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Abstract

More and more users prefer to ask their technical questions
online. For machines, understanding a question is nontriv-
ial. Current approaches lack explicit background knowledge.
In this paper, we introduce a novel technical question un-
derstanding approach to recommending probable solutions to
users. First, a knowledge graph is constructed which contains
abundant technical information, and an augmented knowl-
edge graph is built on the basis of the knowledge graph, to
link the knowledge graph and documents. Then we develop
a light weight question driven mechanism to select candidate
documents. To improve the online performance, we propose
an index-based random walk to support the online search. We
use comprehensive experiments to evaluate the effectiveness
of our approach on a large scale of real-world query logs.
Our system outperforms main-stream search engine and the
state-of-art information retrieval methods. Meanwhile, exten-
sive experiments confirm the efficiency of our index-based
online search mechanism.

Introduction

An emerging trend is the growth need to ask questions on-
line. It has become a popular part of Web search services on
main-stream search engines. Some promising intelligent as-
sistants on mobile devices, such as Siri and Cortana, provide
similar question answering services. In this paper, we focus
on answering “technical questions”. Given a large technical
corpus (such as HELP documents) and a natural language
question, our goal is to return some relevant documents with
regard to the technical question. For example, users usu-
ally confront some technical problems when using Microsoft
products, such as “how to uninstall office” and “how can I
check the edition and version of the SQL server”. They post
their questions on search engines or technical forums. Then,
search engines or experts will recommend relevant technical
documents to them. However, results from search engines
usually turn out to have low accuracy and experts cannot
reply immediately. Taking these circumstances into consid-
eration, if we can improve the precision of search results on

*This work was partially done when Shuo visited MSRA.
TZhongyuan is currently with Facebook Inc. at Menlo Park,
USA. His email is zhy @fb.com.
Copyright (© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

3111

the search engines, it will provide convenience not only for
users but also for companies that provide technical supports.
However, understanding technical questions is not trivial for
machines. There are several inherent challenges posed:

1. Lack of background knowledge
It is difficult for machines to understand a question for
which they lack the technical knowledge required. For
example, if we don’t know that the “outbox” is the place
that stores emails users have sent, when a question “sent
e-mails disappear when using Outlook” comes, machines
cannot recognize it as an error about outbox in Outlook.

2. Hard to understand query intention
We cannot understand the query intention according to
surface meaning of the words. For example, question
“unable to view security event logs” asks for the “ac-
cess control” rules of the security event logs. i.e. “view”
means “access” or “permission” rather than “see”.

Traditional information retrieval methods only focus on key-
words appearing in a question, which cannot really un-
derstand user query intentions. To understand a question,
humans usually resort to their knowledge in the technical
area. For example, when one tries to understand the ques-
tion “some specific custom forms get stuck in outbox when
users send it”, she will first focuses on the “custom form”,
“outbox” and words describing phenomena like “stuck” and
“send”. She also knows that “custom form” and “outbox”
are components of “Outlook”, a mailbox product. Then she
deduces that the question is about an error of Outlook.

As shown by the analysis above, the background knowl-
edge plays a critical role in understanding questions for hu-
mans. Intuitively, we need a background knowledge base for
machines to understand user technical questions. Many ex-
isting knowledge bases are about lexical knowledge or about
open domain facts. A typical example of the former is Word-
Net (Miller 1995), a lexical knowledge base for the English
language. The latter examples focus on general knowledge
(Auer et al. 2007; Suchanek, Kasneci, and Weikum 2007,
Wau et al. 2012). In this paper, we build a large scale tech-
nique knowledge base covering the full series of Microsoft
products. To improve the precision of answering techni-
cal questions, we propose a novel two-step framework—
candidates selection and re-ranking. In the first step, a light
weight question-driven method is applied to candidate doc-



uments selection. The first step has a good performance in
time and the results of it is low in precision but high in
recall. Therefore, we can apply it to select the candidates
and re-rank the top-k results in the next step. In the second
step, we re-rank the candidate documents based on the tech-
nique knowledge graph that is built offline. Due to the large
size of the knowledge graph, we propose a novel index that
speeds up online query processing. Generally speaking, our
method outperforms the state-of-the-arts by 5%-15% in ac-
curacy and also achieves the real time query response times
in answering technical questions.

Hierarchical Technical Knowledge Graph

As mentioned earlier, none of existing knowledge graph
are designed for technical question answering. Therefore,
we study how to build a technical knowledge graph by mak-
ing use of technical corpus.

Graph Definition

A technical question usually consists of 3 parts: prod-
uct, component and event words, even though some are not
explicitly stated (In fact, more than 90% questions satisfy
our assumption). Generally speaking, it has four levels:
category, product, component and event. Each node of the
knowledge graph belongs to one level.

1. Category Level: A node in this level denotes a category,
which is a group of some products sharing the same or
similar functions. A category also can be a sub-category
of another one.

2. Product Level: This level contains all products and at-
tributes of products, which are essential in our techni-
cal knowledge graph. Each node in this level represents
a product or an attribute value. We pre-define three at-
tributes with regard to products: version, language and
environment.

3. Component Level: More specifically, an error usually
belongs to a component of a product. Thus, a node in this
level corresponds to a component.

4. Event Level: When products and components are iden-
tified, the essence of answering users’ questions is to un-
derstand “error phenomena”.

A sample of a knowledge graph is shown in Figure 1.

Knowledge Graph Building

We are to build a knowledge graph based on the technical
corpus. We describe the detailed approaches in each level.
Category & Product Level

We extract categories and products from product infor-
mation. There are 6052 products and they are grouped into
214 categories in our knowledge graph. We also identify the
attributes of each product based on rules. For example, “Of-
fice Pro Win32 IT” represents this product is “office” and
its version is “Professional”, language is “Italian” and it is
installed on the “32bit Operating System”.

Component Level

We propose to build component levels automatically

based on the technical corpus and users query logs. First, we
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Figure 1: A sample of knowledge graph

Event Level

extract some frequent technical noun phrases by using the
sequence labelling method (Lafferty, McCallum, and Pereira
2001), which are regarded as the components in technical
domain. These extracted noun phrases are added to the set
of component nodes in this level. Then we extract “Com-
ponentOf” relations based on co-occurrence of components
and products in the technical corpus. Specifically, consider-
ing a component ¢ and a product p. Pointwise Mutual In-
formation (PMI) (Manning and Schiitze 1999) is a common
measure of the strength of association between two terms,
we define that ¢ is a component of p if PM (¢, p) is larger
than a threshold «, where PMI is define as:

_ P(c,p)
PMI(c,p) = lOgiP(c)P(p) (1)
where P(c), P(p) and P(c,p) are calculated by:
_ _#() _ _#( o) = D)
P(C) - #(sen) P(p) - #(sen) P( vp) #(Sen) (2)

#(c) (#(p)) represents the number of sentences contain-
ing component words ¢ (product words p), while #(c, p)
represents the number of sentences containing both ¢ and
p. #(sen) denotes all sentences in the corpus.

Event Level There are two kinds of edges in this level:
“EventWordOf” and “RelatedTo”. We discuss them sepa-
rately. We adopt a similar solution with extracting “Compo-
nentOf” to find “EventWordOf” relations between products
(or components) with event words. Users often use verbs,
adjectives and nouns to describe error phenomena. Given a
large technical corpus, we expect to exact the relations be-
tween components (or products) and events from these sen-
tences. Then all verbs, adjectives and nouns in these sen-
tences are identified as candidate event words. For exam-
ple, “cannot forward email in Outlook™ contains the prod-
uct “Outlook™ and verbs “forward” and noun “email”’, where
“forward” and “email” are regarded as event words. We also
use PMI to extract event words with regard to some compo-
nent or product. We only keep the event words if their PMI
values are larger than a threshold. Secondly, we want to con-
nect two event words if they share similar semantic. We as-
sume that two questions are semantically similar if they can
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Figure 2: Augmented knowledge graph

be solved by the same document. Because experts usually
answer the technical questions in the forum, a document can
be regarded as a solution of a question only when its URL
appear in the same page of the question. These question-
document pairs are high in precision as they are manually
labeled. For example, the technical document dy can solve
three questions {¢2, g9, q15 }, Where

L. go: Outlook 2007 gets frozen.
II. g9: Outlook sending status remains for hours.
III. ¢15: Emails get stuck in outbox.

ELINY3

So it is assumed that event words “frozen”, “remain” and
“stuck” are similar in semantics, and “RelatedTo” edges are
added between each other. The key advantage of this ap-
proach is addressing the “data-sparsity” issue. The word
“frozen” is infrequent in the data set, so when it appears
in another question, it’s probable that the target document
cannot be discovered. When these edges are added, “frozen”
will be transferred to another word like “remain” or “stuck”.

Augmented knowledge graph

Since our goal is to return some relevant technical doc-
uments with regard to user questions, we need to link the
knowledge graph that is constructed above with the techni-
cal corpus (Figure 2). We call the link result as “Augmented
knowledge graph” (“A-knowledge graph”). The relations in
the knowledge graph nodes and the corresponding docu-
ments are built based on user question logs. We collect ques-
tions from the technical forum. In the question logs, each
document solves some of questions. Specifically, for docu-
ment d, we denote QL (d) as a list of questions that can be
answered with the document d.

Edge Weight. In the knowledge space, for edges linking two
category nodes or a category node and a product node, we
define the edge weight as the same. And for the other edges,
and the weight of edge (x,y) is defined as the conditional
probability of y that given z, i.e.

#(2,y)

w(z,y) = P(ylz) = TH () 3
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where #(z, y) denotes the number of sentences contain-
ing both node z and y. To measure the weight of edges be-
tween knowledge graph nodes and document nodes, we de-
fine the w(z, d) as the appearance probability of node x:

lg € QL(d) ANz € ¢
w(z,d) = P(z|d) = QL(d)]

where the numerator is the number of questions that can
be solved by d and contain the word z. |QL(d)| is the num-
ber of questions can be solved by d.

“)

Candidate Answer Selection

As shown in Figure 2, our mechanism aims at linking a
question to the augmented knowledge graph, and then cal-
culates the relevance of the question and all the document
nodes. However, the number of nodes in the document space
is so large that re-ranking all of them is time-consuming. So
we need a lightweight approach to selecting candidate doc-
uments for a user’ question, to support the online search.

Traditional document retrieval methods only consider
similarities between questions and documents (Celikyilmaz,
Hakkani-Tur, and Tur 2010; Jeon, Croft, and Lee 2005b),
which are called the document-driven approach. However,
user questions and the corresponding technical documents
may use different wording. Therefore, in this sec tion, we
propose to employ a question-driven solution. Specifically,
we first find the similar questions in the log with regard to a
user issued question. Based on the question similarities, we
deduce the relevance between a user question with regard
to the documents. Assume there is a question log C' that is
a collection of question and document pairs. As shown in
Figure 3, document d5 solves question g004, thus, there is a
pair (q004, ds) in the log C. For a user question ¢, we find
the most similar m questions from C' based on the similarity
score(q, q;), where score(q, g;) is calculated by a traditional
information retrieval method. These selected questions g;
together with their corresponding technical documents are
denoted as Cy. Let Co = {(q(,dy), -+, (¢, dhy) ) We
assume that (g}, d;) are ranked according to score(q, ¢;) in
Cy. We compute the relevance between the user’s question
q with document d as follows:

score(q, d) = log#(d, C) x Z

(¢},d)€Co

#(d7 CO)

#(d,C) x 1

x score(q;, q)

(%)
where #(d,C) denotes the number of questions in the
question logs set C' that can be solved by d and #(d, Cy) is
analogue to #(d, C) . (¢}, d) € Cp means that d can solve
the question ¢, in Cy and score(q, ;) is ranked at i-th in
Cy. Since d may solve multiple questions in Cj, we need to
consider all of them. Meanwhile, we combine the score of
the document content and the history question log via linear
weighting, in case a new document has no logs.

Extensive experiments (in experiment part) show that the
first step have a good recall in the top-100 answers; but the
most relevant documents are usually out of the top-10 an-
swers for users’ questions. In other words, we need a so-
phisticated approach to re-rank the candidates and provide
more precise results on the document ranking. That is based
on the technical knowledge graph.
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Figure 3: Select candidates by a question-driven method

Candidates Re-ranking

Given a user’s question, we have obtained the top-k can-
didate documents. In this section, we propose a knowledge
graph-based approach to re-rank these candidates.

Candidate Documents Re-ranking

In previous sections, a light weight approach is proposed
to select candidates from a large scale of technical doc-
uments. In this section, we link user question to the A-
knowledge graph. Then a random walk based approach is
applied to calculate the similarity between user’s online
question and help documents.

Let us recall the augmented knowledge graph (A-
knowledge graph for short) in Figure 2. Given a user
question, we link it to the corresponding nodes in the A-
knowledge graph.

As we know, random walk (Pearson 1905) is an effec-
tive measure to evaluate the similarity between two nodes in
a graph. Generally speaking, if we start at a question node
and walk to another randomly, the probability we reach each
document node is regraded as the similarity between the
question and the corresponding document node. It’s defined

as:
s(z,y) = Zm/em) (T(z,2") x s(z',y))  (6)

where s(x,y) is the random walk-based similarity be-
tween nodes x and y, N(x) denotes all out neighbors of
2 and T'(x,2’) is the transfer probability from node z to
y. Here, we define the T'(x,2’) by normalizing the edge
weights.

In computing random walk-based similarity, we only
have the edges from knowledge graph nodes to document
nodes, but the reverse direction is not allowed. This is
the same for edges from query nodes to knowledge graph
nodes.

Index-based Online Search

The random walk similarity between query node g and
document d can be computed by two approaches. The first
approach is the sampling-based solution. We start at the
query node g and walk to another randomly according to
the transfer probability. Assume that we perform N random
walks starting from query node ¢ and there are r times that
the random walk ends at document d. Then, the similarity
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s(q, d) is estimated as ;. We found that the estimated value
becomes convergent when N is larger than 4 million. More
details are found in our experiment section (Figure 6(a)). It
means that it is time-consuming to employ the sampling-
based solution in online phase, since we need the real-time
response for user questions. The second approach is that
we build a linear equation group based on the random walk
definition (see Equation 6). Let us recall Figure 2. In order
to compute s(q, dy), we have the following linear equation

group.

s(g,d1) =0.25 x s(v7,dy1) 4+ 0.25 X s(vs, d1)+

0.25 x S(’Ug,dl) + 0.25 x S(Ul(), dl)
S(’Ul,dl) =0.5 x S(’Ug,dl) + 0.5 x S(’Ug,dl)
s(vz,d1) =0.5 X s(v1,d1) + 0.5 X s(vs,d1)
s(vs,d1) =0.5 X s(vi,d1) + 0.5 X s(vg, d1)
s(v4,d1) =s(vs,dr)
S(’U5,d1) =0.2 x S(’Ul,dl) + 0.1 x S(’U4,d1)+

0.3 x S(’Ug,dl) + 0.2 x S(’Ug,dl) + 0.1

s(ve,d1) =0.3 X s(vz,dy) + 0.2
s(vz,d1) =0.5 X s(vs,d1) + 0.2 X s(vg,d1) + 0.3 X s(vig,d1)
S(’Ug,dl) =0.4 x S(’U5,d1) + 0.3 x S(’Ull, dl) + 0.2
S(’Ug,dl) =0.4 x S(’Us,dl) + 0.1 x S(’U7,d1) + 0.2
S(’Ul(,,dl)io.ﬁ X S(’U7,d1) + 0.4 x S(’Ull7 dl)
s(v11,d1)=0.3 X s(vio,d1) + 0.2 X s(vs,d1) + 0.3

)

However, the time complexity for solving the linear equa-
tion group is O(n?) via Gaussian elimination method (n is
the number of unknowns). Therewith, the prohibitive com-
puting cost forbids us using the approach in online process-
ing. Obviously, the fast online computing s(g, d) is to ma-
terialize the similarities between all knowledge graph nodes
v; and all document nodes d;. The straightforward solution
leads to the expensive space cost. To provide a good trade-
off between the space cost and online response time, we pre-
calculate the similarity between some selected knowledge
graph nodes and document nodes. For example, we select
three nodes (vs, vg, v10) as the materialized nodes. Specifi-
cally, we record the similarities between vs, vg and v1g with
all document nodes at offline phase. Given the same ques-
tion ¢, the linear equation group is shrunk as follows (since
8(1)5, dl) = 07017 S(’US, dl) = 0668, S(’Ulo, dl) = 0642)



Figure 5: Path tree rooted at vy

s(q, d1)

0.25 X s(va,d1) + 0.25 X s(v7,d1) + 0.25%
0.668 + 0.25 x s(ve, d1)

0.5 X 0.701 4 0.2 X s(vg, d1) + 0.3 x 0.642
0.4 x 0.701 + 0.1 x s(vy,d1) + 0.2

s(vr,d1)
s(vg, dy)

The number of unknows in Equation 8 is 3 (11 if no ma-
terialized node), which leads to significant query perfor-
mance improvement. The format of the index of a material-
ized node x is a list of doubles, represented as: Index(x) =
s(x,dp), s(x,dy), -, s(x,dy), where m is the number of
documents.

From the analysis described above, our task is to build
indices on a set of materialized nodes X in the knowledge
graph G. The remaining setis Y = V(G)\ X, where V(G)
denotes all knowledge graph nodes. Given a set of materi-
alized nodes X, for each node y € Y, for any path starting
from y with length no shorter than [, we ensure that the path
must contain at least one materialized node x € X. Figure
5 illustrates the path tree rooted at vertex v;. The subtree
rooted at vy is surrounded by some materialized nodes (il-
lustrated in black ones). In order to compute s(v7, d;), where
d; is a document node, the number of unknowns in the equa-
tion group equals to the number of (white) nodes surrounded
by some materialized nodes (black noes) in Figure 5. Obvi-
ously, the number of unknowns (white nodes) is related to
the controlled path length [. Therefore, in order to select ma-
terialized nodes, we propose the following LPCP problem in
Definition 0.1. Unfortunately, this is a NP-hard problem.

Definition 0.1 (LPCP: [-length path cover problem). For a
given controlled path length I, the LPCP problem is to select
a set of materialized nodes X C V(G), for each simple path
p that is no less than |, there is at least one node x in p, and
rzeX.

Theorem 0.1. For a LPCP, choosing the minimum number
of nodes to build index is a NP-hard problem.

Proof. The set covering problem is known to be a NP-hard prob-
lem. For a given set U which contains all universe elements, and a
set of n sets .S, each element in S is a set which is composed by
elements in U. We can replace each element in U with a path in
the set of all [-length path, and each s; can be regarded as the paths
that pass the i-th node in G. And the set covering problem can be
reduced to the LPCP in polynomial time. Since the set covering
problem is NP-hard, choosing the minimum number of nodes for
LPCP is also a NP-hard problem. O
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In this paper, we propose a greedy approach to choose
the materialized nodes set X. Our greedy algorithm selects
popular nodes, where popular nodes are the nodes that are
more likely to be appear in [-length paths. When the popular
nodes are selected, more paths in G will be covered. In our
algorithm, the node with largest (in-degree x out-degree) are
considered as popular nodes. We generate the materialized
nodes set X iteratively. In each iteration, the node v with the
maximum popularity is selected, then v is added to X and
deleted from Y. Then popularity of each node in Y is re-
calculated. These operations proceed repeatedly until there
is no simple path longer than [.

Experiment

We conduct comprehensive experiments on real-world
dataset to evaluate the effectiveness and efficiency of our ap-
proach to answering technical questions.

Benchmark

We aim to provide natural language question-based tech-
nical services for the full series of Microsoft products, which
covers 214 categories and 6052 products.

Dataset. We collected 1,176,328 uses’ question together
with 111,062 different help documents that are clawed from
the technical forum!. We consider a document as a solution
of a question if someone answers the question with the doc-
ument. To estimate the effectiveness of our approach, we
use two different sources of testing data.

Evaluation Sets. The first dataset is user questions that
are clawed from the technical forum. We randomly select
60,000 questions in EVAL1. A document is considered as a
solution of a question if it appears in the same page with the
question in the technical forum. Specifically, we randomly
select 100 user questions and ask domain experts to assign
several technical documents for each question (EVAL2). We
use this dataset because question logs cannot find all the an-
swers of a question.

Effectiveness of Knowledge Graph

In this section, we evaluate the effectiveness of our
constructed technical knowledge graph. In the knowledge
graph, there are about 250,000 nodes that are classified into
four levels: 214 categories, 6052 products, 45085 compo-
nents and the rest are event words nodes. There are about 11
million relations (edges) between these nodes in the knowl-
edge graph. We perform a case study to demonstrate the
effectiveness of the knowledge graph in Table 1. (“EWO”:
“EventWordOf”, “CPO”: “ComponentOf”, “PDE”: “Prod-
uct Description Edge”, “ITO”:“InstanceOf”)

Effectiveness of Candidates Selection

As mentioned above, we propose a question-driven so-
lution for candidate document selection. In this experiment,
we compare our solution with the document-driven solution.
For the document-driven solution, we adopt (Fox and Shaw
1994), which combines some classical information retrieval

"http://answers.microsoft.com/en-us/windows/forum



Table 1: Frequent Relations in Knowledge Graph

Neighbors and Adjcent Edges (ordered by edge weight)

Node Level

1 2 3 4 5
Windows Product error EWO upgrade EWO 32bit EO 7 VO Desktop CPO
Internet Explorer Product website EWO video EWO cookie CPO use EWO uninstall EWO
Windows Account Component Windows CPO verify RT sign RT fail RT logon EWO
Spell Checker Component work EWO office CPO language RT English RT Office CPO
license Event Word buy RT subscription RT error RT Office EWO add RT
frozen Event Word service EWO stop RT slow RT disconnect RT respond RT

Table 2: Candidates Selection Methods on EVAL1

method MRR [MAP A@10 A@50 |A@100
oc. title .09 0.07 0.15 .22 0.27
oc. content .10 0.08 0.15 .23 0.28
oc. title + content .12 0.10 0.18 .27 0.32

ISTEP-1 .22 0.19 0.39 .64 0.87

approaches, such as TF-IDF, language model, BM25, DFR
(Amati and Van Rijsbergen 2002) and information-based
model (Clinchant and Gaussier 2010). We test three differ-
ent features in the document-driven solutions, that are title,
document content and document title+content. Since a ques-
tion may be solved by several technical documents, if one
of them is retrieved, this question is considered to be well
solved in our evaluation. We define the accuracy at top-k as
the proportion of questions with at least one correct answer
at top-k results, as described in Equation 8.

#1(solved questions)

AQk = ®)

#(questions)

where #(solved questions) is the number of questions
that get at least one solution document at the top k retrieval
results and #(question) is the number of questions in the
evaluation set. The goal of the candidates selection is to pick
out the solution documents as much as possible, therefore
we compute the MRR(Mean Reciprocal Rank), MAP(Mean
Average Precision), accuracy at top 10, 50 and 100. And
the results in Table 2 show that our query-driven solution
outperforms the document-driven methods significantly. For
example, our method finds solutions for 87% questions at
top 100 results.

Effectiveness of Candidates Re-ranking

Although the question driven solution achieves 87% ac-
curacy in top-100 answers, the top-1, 3, 5 answers are not
good enough for answering technical questions. Their ac-
curacies are about 13%-44%(see “STEP-17), as reported
in Table 3. Therefore, a re-ranking step is desirable. In the
candidate re-ranking step, we compare our method with a
tranlation-based model (Trans) (Jeon, Croft, and Lee 2005a)
and translation language model (TransLM) (Xue, Jeon, and
Croft 2008), which discuss the details of answering fre-
quent asked question by making using of a large scale of
question logs, and learning to rank (LETOR) approach (Liu
2009). For LETOR, we extract features of a question and
two documents, that is, we use pairwise LETOR. Some pre-
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Table 3: Result for candidates re-ranking

EVAL1 EVAL2
IMethod A@3 | A@3 |
[TSS 0.07 .11 131021 0.28  {0.34
Google 0.11 .13 .16 022 033 [0.38
STEP-1 0.13 .23 31021 0.36  [0.44
[Trans 0.10 .21 .30 025 042 [0.52
[TransLM 0.12 .26 .36 027 0.44  [0.55
ILETOR(1:3) 0.21 .34 421029 0.51  [0.57
ILETOR(1:5) 0.19 .32 .38 027 047 [0.52
ILETOR(1:10) 0.19 .31 .34 1027 0.42  {0.50
Our Method 0.22 .38 .46 [0.32  0.55 [0.61
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— Time Cost ~ Aol
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Figure 6: Performance of Random Walk Re-ranking

defined features provided by the offical website?, and some
other similarity features like (Clinchant and Gaussier 2010;
Amati and Van Rijsbergen 2002; Fox and Shaw 1994) (fea-
tures collected from both documents and similar questions)
are also added. We choose negative samples randomly from
the question set, the ratio of the number of positive and neg-
ative samples is varied from 1:3, 1:5 and 1:10. And the
LETOR is implemented by SVM-Rank?, the radial basis
function is used as the kernel function and the parameter c
is set to 5.0. Furthermore, we also including the comparison
with Google and the technical support service of Microsoft
(TSS). The answer are limited to the sites where reside tech-
nical documents. We report the accuracy of each solution in
top-1, 3 and 5 in Table 3. LETOR has a better performance
than other methods since it combines different features. And
the TransLM has an improvement than Trans. Our algorithm
shows better performance than other approaches because our
method expands a question via a well-constructed knowl-
edge graph, which discovers important words for a specific
error phenomenon. We also list some running examples of
top-1 results (Table 4).

“http://research.microsoft.com/en-us/projects/mslt/
*https://www.cs.cornell.edu/people/tj/svm_light/svm _rank.html



Table 4: Some question-document samples

Question

Document title

Vista can’t upgrade to Windows 7

Upgrading from Windows Vista to Windows 7 - Windows Help

Word 2010 Spell Checker not working on a specific document

Spell Checker does not recognize misspelled words in Word 2010

Can’t right click, or open links in IE

Nothing happens when you click a link in Internet Explorer

Lost a bunch of e-mail contacts, how do I get them from backup drive?

How to manage .pst files in Microsoft Outlook

After installing IE10, performance went down and some webpages won’t open

“Internet Explorer cannot display the webpage” error

How to set a desktop background on windows 8

Personalize your PC - Windows tutorial

I lost my recovery file for a document

How to recover a lost file in Word 2007 or in Word 2003

Loses email accounts for Outlook 2010

How to create profile and set up an e-mail account in Outlook
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Figure 7: Time Performance of Index-Based Random Walk

Efficiency of Index-based Random Walk

To enable short query response time, we propose an
index-based random walk solution. Convergence accelera-
tor (CA) of iterations and the time cost of random walk are
recorded in Figure 6(a) and CA reflects the global conver-
gence rate of the random walk, which is defined in Equa-
tion 9 where K and D represents the knowledge graph and
document nodes set, C'A,, is the CA in the n-th iteration,
and s, (z,d) is the similarity between z and d in the n-th
iteration. We need 4 million iterations before the similarity
value converges, which costs about 7 minutes. Obviously,
we cannot use this approach in online answering technical
questions. And as shown in Figure 6(b), as the number of
iterations increases, A@1, A@3 and A@5 also have an im-
provement.

ZmGK ZdeD |$n (2, d) — sp—1(z,d)|
ZmeK ZdED sn(, d)

As shown in Figure 7(a), the larger the [ is, the less materi-
alized nodes we should select to build index. When [ is equal
to 20, we need to select about 40,000 materialized nodes.
The time performance of the index-based random walk is
also shown in Figure 7(b), which costs about 100-800 mil-
liseconds.

The demo of our
http://59.108.48.29/Search.

CA, =

©))

system can be visited via

Related Work

A knowledge graph is an effective way to represent the
knowledge of the objective world. There are many existing
knowledge graphs like (Auer et al. 2007; Wu et al. 2012;
Yao and Van Durme 2014; Lee et al. 2011). These knowl-
edge graphs are open-domain and none of them aimed at the
technical area. Information Retrieval (IR) approaches find
similar documents from a large scale of corpus, Clinchant

3117

(Clinchant and Gaussier 2010) proposed a information-
based model. Some information retrieval frameworks (Liu et
al. 2007) (Fox and Shaw 1994) calculated the final ranks by
combining several scores provided by other models. Query
Expansion enriches the information of a question, Swapna
(Gottipati and Jiang 2011) expanded a query using knowl-
edge base, there is also work (Collins-Thompson and Callan
2005) archive QE using random wolk, Craswell (Craswell
and Szummer 2007) retrieves related documents via click
graph. Xu (Xu and Croft 1996) mined similar words from
relative documents, and there are also some approaches
(Gao and Nie 2012; Gupta et al. 2014) enrich a query via
search logs. Those IR-based approaches find similar docu-
ments for a specific quesion by measuring the relavance of
them direcly. Ji (Ji et al. 2012) developed a topic model in
Community Question Answering, Zhou (Zhou et al. 2015)
proposed an embedding-based question retrieval method in
community.

Conclusion

Question understanding is an important and challenging
task to a large variety of QA systems. In this paper, we
propose a novel question understanding method which sim-
ulates the way humans think. We construct a hierarchical
knowledge graph automatically which contains abundant
technical information, to understand a question. Next, an
augmented knowledge graph is used for relating the ques-
tions to documents via the knowledge graph. Then we use
a question-driven method to select candidate solutions. Fi-
nally, random walk approach is applied to candidates rank-
ing and an index-based random walk is proposed to support
the online search.

Our two-step pipeline guarantees both precision and effi-
ciency, which is also suitable for other similar tasks. The ex-
periments provide a comprehensive evaluation from differ-
ent respects, experimental data is obtained from 1.2 million
real-world question logs of 111 thousand help documents.
Technical knowledge graph we construct covers full series
products of Microsoft and is of high quality. Our re-ranking
approach outperforms main-stream search engine and other
state-of-art methods. And the index-based random walk ap-
proach speeds up the online search to a large extent. In the
future, we are to further evaluate our method on other spe-
cific retrieval systems such as news, research papers recom-
mendation.
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