of the words:  

POSA: [posa(wi-k),..., posa(wi),..., posa(wi+k)] 
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(9) The minimum syntactic distance between the words 
and the preposition in the parse tree:  

DI: [dis(wi-k, wi),...,0,...,dis(wi, wi+k)] 
Semantic Features 
(10) The named entities of the words:  

NE: [ne(wi-k),...,ne(wi),...,ne(wi+k)] 
(11) An indicator to decide whether a word is abstract or 
physical:  

PH: [phy(wi-k),...,phy(wi),...,phy(wi+k)] 
(12) The collapsed dependencies between the preposition 
and the words:  

DE: [dep(wi-k, wi),...,Null,...,dep(wi+k, wi)] 
Stanford CoreNLP toolkit (Manning et al. 2014) is uti-

lized to extract features (1), (2), (6)-(10) and (12), and 
NLTK toolkit (Loper and Bird 2002) is used to extract 
feature (3).  For a given pair of a preposition and a word 
(p,w) feature (9) is computed as follow. 

dis(p,w) = d(p,r) + d(w,r) - 2 × d(lca(p,w),r) 
r denotes the root of the parse tree, d(w,r) is the distance 

between the root and the word, and lca(w1,w2) is the lowest 
common ancestor of words w1 and w2. Feature (11) is com-
puted as follows. First, all nouns are extracted and 
searched in WordNet. Those nouns that are found and are 
the children of the physical object synset (i.e., the hyper-
nym hierarchy of at least one of their senses includes phys-
ical object) are marked as physical. Those nouns whose 
hypernym hierarchy of all the senses includes abstract enti-
ty are tagged as abstract. Those words that are not found in 
the WordNet are tagged as none. Also, to augment this 
feature, a pairwise logical OR is performed on the proper 
nouns captured by Named Entity Recognition (NER) in 
feature (10) and the results from WordNet. Finally, the 
linguistic feature FL is defined as the concatenation of the 
features (1)-(12) as follows. 
FL: [U L B PU PB POSW POSP POSA DI NE PH DE]T 

Universal Word Embeddings 
Word embeddings are dense vector representation of the 
words learned in an unsupervised manner (Bengio et al. 
2003). They can capture fine-grained semantic and syntac-
tic regularities using vector arithmetic and reflect similari-
ties and dissimilarities between the words (Pennington, 
Socher, and Manning 2014). Similar to vector space mod-
els such as latent semantic analysis (LSA) (Deerwester et 
al. 1990), word embeddings are based on the distributional 
hypothesis (i.e., the meaning of a word can be determined 
by looking at its context) (Harris 1954). However, instead 
of global matrix factorization methods such as singular 
value decomposition (SVD), word embeddings are learned 
based on the neural language models in which the word 

vector is the internal representation of the word within the 
network. Because word embeddings are learned using shal-
low networks, learning them is much faster than the matrix 
factorization methods (Levy and Goldberg 2014; Levy, 
Goldberg, and Dagan 2015).  

Several models such as continuous Bag-of-Words 
(CBOW) and skip-gram with negative-sampling (SGNS) 
(also known as Word2Vec) (Mikolov, Chen, et al. 2013; 
Mikolov, Sutskever, et al. 2013), vector log-bilinear mod-
els (vLBL and ivLBL) (Luong, Socher, and Manning 
2013), explicit word embeddings based on positive point-
wise mutual information (PPMI) metric (Levy and Gold-
berg 2014), and global vectors for word representation 
(GloVe) (Pennington, Socher, and Manning 2014) are pro-
posed in literature. It has been shown that if these models 
are trained on very large corpora, the resulted vectors are 
universal word features that can be applied to various tasks 
(Kim 2014). In this study, we use pre-trained Word2Vec 
and GloVe word embeddings. 

Word2Vec embeddings are trained using skip-gram with 
negative-sampling model on the local contexts (Mikolov, 
Chen, et al. 2013; Mikolov, Sutskever, et al. 2013). The 
Word2Vec pre-trained vectors are trained on part of 
Google News dataset with about 100 billion tokens. The 
model contains 300-dimensional vectors for 3 million 
words and phrases and is publicly available. Given the 
window W: [wi-k,...,wi,...,wi+k], we define the Word2Vec 
representation of the window as follows. 

W2Vemb: [Hw2v(wi-k),...,Hw2v(wi),...,Hw2v(wi+k)] 
Hw2v(wk) is a hash function that retrieves the pre-trained 

word2vec vector of a given word wk. 
GloVe model explicitly utilize the word-context co-

occurrence matrix. It leverages the combination of the sta-
tistical information of the global co-occurrence matrix with 
a weighted least squares regression model (Pennington, 
Socher, and Manning 2014). The GloVe embeddings are 
trained on a corpus collected by Common Crawl with 840 
billion tokens. The model contains 300-dimensional vec-
tors for 2.2 million words which is publicly available. Sim-
ilarly, given the window W, the GloVe feature is computed 
as follows. 

Gemb: [HG(wi-k),...,HG(wk),...,HG(wi+k)] 

Local Word Embeddings 
In addition to pre-trained word2vec vectors, we trained the 
local word embeddings on a corpus of prepositions with 
1,549,492 tokens based on SGNS model and using genism 
semantic modeling library (Rehurek and Sojka 2010). The 
model contains 50-dimensional and 100-dimensional vec-
tors for 59,814 words. For a window W, these local word 
embeddings are defined as follows. 

L-W2Vemb: [Hw2v-L(wi-k),...,Hw2v-L(wi),...,Hw2v-L(wi+k)] 
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Hybrid Features 
We define the hybrid features as the amalgamation of the 
universal word embeddings and the linguistic features. For 
this purpose, we replace the linguistic features (1)-(5) with 
the corresponding word embeddings. As a result, the hy-
brid features is defined as follows. 

FH-g: [Gemb POSW POSP POSA DI NE PH DE]T 

Learning Models 
As far as our knowledge is concerned, there is no solid 
baseline on the task of disambiguating the spatial preposi-
tions. Hence, we utilize both classical machine learning 
models (seven models) and deep learning models (two 
models) for this task. The applied machine learning algo-
rithms include a logistic regression classifier, a k-nearest 
neighbor classifier, a Bernoulli naïve Bayes classifier, a 
linear support vector machines (SVM), and three ensemble 
classifiers including a random forest classifier, an Ada-
boost classifier, and a bagging classifier. These classifiers 
are applied using scikit-learn machine learning library 
(Pedregosa et al. 2011). We also use two deep learning 
models including a fully connected feedforward deep neu-
ral network (DNN) and a deep convolutional neural net-
work (CNN). These deep models are implemented using 
TensorFlow library (Martín Abadi et al. 2015). 

Dataset 
The Pattern Dictionary of English Prepositions (PDEP) 
(Litkowski 2014) is a publicly available lexical resource 
collected as a part of The Preposition Project (TPP) for the 
study of preposition behavior. It contains example sentenc-
es drawn from three corpora including FrameNet, Oxford 
English Corpus, and British National Corpus. PDEP con-
tains 82,329 annotated example sentences of 1,061 senses 
under 304 prepositions. The prepositions are classified into 
twelve classes including activity, agent, backdrop, cause, 
membership, exception, scalar, spatial, tandem, temporal, 
topic, and tributary preposition classes. It provides the 
senses of a preposition, its pattern, substitutable preposi-
tions, syntactic position, semantic class, super-sense, clus-
ter, relation, and primary implicature. 

The spatial class contains 169 senses under 78 spatial 
prepositions and 19,413 positive annotated examples. To 
compile the dataset, we extracted all members of the spa-
tial class (i.e., prepositions that have at least one spatial 
sense). We also filtered out 36 spatial prepositions includ-
ing the archaic prepositions (e.g., betwixt, nigh and 
thwart), technical prepositions (e.g., abaft), limited dialect 
prepositions (e.g., outwith), and prepositions with less than 
ten examples (e.g. fore and sans). This resulted in a corpus 

of 73 spatial prepositions and 596 senses out of which 169 
are spatial. Among them, upon with 25 (8 spatial and 17 
non-spatial) different senses has the highest polysemy. 
Aboard and midst are the only prepositions whose all sens-
es are spatial, and by has the minimum ratio of spatial 
senses (2 spatial and 21 non-spatial). The corpus consists 
of 19,103 positive instances and 24,026 negative instances. 
The final dataset is an almost balanced dataset consisting 
of 43,129 samples with skewness of 0.2289 and Kurtosis 
measure of -1.9473. We split the dataset into a train set 
with 39,000 samples and a test set with 4,129 samples 
(2,000 spatial and 2,129 non-spatial samples). 

Experimental Setup 

Preprocessing 
A few regular expressions are used to replace the numbers 
with <NUM> symbol, pad the context windows by 
<PAD> symbol, and remove all the characters except the 
alphabetic characters and the punctuation marks. The pre-
processing of features is as follows. For the universal word 
embeddings, the missing words in the pre-trained models 
are randomly generated by sampling each dimension from 
U ~ [-1, +1]. We also reduce the dimensionality of the pre-
trained vectors from 300 to 10, 50, 100, and 200 using 
principal component analysis (PCA) to investigate the ef-
fects of different dimension on the training. For the word 
embeddings trained on the corpus, we do not perform any 
feature preprocessing. For the linguistic features, the nu-
meric identifiers of the POS-tags, unigrams, 1-skip-
bigrams, dependencies, named entities alongside with the 
probability vectors are mapped to the range of [-1,+1] us-
ing min-max normalization. For each feature set, five con-
text windows of sizes 3, 5, 11, 15, and 21 are considered 
(e.g. window size of 11 contains 5 words to the right and 5 
words to the left of the preposition). 

Model Setup 
Both deep learning models are trained using Adam sto-
chastic optimizer (Kingma and Ba 2015) with the learning 
rate of 1E-4 over the mini-batches of size 250. The mini-
batches are uniformly sampled with replacement. Both 
models utilize a cross-entropy loss function with one-hot 
output representation. They also use dropout regularization 
(Srivastava et al. 2014) with probability of p=0.5 and batch 
normalization (Ioffe and Szegedy 2015) on the input layer. 
Both models also utilize the rectified linear units (ReLU) 
in their hidden layers and a softmax function in their output 
layer. The DNN model is defined as a four layer network 
(3 hidden layers + softmax layer). The CNN (Figure 1) 
consists of two convolutional layers each followed by a 
max pooling layer and two fully connected layers. 
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Figure 1. The Architecture of the convolutional Neural Network. 

We fixed the number of epochs to 50,000, and used 32, 
64, and 128 filters with sizes of 2×5, 3×5, and 5×5 with 
stride of 1. We also used windows of sizes 1×3, 2×2, 3×2 
and 3×5 for the pooling. The sizes of the hidden layers are 
considered as hyper-parameters and are optimized using 
the random search. For this purpose, 10% of the training 
set is sampled as the dev set. For different feature sets, 
these sizes are set to 500, 800, and 1,000. 

The random search is also employed to optimize the hy-
per-parameters of the classical machine learning models. 
The number of neighbors in the K-NN classifier is set to 
10. The number of estimators and the learning rate in the 
Ada-boost classifier are set to 50 and 0.9, respectively. For 
the random forest classifier, the number of estimators is set 
to 15 and the Gini index is used to decide the split. The 
number of maximum features for each split is set to the 
root square of the size of the feature. The number of esti-
mators of the bagging classifier is also set to 15. The penal-
ty parameter of the SVM models is set to 0.98. 

Results and Discussion 
We first investigate the effects of the context window size 
and the dimensions of the word embeddings on the F1-
score. For the DNN model with different feature sets, these 
effects are shown in Figure 2 and Figure 3, respectively. 
The other models show similar effects as well. As illustrat-
ed in Figure 2, as the widow size increases, the F1-score 
decrease proportionally. This suggests that the senses of a 
preposition only depend on a small local context window. 
That is because the dependent and the governor of a prepo-
sition which provide the clues about its sense tend to ap-
pear very close to the preposition (i.e., preceding and pro-
ceeding noun phrases). As shown, the best F1-score is 
achieved with the window size of 5 which implies that 
smaller window size misses useful information whereas 
larger windows introduce higher noise to signal ratio. Also, 
as shown in Figure 3, the best F1-score is achieved by re-
ducing the dimensionality from 100. It is noteworthy that 
the optimal dimension size depends on the corpus size.  

Second, we analyze the accuracy and F1-score of differ-
ent learning models with respect to the exploited feature 
set. The results for the context window of size 5 are shown 
in Table 1. The following observations can be pointed out: 

 
 
 
 

 

 

 

 

 

Figure 2. The Effect of the Context Window Size on F1-Score. 

 
 
 
 
 
 

 
 
 
 
 
 

Figure 3. The Effect of the Word Vector Size on F1-Score. 

(1) The pre-trained universal embeddings outperform the 
corpus-trained embeddings in terms of accuracy and F1-
score by 4.85% and 5.39%, respectively. This implies that 
the PDEP corpus is not big enough to be directly used to 
train the word embeddings. 

(2) The GloVe pre-trained embeddings slightly outper-
form the Word2Vec pre-trained embeddings when used 
with classic classifiers. On the other hand, Word2Vec pre-
trained embeddings achieves better F1-score when used 
with DNN. Nevertheless, as shown in Figures 2 and 3, the 
pre-trained features demonstrate similar behaviors. 

(3) The feature sets that exploit the corpus information 
(i.e., linguistic and hybrid features) outperform the univer-
sal features. Also, it is shown that combining information 
from both local corpus and universal word distributions 
results in the best performance. 

 (5) Regardless of the classifier type, the hybrid feature 
outperforms other feature sets in both accuracy and F1-
score. Because the universal embeddings convey infor-
mation regarding the similarities and dissimilarities among 
words, integrating the universal distributions of the words 
with the local corpus information enhances the perfor-
mance. 

(6) On average both deep learning models outperform 
the classic classifiers. And among the classic classifiers 
ensemble models outperform the rest. 
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(7) The best performance is achieved by extracting the 

hybrid features from a context window of size 5 and word 
vectors of size 100, and feeding it to a CNN with two con-
volution layers. This model achieves the accuracy and F1-
score of 94.21% and 0.9398, respectively, which is an im-
provement of 7.06% over (Kordjamshidi, Van Otterlo, and 
Moens 2011), which is significant at p <0.001. 

(8) Error analysis suggests that in most of the feature-
model combinations, on average 40% of the prediction 
errors are false negatives and 60% are false positives. This 
is due to a slight skewness in the dataset (i.e., skewness of 
0.2289 and Kurtosis measure of -1.9473).    

(9) Error Analysis also suggests that the distribution of 
error over the prepositions in fine-grained disambiguation 
is proportional to the sample size. For example, upside 
preposition with only 17 training and 3 test examples has 
the worst accuracy (77.77%) whereas over preposition with 
946 training and 82 test examples has the best accuracy 
(98.8%). Because in the current task the classification has a 
binary nature, the number of senses does not affect the 
accuracy. 

(10) Considering the sparsity of the natural language and 
the fact that idioms are very rare events within the lan-
guage, some sample idioms that only appear in test set re-
sult in misclassification. For example, the prepositions 
within the following idioms are misclassified as spatial: 

If it's a good day I feel on top of the world. 
Try to avoid flitting from academic twig to twig. 

Conclusion 
We addressed the coarse-grained disambiguation of the 
spatial prepositions (spatial vs. non-spatial) as the first step 
towards spatial role labeling using deep learning models. 
For this purpose, we first proposed a hybrid feature which 
is the combination of the universal word embeddings and 
the linguistic features of the corpus. Also, we compiled a 
spatial dataset of 43,129 instances from TTPE database. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We compared the performance of the hybrid feature 
against a set of linguistic features, pre-trained word em-
beddings, and corpus-trained embeddings using seven clas-
sical machine learning classifiers and two deep learning 
models.  

The results suggested that the context window size of 5 
yields in better results. The results also suggested that re-
gardless of the classifier type, the proposed hybrid feature 
achieves better results in comparison with other features. 
Finally, the results revealed that feeding the hybrid feature 
to a convolutional neural network with two convolution 
layers achieves the accuracy of 94.21% and the and F1-
score of 0.9398 which is an improvement of 7.06% over 
(Kordjamshidi, Van Ot-terlo, and Moens 2011), which is 
significant at p<0.001. 

As for future works, we are planning to investigate the 
fine-grained spatial disambiguation. Also, we are planning 
to apply our approach to the general task of preposition 
sense disambiguation using the PDEP database (i.e. 82,329 
examples). Finally, we are planning to apply the recurrent 
neural networks for joint disambiguating, and locating the 
prepositions, relatums, and locatums to address the spatial 
role labeling task. 
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K-NN 91.31% 0.9070 80.43% 0.7720 82.44% 0.8009 74.64% 0.7166 89.15% 0.8817 
Naïve Bayes 90.80% 0.9018 -------- -------- -------- -------- -------- -------- -------- -------- 

Logistic regression 91.84% 0.9141 83.02% 0.8195 83.34% 0.8234 77.74% 0.7615 93.51% 0.9321 
DNN 93.23% 0.9265 84.96% 0.8410 85.20% 0.8414 81.06% 0.7996 94.16% 0.9388 
CNN 93.54% 0.9312 85.08% 0.8425 84.82% 0.8401 80.60% 0.7955 94.21% 0.9398 
Mean 92.02% 0.9190 82.01% 0.8039 82.78% 0.8129 78.90% 0.7737 93.13% 0.9273 

SD 0.0121 0.0146 0.0202 0.0258 0.0165 0.0192 0.0205 0.0244 0.0153 0.0175 
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