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Abstract

One of the main goals of natural language processing (NLP)
is synthetic understanding of natural language documents, es-
pecially reading comprehension (RC). An obstacle to the fur-
ther development of RC systems is the absence of a synthetic
methodology to analyze their performance. It is difficult to
examine the performance of systems based solely on their re-
sults for tasks because the process of natural language un-
derstanding is complex. In order to tackle this problem, we
propose in this paper a methodology inspired by unit testing
in software engineering that enables the examination of RC
systems from multiple aspects. Our methodology consists of
three steps. First, we define a set of prerequisite skills for RC
based on existing NLP tasks. We assume that RC capabil-
ity can be divided into these skills. Second, we manually an-
notate a dataset for an RC task with information regarding
the skills needed to answer each question. Finally, we ana-
lyze the performance of RC systems for each skill based on
the annotation. The last two steps highlight two aspects: the
characteristics of the dataset, and the weaknesses in and dif-
ferences among RC systems. We tested the effectiveness of
our methodology by annotating the Machine Comprehension
Test (MCTest) dataset and analyzing four existing systems
(including a neural system) on it. The results of the annota-
tions showed that answering questions requires a combina-
tion of skills, and clarified the kinds of capabilities that sys-
tems need to understand natural language. We conclude that
the set of prerequisite skills we define are promising for the
decomposition and analysis of RC.

1 Introduction

Reading comprehension (RC) is “the process of simultane-
ously extracting and constructing meaning through interac-
tion and involvement with written language” (Snow 2002).
RC tasks require understanding natural language texts and
answering questions about them. In natural language pro-
cessing (NLP), they are used as a method to evaluate natural
language understanding systems. Such tasks are challenging
because they involve a variety of activities, such as corefer-
ence resolution, discourse understanding, and commonsense
reasoning.

In the development of RC systems, it is important to iden-
tify what the systems can and cannot understand. However,
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Context:
James the Turtle was always getting in trouble. One day,
James went to the grocery store and pulled all the pudding
off the shelves and ate two jars. Then he walked to the fast
food restaurant and ordered 15 bags of fries.

Q1: What is the name of the trouble making turtle?
A) Pudding, B) Jane, *C) James, D) Fries
Q2: Where did James go after he went to the grocery store?
A) His freezer, *B) A fast food restaurant, C) His room, D)
His desk

Figure 1: An example of reading comprehension tasks ex-
cerpted from MCTest (Richardson et al., 2013) with the an-
swers (∗).

a critical problem in this regard is that the process of natu-
ral language understanding is so complicated that it is dif-
ficult to examine the performance of RC systems based on
the results of tasks. Neural systems, in particular, are liable
to strengthen this trend due to their black-box architectures.
Therefore, an effective methodology is necessary to analyze
the performance of RC systems for their development.

Consider the example of the questions shown in Figure 2.
To solve Q1, an RC system must identify apposition (James
is the Turtle) and recognize James as a name. Similarly, Q2
requires an understanding of temporal relations among the
events (went to the grocery store → walked to the fast food
restaurant), and the understanding that the verb (walk to
means go to). These instances show that different types of
skills are required in RC tasks.

In this study, our goal is to establish a general methodol-
ogy to assess the performance of RC systems. Our method-
ology involves decomposing the capability of RC and ana-
lyzing its performance from multiple points of view. This is
in stark contrast to simple accuracy-based analysis, the ap-
proach used to assess systems at present. Our methodology
consists of the following three steps:

1. Define a set of basic prerequisite skills required to under-
stand documents.

2. Annotate questions for an RC task using the defined skills.
3. Analyze the performance of RC systems on annotated

questions to understand the differences among systems
and the limitations of each.

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

3089



We first define a set of basic skills in Section 3. Then,
in order to exemplify our methodology, we annotate two
datasets (MC160 and MC500) of the Machine Compre-
hension Test (MCTest) (Richardson, Burges, and Renshaw
2013). Section 4 describes the datasets and the annotation
scheme. The results of the annotation are presented in Sec-
tion 5. This section also contains an analysis of the per-
formance of RC systems based on a set of the skills. We
analyze four systems proposed by Richardson, Burges, and
Renshaw (2013), Smith et al. (2015), and Yin, Ebert, and
Schütze (2016). Finally, Sections 6 and 7 provide a discus-
sion of the results and our conclusions for future research in
this area.

Our contributions are threefold1:

1. We propose a set of prerequisite skills for RC. It provides
an in-depth overview of RC and enables comprehensive
analysis.

2. We annotate an RC task using these skills, which enables
us to understand the characteristics of the task. This not
only highlights the differences among RC tasks already
proposed, but also helps us plan and design new tasks.

3. We analyze the performance of RC systems, including a
neural system, and compare them from multiple aspects
using the annotation. This helps us understand how well
RC systems work for the task, and provides insight into
directions of research to pursue further.

2 Related Work

Existing Tasks for Natural Language
Understanding

Existing tasks on natural language understanding are cate-
gorized into two groups. The first group focuses on specific
abilities; examples include Recognizing Textual Entailment
(RTE) (Dagan, Glickman, and Magnini 2006) for textual
entailment, the CoNLL 2012 shared task (CoNLL2012st)
(Pradhan et al. 2012) for coreference resolution, Choice
of Plausible Alternatives (COPA) (Roemmele, Bejan, and
Gordon 2011), the Winograd Schema Challenge (WSC)
(Levesque, Davis, and Morgenstern 2011) for common-
sense reasoning, the Aristo Challenge (Clark 2015) for
elementary-level science and mathematics, and Shallow Dis-
course Parsing (SDP) (CoNLL 2015 shared task) (Xue et al.
2015) for discourse relations. For some of these tasks, high-
performance models have been already proposed. However,
they are mostly designed as both domain-dependent and
task-specific methods, which prevents their extension to
other tasks.

The second group focuses on synthetic understanding of
documents, reading comprehension (RC), which was initi-
ated by Hirschman et al. (1999). One type of RC tasks is
the Cloze test. For instance, the DeepMind Q&A Dataset
(DMQA) (Hermann et al. 2015) and the Children’s Book
Test (CBT) (Hill et al. 2016) involve filling in the blanks

1The preliminary results of this study were presented in the ex-
tended abstract at Uphill Battles in Language Processing Workshop
(Sugawara and Aizawa 2016).

in a summary or explanatory sentences, where the cor-
rect answer appears in the contextual document. For these
tasks, neural network-based methods (e.g., Chen, Bolton,
and Manning (2016) in the DMQA task) have been reported
to achieve good results. More recently, Paperno et al. (2016)
proposed the LAMBADA dataset that requires contextual
understanding, but excludes questions that can be solved us-
ing n-gram language models.

Another type of RC tasks involves answering multiple-
choice questions or extracting a word sequence (a text span)
in passages. For example, the Machine Comprehension Test
(MCTest) (Richardson, Burges, and Renshaw 2013), Pro-
cessBank Berant et al. (2014) and Question Answering for
Machine Reading Evaluation (QA4MRE) (Sutcliffe et al.
2013) are multiple-choice question-based tasks. Moreover,
Rajpurkar et al. (2016) proposed SQuAD, an RC dataset
consisting of more than 100,000 questions, where the task
was to extract the correct word sequence of documents cu-
rated from Wikipedia.

Several methods have been proposed for these tasks. Their
performance, however, is still suboptimal: e.g., Trischler et
al. (2016) yielded an accuracy of 77.5% on MCTest, which
was poor in comparison with human performance (>95%).
This is because in this style, systems need to first understand
the content of questions, and gather clues to choose the cor-
rect option (or the correct word sequence). This operation
is more difficult than the Cloze test, which simply requires
filling in blanks.

Analytic Approaches to Reading Comprehension

One of the most important aspects of the RC tasks listed
above is the difficulty in identifying the reason why models
cannot generate correct answers to questions. RC involves
various operations, such as coreference resolution, under-
standing discourse relations, commonsense reasoning, and
so on. However, existing tasks are not sufficiently simplified
to separately assess the performance of the process.

Here, we review existing research contributing to the con-
struction of an analytic evaluation methodology for RC.

Smith et al. (2015) proposed a system that can deal with
wh- question types as well as their contents: negation, tem-
poral relation, numbers, narratives of stories, and quantifiers.
They found questions with rules that matched certain words
pertaining to their respective types, and analyzed the results
based on these rules. This approach seems to be effective for
upgrading RC systems. We generalize the concept of ques-
tion types based on skills required in natural language un-
derstanding: from a syntactic view to a semantic view.

With regard to other RC tasks, Rajpurkar et al. (2016), for
instance, analyzed their dataset using several types of rea-
soning, e.g., lexical variation, syntactic variation, and multi-
ple sentence reasoning. Although the purpose of their analy-
sis was similar to that of ours here, the reasoning types they
listed were too coarse to analyze reasoning performance for
multiple sentences. In order to assess the contextual under-
standing required for RC, the method of evaluation should
be able to analyze the performance of such reasoning from
multiple points of view.
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RC skills Descriptions or examples Major tasks

List/Enumeration Tracking, retaining, and list/enumeration of entities or states bAbI
Mathematical operations Four arithmetic operations and geometric comprehension Aristo
Coreference resolution Detection and resolution of coreference CoNLL2012st
Logical reasoning Induction, deduction, conditional statement, and quantifier Aristo, FraCaS
Analogy Trope in figures of speech, e.g., metaphor -
Spatiotemporal relations∗ Spatial and/or temporal relations of events SDP, bAbI
Causal relations∗ Relations of events expressed by why, because, the reason for, and so on COPA, SDP
Commonsense reasoning Taxonomic knowledge, qualitative knowledge, action, and event changes COPA, WSC

Schematic/Rhetorical clause relations∗ Coordination or subordination of clauses in a sentence SDP
Special sentence structure∗ Scheme in figures of speech, constructions, and punctuation marks in a sentence -

Table 1: Reading comprehension skills, their descriptions, and major tasks to which each skill pertains (from Section 2 and 3).
The asterisks (∗) with items represent “understanding of.”

Sammons, Vydiswaran, and Roth (2010) proposed a
methodology for robust development to recognize textual
entailment. LoBue and Yates (2011) followed this and clas-
sified types of commonsense knowledge. These analytic
methodologies are also available for RC, and not only for
textual entailment.

Furthermore, our approach is partly inspired by the bAbI
tasks (Weston et al. 2015). These tasks consist of simplified
questions that test natural language understanding according
to 20 skills, such as recognizing relations among sentences,
counting objects, and temporal reasoning. Unfortunately, the
dataset of bAbI has poor vocabulary and minor grammatical
elements; hence, there is room for improvement. Nonethe-
less, we think that Weston et al. (2015)’s idea of using pre-
requisite skills is promising, that is, useful for analyzing the
capability of natural language understanding. In this study,
we adopt their idea, not in terms of the task formulation, but
annotations of tasks and analyses of systems.

3 Reading Comprehension Skills

We investigate prevalent tasks for natural language under-
standing and define a set of prerequisite basic skills. Here-
after, we refer to these skills as reading comprehension
skills (RC skills), as shown in the first column of Table 1.

In this study, we define RC skills as abilities to understand
the relations among multiple clauses2. Here, we assume that
when RC systems use an RC skill, they already have the ca-
pability to recognize the facts described in the clauses that
are related to the skill. This assumption is derived from the
observation that reading comprehension is composed of two
steps: understanding the content of each clause in the target
passage, and combining content. We also assume that sys-
tems already understand semantic roles in a clause.

For example, the skill of understanding temporal relations
between events implicitly requires the recognition of expres-
sions such as conjunctions (when, as, since, ...), time index-
icals (morning, evening, ...), and tense and aspects (went, is
going, will go, ...). When these expressions have a relation
with another clause, this skill is required.

2More precisely, we assume that a clause has a subject-verb
pair, and represents a certain event or state.

We define the following 10 RC skills:
List/Enumeration target tracking, retention, and

list/enumeration of multiple entities, states, and facts at
the same time. This skill implicitly requires memorizing
or storing objects and recalling them. For another task
concerning with tracing entities, see Lists/sets tasks in the
bAbI tasks (Weston et al. 2015).

Mathematical operations consist of four arithmetic op-
erations, more advanced mathematics, and geometric com-
prehension as in Clark, Harrison, and Balasubramanian
(2013) and Clark (2015)3.

Coreference resolution is the detection and resolution of
all possible demonstratives, i.e., reference terms that have
a relation with another word/phrase in the given context.
For task formulation and configuration of coreference res-
olution, see Pradhan et al. (2011).

Logical reasoning is defined for the derivation of new
facts from relations between statements in the given context
(including defeasible reasoning). We do not doubt that other
relational skills include some kind of logical reasoning. For
example, the transitive rule is necessary to understand the
relations among three timepoints (if both X occurred after
Y and Y occurred after Z, X occurred after Z). For clarifi-
cation, however, we exclude such simple cases, and we fo-
cus on reasoning involving induction, deduction, conditional
statements, and quantifiers as in Cooper et al. (1994).

Analogy focuses on the recognition of linguistic expres-
sions corresponding to a cognitive process of transferring
information or meaning from a particular fact to another,
e.g., simile and metaphor. Considering that skills for under-
standing figures of speech are necessary for reading, we take
two factors into account: “trope” and “scheme,” the latter of
which is the last skill in our list.

Spatiotemporal relations involve the skill to understand
spatial or temporal relations among facts in the given con-
text, e.g., a time series of events, locations, and any expres-

3In our definition, a list/enumeration without mathematical op-
erations is possible. An enumeration requires incremental “calls”
of natural numbers (“one,” “two,” “three,” ...). This is easier than
calculation that uses operations on multiple numbers. Therefore,
we define such operations as an independent skill.
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sion related to them (before, after, in front of, ...). To see
simplified tasks in this context, refer to Time reasoning and
Positional reasoning in the bAbI tasks.

Causal relations involve the skill to understand causal
relations. We suppose that this skill is needed only if sys-
tems need to recognize expressions corresponding to causal-
ity, e.g., why, because, and the reason for.

Commonsense reasoning is performed using taxonomic
knowledge, qualitative knowledge, action, and event change,
which we adopt from Davis and Marcus (2015). Moreover,
we add arbitrary knowledge to the scope of this skill, except
grammatical knowledge and basic vocabulary pertaining to
other skills.

Schematic/Rhetorical clause relations target the under-
standing of relations among schematic or rhetorical clauses
in a sentence, e.g., coordinating or subordinating clauses in-
troduced by conjunctions such as and, or, that, and although.
As listed above, we handle the understanding of conditional,
spatiotemporal, and causal clauses as independent skills that
can be regarded as holding the content themselves.

Special sentence structure is required to recognize lin-
guistic symbols or structures in sentences and introduce their
interpretation as a new fact. As explained above, this skill
is intended for the understanding of “scheme” in figures of
speech, which changes the normal arrangement of words
in the structure of a sentence, e.g., apposition, ellipsis, and
transposition. This skill also targets linguistic constructions
(“the more ..., the more”, ...) and punctuation marks (“;”,
“—”, the quotation itself, ...) in reference to Huddleston and
Pullum (2002).

Note that the last two skills are exceptional: they are re-
quired in a single sentence, while the first eight skills mainly
target relations among sentences. Moreover, the skill of rec-
ognizing textual entailment (TE) is not listed because we
assume that TE involves a broad range of knowledge and in-
ferences, and is therefore a generic task itself (Dagan, Glick-
man, and Magnini 2006).

4 Annotation of Reading Comprehension

Task

Dataset Description

MCTest (Richardson, Burges, and Renshaw 2013) is a read-
ing comprehension task that requires open-domain under-
standing of stories with small vocabulary limited to what
young children would understand (approximately 8,000
words). The task is multiple choice, and candidates for an-
swers do not necessarily appear in the context. It consists
of fictional stories (approximately 200 words long on aver-
age) with four questions per story. Each question relates to
the content of the story. MCTest has two datasets: MC160
and MC500, with 160 and 500 stories, and 640 and 2,000
questions, respectively. The datasets of MCTest are smaller
than those of other existing tasks; this is a problem for ma-
chine learning. On the contrary, MCTest is a high-quality
task from the viewpoint of testing natural language under-
standing.

We chose MCTest for annotation for three reasons. The
first is that MCTest is a multiple-choice task: expressions of

ID: MC160.dev.1 (3) one:
C1: Sally had a very exciting summer vacation.
C2: She went to summer camp for the first time.
C3: Sally’s favorite activity was walking in the woods because

she enjoyed nature.
Q: Why does Sally like walking in the woods?
A: She likes nature.

Coreference resolution:
· she in C3 = Sally in C3

Causal relation:
· she enjoyed nature in C3 → Sally’s favorite
activity was walking in the woods in C3

Commonsense reasoning:
· Sally’s favorite activity was walking ... in C3
⇒ Sally likes walking in the woods ... in Q
· enjoyed nature in C3 ⇒ likes nature in A

ID: MC500.dev.36 (1) one:
C1: Shelly is in second grade.
C2: She is a new student at her school.
C3: Her new teacher, Mrs. Borden, makes her stand in front of

the class and say something about herself.
Q: Who is Shelly’s second grade teacher?
A: Mrs. Borden

Coreference resolution:
· Shelly in C1 = she in C2 = her in C3

Temporal relation:
· Shelly is in second grade in C1
→ Shelly’s second grade ... in Q

Schematic/Rhetorical clause relations:
· C3 = ... makes her stand ... and ... [makes her] say ...

Special sentence structure (apposition):
· Her new teacher = Mrs. Borden C3

Figure 2: Examples of task sentences and annotations with
comments for verification (itemized).

answers have no limitation, that is, any words, phrases, and
sentences are permitted; they need not actually appear in the
context. This means that MCTest may require a wide range
of skills. The second reason is that datasets of MCTest con-
sist of elementary-level passages and questions: they seem
to be easy for comprehension, and not difficult to annotate.
The third reason for using MCTest is that every question on
MCTest is annotated with one label, multiple or one, that re-
veals whether the question requires understanding multiple
sentences or a single sentence. We can compare the results
of our annotation with those labels for verification4.

Annotation Specification

We asked two annotators to annotate questions in the devel-
opment sets of both MC160 and MC500 (30 and 50 stories,
120 and 200 questions, respectively) with RC skills required
to answer each question by allowing multiple labeling. The

4We have made our annotation results publicly available
(http://www-al.nii.ac.jp/mctest-rcskills-annot/).
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inter-annotator agreement was 85.0% for eight stories (32
questions) that we randomly sampled.

Since RC skills are intended for understanding relations
among clauses, the annotators were asked to exclude sen-
tences with no relations with others and required only simple
rules to answer, e.g., mc160.dev.2 (3) Context: Todd lived in
a town outside the city. Q: Where does Todd live? A: In a
town. These questions were considered to require no skill.

For combinations of multiple skills, consider the next toy
example sharing the same context (C):

C: The name of John’s sister is Sylvia. John was annoyed
because his sister ate his cake.

1. Q: Why was John annoyed? A: Because his sister ate his
cake. Required skill: causal relation

2. Q: Why was John irritated? A: Because his sister ate his
cake. Required skills: causal relation, commonsense rea-
soning (annoyed = irritated)

3. Q: Why was John irritated? A: Because Sylvia ate his
cake. Required skills: causal relation, commonsense rea-
soning (annoyed = irritated, The name of John’s sister is
Sylvia. = Sylvia is John’s sister.), coreference resolution
(his sister = John’s sister)

In the first example, the question is why John was an-
noyed. The reason is described in the context. Thus, one
skill is required to the question: causal relation. In the sec-
ond example, the word annoyed is paraphrased to irritated.
To bridge this change, a system must be able to exercise
common sense about the meanings of words. Thus, com-
monsense reasoning is listed as a required skill. In the last
example, his sister in the answer is changed to Sylvia. To de-
termine whether these two expressions have identical refer-
ents, a system must be able to exercise common sense about
proper names and resolve coreference; three skills are finally
listed. More concrete examples appearing in the annotation
are shown in Figure 2.

5 Annotation Results and System Analysis

Annotation Results

We first considered compatibility between the original
MCTest annotation and our annotation. Note that the defi-
nition of RC skills targets relations among multiple clauses,
whereas the original annotation caters to multiple sen-
tences. In order to compare our annotation with the original
one, we temporarily regarded only questions that required
schematic/rhetorical clause relations and special sentence
structure5 as ones that required no skill. Considering also
that, in our definition, questions labeled with one often re-
quired some RC skill (e.g., commonsense reasoning), we es-
timated consistency by checking the percentage of the ques-
tions with multiple and no RC skills, which were not de-
sirable by definition. Therefore, the smaller this ratio, the

5More precisely, we checked whether there was a question that
required only one of the last five skills in Table 1, and we regard
those questions as ones requiring single sentence understanding
(one). Nonetheless, we found two of such questions (mc500.dev.9
(2), mc500.dev.48 (1)) with multiple in the original annotation.

Baseline Smith Smith Yin
#RC skills Freq. SW+D No RTE RTE ABCNN

0 10.3 57.6 72.7 75.8 54.5
1 28.4 52.7 67.6 67.9 47.3
2 28.4 51.6 66.5 64.8 50.5
3 23.8 47.4 67.1 69.1 46.1
4 8.1 46.2 52.2 44.6 42.3
5 0.9 33.3 41.7 33.3 33.3

Table 2: Frequencies and accuracies (%) for required num-
bers of RC skills for each question in the development sets
of MC160 and MC500 (320 questions).

Baseline Smith Smith Yin
RC skills Freq. SW+D No RTE RTE ABCNN

List/Enumeration 14.7 51.1 65.1 61.9 40.4
Mathematical ops. 1.6 20.0 30.0 35.0 60.0
Coreference res. 63.8 52.5 63.6 62.1 48.0
Logical rsng. 0.9 100.0 75.0 66.7 33.3
Analogy 0.3 0.0 100.0 100.0 0.0
Spatiotemporal rels. 27.5 48.9 66.9 67.1 45.5
Causal rels. 14.4 45.7 62.0 60.9 52.2
Commonsense rsng. 41.9 44.0 61.3 59.6 44.8
S/R clause rels. 20.6 50.0 65.9 64.0 48.5
Special sentence stru. 8.1 46.2 69.2 73.1 46.2

Accuracy - 50.9 66.2 65.9 48.1

Table 3: Frequencies and accuracies (%) for RC skills in the
development sets of MC160 and MC500 (320 questions).
“S/R” is an abbreviation for “Schematic/Rhetorical.”

more consistent the two annotations. The result was that the
percentage of such questions was only 3.4% (11/320). This
shows that our annotation agreed well with the original one.

In Table 2, we report a more concrete distribution for
the number of skills required for each question. From this,
we can observe two important points. First, 89.7% of the
MCTest questions required at least one skill. This simply in-
dicated that questions of MCTest usually involve multiple
clauses. This feature is useful for evaluating the quality of
existing RC tasks or constructing a new RC task in terms
of contextual understanding, rather than question answering
through simple sentences. Second, 61.3% of the questions
required multiple RC skills (avg. 1.94). This explains the
complexity of RC systems often need to take several factors
into account for comprehension.

Table 3 shows the frequency of each RC skill. Coreference
resolution and commonsense reasoning were more often re-
quired than others; we can conclude that in the first place
systems proposed for MCTest should be readied for these
skills. The third most frequent RC skill was spatiotemporal
relations, which might have been because MCTest contains
stories of vacations, animals, school, and so forth. We found
few questions that required mathematical operations, logi-
cal reasoning, and analogy because MCTest gauges reading
comprehension for children.

In this way, the characteristics of the dataset were clarified
through the proposed set of skills. Based on such analysis
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of the dataset, we can plan the direction of development of
RC systems, e.g., developers can make it more efficient to
improve their systems if they concentrate on skills that the
dataset especially requires, and at which their system is not
adept.

System Analysis

We analyzed the performance of four systems based on the
annotation results. The first (Baseline SW+D) is Richard-
son, Burges, and Renshaw (2013)’s baseline system that uses
a sliding window and a word distance algorithm. The sec-
ond (Smith No RTE) was proposed by Smith et al. (2015).
This system is provided with a lexical matching method
that uses stemming and takes into account both the type of
question (wh-words) and coreference resolution. The third
(Smith RTE) is an extension of the second that recog-
nizes textual entailment (RTE) (Stern and Dagan 2011). We
chose Smith’s systems because they inherit the baseline al-
gorithm. Thus, we expected that the differences among the
systems would be directly reflected in performance. The
last (Yin ABCNN) is a hierarchical attention-based convolu-
tional neural network (HABCNN-TE) that answers a ques-
tion as textual entailment without any linguistic feature (Yin,
Ebert, and Schütze 2016). It should be noted that the perfor-
mance of the system we report in this paper is incompatible
with the one of the original paper (Yin, Ebert, and Schütze
2016): this might be contributed to the difference of the data
used for the evaluation (test vs. development). Also, we used
the following hyperparameters: the learning rate (lr) was
0.03, the constant in loss function (α) was 0.19, and the
other variables were the same as in the original system. It
was intended for an analysis of its performance rather than
measurement. In the following, we analyze the performance
of these systems.

Four systems: The accuracy values of the systems for
each skill are shown in Table 2. The first three systems
achieved higher accuracies (than the average) for each ques-
tion that required no skill and one skill. By contrast, for four
and five skills, all systems yielded lower accuracy values.
This indicates that systems are not good at reasoning with
multiple sentences that have complex relations. Moreover,
in all systems, the accuracy values for coreference resolu-
tion and commonsense reasoning were generally lower than
total accuracy (Table 3). This result also indicates that sys-
tems need to be able to accommodate these two skills, as in
the analysis of the datasets above.

Baseline SW+D vs. Smith No RTE: As shown in Ta-
bles 2 and 3, almost all accuracy values improved from the
baseline. As mentioned above, however, the accuracy val-
ues for coreference resolution and commonsense reasoning
were lower than the average. For further analysis, we inves-
tigated the accuracy values for these two skills when each
appeared alone or together with other skills (Table 4). This
result had two important implications. The first was that the
skill of coreference resolution improved when it appeared by
itself. This indicates that a method for coreference resolution
worked effectively in Smith No RTE. The second was that
the skill of commonsense reasoning did not improve when
it appeared by itself, though the total accuracy for this skill

Coreference
resolution

Commonsense
reasoning

System
single
(47)

multiple
(157)

single
(20)

multiple
(114)

Baseline SW+D 59.6 50.3 60.0 41.2
Smith No RTE 66.0 63.0 60.0 61.5

Yin ABCNN 46.8 48.4 45.0 44.7

Table 4: Accuracies (%) for coreference resolution and com-
monsense reasoning when each skill appeared alone (“sin-
gle”) or together with other skills (“multiple”). Numbers
with “single” and “multiple” show occurrences in the de-
velopment sets of MC160 and MC500 (320 questions).

improved (from 44.0% to 61.3%). This might be obvious,
given that the latter system did not accommodate common-
sense reasoning.

Smith No RTE vs. Smith RTE: Unfortunately we could
not observe that, at least in the development sets, adding
RTE significantly increased accuracy (Tables 2 and 3).
Nonetheless, we noticed that accuracy for questions requir-
ing no skill improved compared to other questions. We think
this result is because RTE is suitable for reasoning regarding
a relation between two sentences, a hypothesis made from
both a question and its candidate answer, and context sen-
tence (which requires no skill according to our definitions),
but is not suitable for questions involving multiple context
sentences (which required one or more skills).

Baseline SW+D vs. Yin ABCNN: The attention-based
CNN could not achieve superior accuracy results to the other
systems. Nevertheless, it should be emphasized that the re-
sult of this neural system was comparable with the baseline,
despite the fact that this system did not leverage any linguis-
tic feature. Specifically, the accuracies of two skills (corefer-
ence resolution and commonsense reasoning) appeared with
other skills (“multiple” in Table 4) were competitive toward
the results of the baseline. Moreover, “single” and “multi-
ple” indicated very similar scores; we can conjecture that
this reflected the architecture of ABCNN: that is, jointly
computing attentions for multiple sentences in the context.

6 Discussion

In this section, we discuss issues concerning our annotation
and explore directions for future research.

Analogy

At least in MCTest, we found few questions that required
the skill of analogy. We think this was the case because
there was a certain vagueness in the distinction of com-
monsense reasoning and analogy in our annotation: for ex-
ample, as in the definition of commonsense reasoning, we
simply regarded the relation between enjoy nature and like
nature (Figure 2) as paraphrased in commonsense knowl-
edge. However, this paraphrase seems to contain the un-
derstanding of metonymy. It follows that analogy requires
more consideration of its definition (metonymy, synecdoche,
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metaphor, and so forth) and concrete examples in the anno-
tation guideline.

As for analogy, LoBue and Yates (2011) defined synec-
doche as an individual category of commonsense knowl-
edge. Considering this classification, we will refine the defi-
nition of analogy.

Topical Understanding

Some questions require understanding a topic of each story
as background knowledge. See mc500.dev.44 (3):

C: Jake [...] was playing baseball every day. The more he
played, the better he got.
Q: How did Jake get so good at baseball?
A: He played a lot.

This task requires understanding the topic, playing base-
ball, because the second sentence does not directly describe
that Jake improved at baseball. This problem is not simply
solved by coreference resolution. Systems must know previ-
ous sentences as background topics and interpret a new sen-
tence using them. Such an inference is similar to bridging
(Asher and Lascarides 2003), which is implicitly performed
using some commonsense knowledge.

Commonsense Reasoning

In the annotation, we recognized that the skill of common-
sense reasoning covered a wide range of areas of knowledge;
thus, it was difficult to analyze sentences that required com-
monsense reasoning.

Commonsense reasoning in our classification included all
processes of reasoning involving a certain kind of knowl-
edge. Therefore, we also had to consider difference between
commonsense and domain-specific knowledge, such as is re-
quired in elementary science tests, say Clark, Harrison, and
Balasubramanian (2013).

We will therefore refine the categorization of common-
sense according to discussions by LoBue and Yates (2011),
Schubert (2015) and Davis and Marcus (2015), among oth-
ers.

Story Narratives

As Smith et al. (2015) indicated, some questions in MCTest
require variation in perspective at the level of narrative. Cer-
tain questions require understanding meta-level information
(e.g., Who are the principal characters of the story?) con-
cerning the story’s narrative, whereas ordinary questions re-
late to the information concerning individual events or situ-
ations in the story. For such narrative questions, the systems
must understand the contents of the story and recognize that
they are actually “reading” that story, from meta-viewpoints.

Use and Development of Our Methodology

We have made our annotated skill labels and an annota-
tion guideline publicly available so that they can be easily
used by other researchers. If RC tasks are provided with our
RC skills, they will help other researchers understand the
characteristics of datasets, develop systems to tackle those
datasets, and analyze errors. Specifically, we recognize that

the major problem with neural systems is their reproducibil-
ity. When researchers of neural systems make use of anno-
tated datasets, it encourages the understanding of the internal
architectures of systems.

A problem with our current methodology is that an anno-
tation incurs cost and requires annotators to understand the
definitions of skills. Therefore, we should build a method
that realizes smooth and easy annotations. One such meth-
ods involves providing yes/no questions that help annota-
tors decide one among mutually involved skills: for exam-
ple, between analogy and commonsense knowledge. For this
method, we may have to establish exclusive subclasses for
commonsense knowledge and other related areas.

7 Conclusion and Future Work

In this paper, we proposed a methodology for evaluating and
analyzing RC datasets and systems. We defined a set of pre-
requisite skills for RC, and annotated an existing task with
these skills. Based on the annotation, we were able to an-
alyze the characteristics of an RC task and the difference
among existing systems in terms of performance from multi-
ple aspects. We concluded that the defined skills are promis-
ing for the decomposition and analysis of RC.

We believe that our methodology is general, and hence
can be applied to other formulations of RC tasks. Although
existing tasks are mostly Cloze or multiple choice, Clark and
Etzioni (2016) discussed the importance of the ability to “ex-
plain” a fact. They also mentioned the ability to understand
a diagram and a figure as context. Such task formulation is
more difficult than existing ones. However, analyzing sys-
tems with a steady methodology like ours can help promote
improvement.

For future work, we plan to build a framework to con-
struct simple tasks that can generally be used for unit testing
for reading comprehension. The idea of this framework is
inspired by Weston et al. (2015). We will modify the formu-
lation of bAbI tasks, create new tasks based on the RC skills,
and apply these tasks to existing systems.
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