
Neural Bag-of-Ngrams

Bofang Li, Tao Liu, Zhe Zhao, Puwei Wang,∗ Xiaoyong Du
School of Information, Renmin University of China, Beijing, China

Key laboratory of Data Engineering and Knowledge Engineering, MOE, Beijing, China
{libofang, tliu, helloworld, wangpuwei, duyong}@ruc.edu.cn

Abstract

Bag-of-ngrams (BoN) models are commonly used for repre-
senting text. One of the main drawbacks of traditional BoN
is the ignorance of n-gram’s semantics. In this paper, we in-
troduce the concept of Neural Bag-of-ngrams (Neural-BoN),
which replaces sparse one-hot n-gram representation in tradi-
tional BoN with dense and rich-semantic n-gram representa-
tions. We first propose context guided n-gram representation
by adding n-grams to word embeddings model. However, the
context guided learning strategy of word embeddings is likely
to miss some semantics for text-level tasks. Text guided n-
gram representation and label guided n-gram representation
are proposed to capture more semantics like topic or senti-
ment tendencies. Neural-BoN with the latter two n-gram rep-
resentations achieve state-of-the-art results on 4 document-
level classification datasets and 6 semantic relatedness cate-
gories. They are also on par with some sophisticated DNNs
on 3 sentence-level classification datasets. Similar to tradi-
tional BoN, Neural-BoN is efficient, robust and easy to im-
plement. We expect it to be a strong baseline and be used in
more real-world applications.

Introduction

Text representation plays an important role in many natural
language processing tasks. It aims at mapping varied-length
texts (sentences, paragraphs, documents) into fixed-length
vectors. The quality of text vectors will directly affect the
downstream models’ performance. Take text classification
tasks for example, the way of representing texts is much
more important than the choice of classifiers.

The most commonly used text representation model is
bag-of-words (Joachims 1998), in which text is represented
as the multiset of its belonging words. The grammar and
word order are disregarded. Compared to bag-of-words,
bag-of-ngrams considers not only word, but also consecutive
words (n-gram). These models are often used as baselines in
recent research and preferable in real-world applications due
to their simplicity and robustness.

As shown in Figure 1, traditional bag-of-ngrams (BoN)
can be regarded as the sum of n-gram vectors with one-
hot representation. In one-hot representation, each n-gram is

∗Corresponding author.
Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Example of traditional BoN and Neural-BoN for
representing text “I love this movie”.

considered as an unique token which is different from each
other absolutely. The semantics of n-grams is ignored under
this condition. In this paper, we introduce Neural Bag-of-
Ngrams (Neural-BoN) to overcome this drawback. It repre-
sents n-grams by dense, real-valued vectors instead of sparse
vectors. N-grams with similar semantics are more likely to
be similar in vector space. Text vector generated by sum-
ming neural n-gram vectors contains more semantics, which
contributes more to the successive models.

In this paper, three types of neural n-gram representation
(NR) are proposed: Context Guided N-gram Representation
(CGNR), Text Guided N-gram Representation (TGNR) and
Label Guided N-gram representation (LGNR) (Figure 2). As
the name suggests, CGNR utilizes the n-gram co-occurrence
information which lies in context. It is inspired by the re-
cent success of word embeddings and is built on the basis
of Skip-Gram (Mikolov et al. 2013). However, the context
guided learning strategy of word embeddings and CGNR is
likely to miss some semantics for text-level tasks. TGNR
and LGNR are proposed to utilize the n-gram co-occurrence
information which lies in text and texts’ class labels respec-
tively. They can capture more important information such as
the topic or sentiment tendencies.

Neural-BoN inherits the advantages of both traditional
BoN and neural word embeddings. It captures semantics
with dense representation as neural word embeddings while
it remains simple and robust as traditional BoN. Neural-

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

3067

n-gram 3n-gram 2n-gram 1
contextual word/n-gram

text 2text 1 label 2label 1

target word/n-gram vector
b) CGNR

texts

target word/n-gram vector
c) TGNR

texts class labels

target word/n-gram vector
d) LGNR

text 3

word 3word 2word 1
contextual word

target word vector
a) Skip-Gram

Figure 2: Skip-Gram and proposed n-gram representations.

BoN is also flexible, Weighting techniques like TF-IDF
(Sparck Jones 1972) and Naive Bayes (Maron and Kuhns
1960) used in traditional BoN can be applied to Neural-BoN
with little effort. Additional unlabeled corpora can also be
used for training CGNR and TGNR, since they are unsuper-
vised.

Related Work

Text Representation (TR) Models Text vectors can be
generated based on word/n-gram vectors in a bottom-up
fashion. Traditional BoW/BoN can be regarded as the
sum of one-hot word/n-gram vectors. Recent researches
(Mitchell and Lapata 2010; Socher et al. 2013; Hill, Cho,
and Korhonen 2016) use sum/average of existing word em-
beddings as baselines for text representation. Word embed-
dings models learn word vectors by utilizing the word co-
occurrence information which lies in “context”. For exam-
ple, CBOW and Skip-Gram (Mikolov et al. 2013) define
the “context” of a target word as “the words surrounding
it in a small window size”. Glove (Pennington, Socher,
and Manning 2014) uses the same definition and explicitly
weights contextual words based on their position. C-Phrase
(Pham et al. 2015) can be regarded as an improved ver-
sion of CBOW which utilizes “syntactic context” indicated
by syntactic parse tree. However, these word embeddings
are not optimized for constructing texts. Compared to our
model, they only consider words (uni-grams) and their co-
occurrence in context. More powerful vectors can be learned
by introducing n-grams and other types of co-occurrence in-
formation which lies in text and texts’ class.

Instead of summing word vectors, another line of meth-
ods learn text representations directly. In Paragraph Vec-
tor (PV) (Le and Mikolov 2014), paragraph (text) vector
is learned to be useful for predicting its belonging target
words. Our text guided n-gram representation (TGNR) can
be regarded as a reverse and more general (n-gram) ver-
sion of PV. It learns n-gram vector by predicting which text
it belongs. PV and the bottom-up models don’t consider
word order or only consider word order in short range con-
text. More complex Deep Neural Networks (DNN) can be
used for modeling word order in long range context. For
example, Recursive Auto-encoder (Socher et al. 2011) as-

signs a vector for each node in a sentence’s syntactic parse
tree and represents the sentence with the root node’s vector.
Each node’s vector encodes the information of its subtree
and is learned by reconstructing its child nodes. In Skip-
Thought (Kiros et al.), sentence vector is generated by Re-
current Neural Network (RNN) and is learned to be useful
for predicting its surrounding sentences’ representation. In
(Hill, Cho, and Korhonen 2016), two modifications of Skip-
Thought are proposed for fast learning and more general us-
age: Fast Sentence (Fast) simplifies Skip-Thought by pre-
dicting which words in the surrounding sentence instead of
predicting surrounding sentence itself. Sequential Denois-
ing Autoencoders (SAE) learns sentence representation by
predicting its corrupted version, thus no surrounding sen-
tences are needed. Compared to Neural-BoN, these models
are limited to sentence representation and are time consum-
ing. Furthermore, since their architectures are complex, the
noises caused by large parameters can hurt the models’ per-
formance.

Implicit Text Representation (ITR) Models There are
also a lot of DNNs which generate text representations im-
plicitly, such as Recurrent Neural Network (RNN) (Dai and
Le 2015), Recursive Neural Network (RecNN) (Socher et al.
2013), Convolutional Neural Network (CNN) (Kim 2014),
and their combinations (Cho et al. 2014; Lai et al. 2015) and
variations (Johnson and Zhang 2015; Zhang, Zhao, and Le-
Cun 2015; Tang, Qin, and Liu 2015). These ITR models fo-
cus only on text classification task and often achieved state-
of-the-art results. After these models are trained, the layer
just before the output layer or any fixed-length layer can be
regarded as the input text’s representation. However, these
text representations can only capture information needed for
a specific task and are not suitable for general usage, which
fall out of the scope of this paper. Nonetheless, we compare
our models with ITR models on text classification task. The
results suggested our more general text representations can
be on par with these ITR models.

Model

The key part of Neural-BoN is to learn meaningful word
and n-gram vectors for the construction of text vectors. In
this section, we first propose three types of n-gram vector
learning models. We then show how to construct text vectors
using Neural-BoN and weighting techniques.

Context Guided N-gram Representation

N-gram is an important feature for understanding text. For
example in Table 1, bi-gram “not good” in Text1 expresses
the negative sentiment and is more important than words
“good” and “not”. Unlike word embeddings models which
consider only words, Context Guided N-gram Representa-
tion (CGNR) learns the vector of n-grams such as “not good”
to capture its negative sentiment directly.

CGNR is motivated by word embedding models, espe-
cially skip-Gram (Mikolov et al. 2013). Skip-Gram is effi-
cient to train, scales well to huge corpora, and is very robust
as shown in (Levy and Goldberg 2014; Levy, Goldberg, and
Dagan 2015). CGNR and Skip-Gram have the same learning

3068

Table 1: Illustration of some texts and their sentiments.
ID Sentiment Text

Text1 negative This film is not good.
Text2 positive This film is good.
Text3 negative This film is bad.
Text4 positive This film is good, I give 7/10 to it.
Text5 positive Patrick Swayze’s acting is perfect.

likenotdo moivethis

like-thisnot-likedo-not this-movie

like-this-movienot-like-thisdo-not-like

I

I-do

I-do-not

Figure 3: Contextual n-grams set (denoted by blue boxes) for
target bi-gram “not like” (denoted by green box). win = 1.
m = 3 (tri-gram model).

strategy: n-gram vectors are learned to be useful for predict-
ing its context. Actually, CGNR can be regarded as a more
general version of Skip-Gram which considers contextual n-
grams instead of words. To be more precise, the objective
function of CGNR can be formalized as:

∑

i

∑

j

∑

q

log p
(
cgn,i,j
q |vgn,i,j

)
(1)

where gn,i,j denotes the jth n-gram from ith text, cgn,i,j
q

denotes its qth contextual n-gram. vg denotes the vector of
n-gram g. The contextual n-gram set of the target n-gram
gn,i,j can be defined as:

cgn,i,j = {gnc,i,j+t where 1 ≤ nc ≤ m

and − win ≤ t ≤ win+ n− nc} (2)

where win is the contextual window size and m is the max-
imum size of gram. An example of contextual n-gram is
shown in Figure 3.

The prediction in Equation 1 is theoretically defined as
softmax:

p
(
cgn,i,j
q |vgn,i,j

)
= exp(y

c
gn,i,j
q

)/Z (3)

where y
c
gn,i,j
q

is the un-normalized probability for qth con-
textual n-gram of gn,i,j given input n-gram vector vgn,i,j

. Z
denotes the normalization factor. The vector y is computed
as:

y = Wvgn,i,j
+ b (4)

where W and b are the softmax parameters. In this way, the
vectors of n-grams with similar contexts are learned by sim-
ilar prediction, thus are clustered together in vector space.

However, n-grams with similar contexts may not have the
same semantics. This learning strategy of word embeddings
models and CGNR is insufficient and even problematical
for some text-level tasks. For example, uni-grams “good”
and “bad” are both transitive verbs and their context is sim-
ilar in most corpora as illustrated in Table 1. Their vectors
learned by CGNR are actually nearest neighbors according

Table 2: Experimental results of n-gram representations
(NR), which are trained on IMDB datasets. Superscript m

indicates movie name. Superscript a indicates actor name.

N-gram NR Nearest Neighbours

good

CGNR
decent, damn, bad, old-fashioned, passable, so-so
very good, good movie, not good, actually pretty

TGNR
decent, pretty, well-done, 7/10, passable, appealing
good movie, good acting, very good, good director

LGNR
sobieskia, katrinaa, ponyom, perfect, gulliverm

lonesome dovem, patrick swayzea, batman returnsm

not good

CGNR
so-so, bad, appalling, terrible, good, acceptable
not bad, not great, particularly good, plain bad

TGNR
fault, bad, okay, terrible, horrible, bearable, 3/10

not great, not well, bad ones, no good, not enough

LGNR
carlya, revolting, herzoga, crittersm, nauseating

robert younga, worst movie, steven seagala, 2 stars

to our experimental results in Table 2. This result is reason-
able for some word-level tasks like POS tagging. But for
text-level tasks like text classification and semantic related-
ness, “good” and “bad” express totally different semantics
and should be far away from each other in vector space. This
motivates us to propose another two n-gram representation
learning models.

Text Guided N-gram Representation

Consider uni-gram “good” and “7/10” (a relatively high re-
view score) in Table 1, these two uni-grams have totally
different parts of speech and tend to appear in different
contexts. However, they both express positive attitude and
this information is crucial for text-level tasks, especially
sentiment classification. This observation suggests n-grams
that appear in the same text tend to have similar seman-
tics. TGNR captures this information by clustering n-grams
which appear in the same text together in vector space. To
be more precise, n-gram vector is learned to be useful for
predicting which text it belongs to:

∑

i

∑

j

log p
(
ti|vgn,i,j

)
(5)

where ti denotes the ith text.
TGNR works especially well for long texts (documents).

For example, a long negative movie review is likely to con-
tain many n-grams like “terrible”, “waste of time” and “no
good”. In TGNR, these negative n-grams are clustered to-
gether in vector space. On the other hand, a short movie
review may contain only one sentiment n-gram. It is hard
for TGNR to cluster this n-gram with any other sentiment
n-grams.

Label Guided N-gram Representation

In Table 1, uni-gram “good” and “perfect” are similar since
they express the same positive sentiment. Both CGNR and
TGNR can not capture this similarity since these uni-grams
appear in different contexts and texts. Actually no model can
capture this similarity without more texts or prior knowl-
edge.

3069

In the case of text classification, each text in the training
set is assigned to a class. Therefore, uni-gram “good” and
“perfect” can be learned to be similar, since they appear in
texts with the same positive sentiment label.

In traditional BoN, Naive Bayes weighting (NB) (Wang
and Manning 2012) is used to capture this labeling informa-
tion. NB directly weights each n-gram based on its frequen-
cies in text classes. LGNR can be regarded as a dense ver-
sion of NB, which implicitly capture weights by predicting
texts’ class label:

∑

i

∑

j

log p
(
lti |vgn,i,j

)
(6)

where lt denotes the class label of text t.
In contrast to TGNR, LGNR works especially well for

short texts (sentence) and small datasets. Compared to long
texts, labels for short texts are more specific and accurate.
N-gram vectors learned by these labeled short texts contain
less noises.

Both TGNR and LGNR can overcome the problem ex-
isted in CGNR. In these two models, uni-gram “good” and
“bad” are learned to be far away from each other because
they appear in different texts and texts’ labels. Note that un-
like CGNR and TGNR, LGNR is supervised and needs la-
beled text.

Weighted Neural Bag-of-Ngrams

After n-gram representations are learned, the simplest way
of constructing a text vector is summing its belonging n-
grams vectors. However, different n-grams have different
impact on a text. Since traditional bag-of-ngram models
can also be regarded as the sum of n-gram vectors, weight-
ing techniques used in them can be applied to Neural-
BoN directly as shown in Figure 1. In this paper, TF-
IDF (Sparck Jones 1972) and Naive Bayes (NB) weighting
(Maron and Kuhns 1960) is considered.

Computational Complexity

As shown in Equation 5 and Equation 6, training TGNR and
LGNR for one epoch only needs to scan the training cor-
pus C once. With Negative Sampling technique, the prob-
ability p is calculated by the inner product of n-gram vec-
tor and negative vector for K + 1 times, where K is nega-
tive sampling size. The computational complexity of train-
ing TGNR/LGNR for one epoch is O(|C|Kdm), where |C|
is corpus size, d is vector dimension and m is the maximum
size of gram. As for CGNR, the training is 2w times slower
than TGNR and LGNR, since a window size w needs to be
iterated (Equation 1 and Equation 2).

In contrast, since almost every DNN needs matrix mul-
tiplication, the computational complexity of training them
can be estimated as O(|C|td2), where t is the matrix mul-
tiplication times. Since K, m, w and t are relatively small
compared to d and |C|, Neural-BoN is roughly d times faster
than DNNs in theory.

Empirically, matrix multiplications in DNNs can benefit
from GPU, especially for CNNs. However, Neural-BoN on
a multi-core CPU is still much faster than DNNs. Table 3

lists the approximate training time of models for a single
epoch on one million words.

Table 3: Approximate training time of models for a single
epoch on one million words. CPU: Intel Xeon E5-2670 (32-
core). GPU: NVIDIA Tesla K40.

model device training time
Neural-BoN (bi-gram) CPU 0.6h

CNN GPU 16h
Character-level CNN GPU 109h

SDAE GPU 54h
Skip-Thought GPU 255h

Experiments

In order to better understand the learned text representa-
tions, we perform qualitative evaluation on IMDB dataset
(Table 2), and quantitative evaluation on text classification
task (7 datasets) and semantic relatedness task (2 datasets
with 7 categories).

Training Details

In practice, the vocabulary size and the number of texts
can be large, computing the softmax function in CGNR and
TGNR is time consuming. Negative Sampling (Mikolov et
al. 2013) is used for speeding up. N-gram vectors are first
randomly initialized and then trained using stochastic gradi-
ent descent where the gradient is obtained via backpropaga-
tion (Williams and Hinton 1986).

For text classification task, hyper-parameters are tuned on
20% of the training data from IMDB dataset (Maas et al.
2011). For semantic relatedness task, hyper-parameters are
tuned on the development data from SICK dataset (Marelli
et al. 2014). Optimal hyper-parameters are actually identi-
cal: the vector dimension is 500, the learning rate is fixed to
0.25, the negative sampling size is 5, and models are trained
for 10 iteration. Unlike most other neural models, Neural-
BoN needs fewer hyper-parameters 1 and thus requires less
tuning, which makes it easier to be applied to other tasks and
real-world applications.

Text Classification

Text classification task aims at assigning a text with a pre-
defined category. We evaluate our models on 3 sentence-
level and 4 document-level datasets. More detailed statistics
are shown in Table 4. For this task, text vectors are first nor-
malized and considered as features for the classifier. We use
Logistic Regression Classifier (Fan et al. 2008) in all of our
experiments. Accuracy is used as evaluation metrics.

1Neural-BoN doesn’t need hyper-parameters like number of
layers, hidden layer size, mini-batch size, truncated BPTT length
(for RNN), number of feature maps and pooling type (for CNN).
Note that DNNs need to tune the size of each hidden layer, while
Neural-BoN only needs to tune word vector’s dimension.

3070

Table 4: Datasets statistics. #Texts: the number of training and test texts. CV: the number of cross-validation splits, where N
denotes default train/test split provided in dataset. #Tokens: the number of tokens. |V |: vocabulary size. #N-gram/T: the average
number of n-grams contained in per text.

Item MR CR Subj. AthR XGraph RT-2k IMDB STS SICK
domain sentiment customer review subjective review news news sentiment sentiment - -

CV 10 10 10 N N 10 N - -
#Texts 10,662 10,624 10,000 1,427 1,953 2,000 50,000 9,000 18,854

Gram Item MR CR Subj. AthR XGraph RT-2k IMDB STS SICK

Uni
#Tokens 224K 76K 241K 458K 458K 1493K 13055K 80K 181K
|V | 21K 5.7K 24K 22K 32K 51K 171K 14K 2K

#N-gram/T 21 20 24 321 234 746 261 9 10

Bi
#Tokens 437K 148K 471K 950K 980K 2983K 26059K 159K 362K
|V | 133K 40K 148K 185K 206K 519K 2351K 48K 12K

#N-gram/T 41 39 47 666 501 1491 521 18 19

Tri
#Tokens 640K 216K 692K 1370K 1368K 4472K 39014K 239K 544K
|V | 308K 96K 340K 478K 490K 1560K 8894K 86K 31K

#N-gram/T 60 57 69 960 700 2236 780 27 29

Table 5: Effect of different n-gram representations (NR) for text classification
task. Best results overall are Underlined while best results in group are Bold.

Gram NR
sentence-level

document-level
small vocabulary large vocabulary

MR CR Subj AthR XGraph RT-2k IMDB

Uni
CGNR 69.10 76.42 90.73 74.54 84.02 80.3 84.06
TGNR 64.00 73.09 87.65 83.03 86.99 88.1 90.24

LGNR 77.92 79.95 92.12 86.96 89.86 83.2 85.06

+Bi
CGNR 71.76 77.03 91.98 76.72 86.06 83 84.63
TGNR 69.79 77.19 88.32 84.01 87.81 88.75 91.64

LGNR 78.89 81.69 93.31 89.9 92.42 86.5 87.15

+Bi+Tri
CGNR 69.39 75.79 90.52 74.47 84.42 83.1 85.35
TGNR 63.25 73.96 88.23 83.87 87.39 88.8 91.83

LGNR 78.22 81.46 92.80 89.2 91.29 85.6 87.48

Table 6: Comparison with other models
on IMDB datasets. Top group: TR models.
Bottom group: ITR models.

Model IMDB
Maas (Maas et al. 2011) 87.99
PV (Mesnil et al. 2014) 88.73

NBSVM (Wang and Manning 2012) 91.22
best one-hot+NB 91.87

our model (TGNR) 93.51

RNN-LM (Mikolov 2012) 86.60
DAN (Iyyer et al. 2015) 89.4

DCNN (Iyyer et al. 2015) 89.4
SA-LSTM (Dai and Le 2015) 92.76

CNN+U3 (Johnson and Zhang 2015) 93.49

Default Scenario We first consider the default scenario
where n-gram vectors are learned solely on the given classi-
fication dataset. No additional unlabeled corpora or weight-
ing techniques are used. The following observations can be
made from the results in Table 5:
• Compared to word (uni-gram) vectors, adding bi-gram

consistently improves the performance for all n-gram rep-
resentations across all datasets. However, adding tri-gram
only slightly improve the performance on large datasets
like RT-2k and IMDB. In small datasets, since most tri-
grams appear only a few times, they are likely to bring
noises to the model.

• TGNR outperforms CGNR on all document-level
datasets. Compared to sentence-level datasets, texts in
document-level datasets contain more n-grams. N-gram
vectors learned on these datasets are more likely to cap-
ture useful information.

• LGNR performs best on all datasets except RT-2k and
IMDB. It directly captures texts’ class information, which
is most useful for text classification. However, for datasets
with large vocabulary (RT-2k and IMDB), it’s hard for
texts’ class to distinguish all these n-grams.
We use tri-gram for large datasets (RT-2k and IMDB), and

bi-gram for others in the following experiments.

Model’s Improvements Unlabeled corpora often contain
more information than single dataset and can potentially
improve the performance. On three movie review datasets
(MR, RT-2k and IMDB), Neural-BoN is trained along with
unlabeled corpus from IMDB dataset, the same way as
(Maas et al. 2011; Mesnil et al. 2014; Le and Mikolov 2014).
This idea is also commonly used in neural networks like
RNN (Zhao, Lu, and Poupart 2015) and CNN (Kim 2014;
Iyyer et al. 2015; Johnson and Zhang 2015), where the input
word vectors are pre-trained on large corpora.

We have also tried other non-sentiment corpora such as
STATMT NEWS and Wikipedia corpora. However, they
can’t improve the accuracy of text classification. We con-
clude that only adding domain-related corpus can improve
the models performance. It can also be confirmed in Table6,
where IMDB corpus can only improve the performance on
sentiment-related datasets, but not on others.

We choose Naive Bayes (NB) weighting in this experi-
ment since it consistently outperforms TF-IDF on text clas-
sification task.

We also combine Neural-BoN’s representations with tra-
ditional BoN’s one-hot representation. This ensemble is

3071

Table 7: Models’ improvements and comparison with previous state-of-the-art results (SOA). SOAs are grouped as text rep-
resentation (TR) models and implicit text representation (ITR) models. LGNR can’t make use of additional unlabeled corpus
(+corpus) since it requires labeled text. It also can’t benefit from weights since it already contains label information.

N-gram Representation (NR) MR CR Subj AthR XGraph RT-2k IMDB

CGNR

- 71.76 77.03 91.98 76.72 86.06 83.1 85.35
+corpus 76.03(+4.27) - - - - 86(+2.9) 86(+0.65)

+NB 77.6(+1.57) 78.68(+1.65) 92.24(+0.26) 78.26(+1.54) 87.7(+1.63) 86.5(+0.5) 88.95(+2.95)
+one-hot 79.66(+2.02) 81.8(+3.12) 92.86(+0.62) 85.69(+7.43) 91.59(+3.89) 89.4(+2.9) 91.60(+3.65)

TGNR

- 69.79 77.19 88.32 84.01 87.81 88.8 91.83
+corpus 79.25(+9.46) - - - - 90.9(+2.1) 92.09(+0.26)

+NB 80.15(+0.9) 77.72(+0.53) 92.11(+0.28) 84.71(+0.7) 88.72(+0.91) 91.35(+0.45) 92.68(+0.59)
+one-hot 81.06(+1.91) 81.93(+4.21) 92.79(+0.68) 88.35(+3.64) 90.88(+2.16) 91.95(+0.6) 93.51(+0.83)

LGNR
- 78.89 81.69 93.31 89.9 92.42 86.5 87.48

+one-hot 79.55(+0.66) 82.41(+0.72) 93.41(+0.1) 90.6(+0.7) 92.82(+0.6) 88.7(+2.2) 91.37(+3.89)

TR-SOA
79.4 81.8 93.6 87.7 90.7 89.45 91.22

(NBSVM) (NBSVM) (Skip-Thought) (NBSVM) (NBSVM) (NBSVM) (NBSVM)

ITR-SOA
83.1 86.3 95.5 85.1 91.2 90.2 93.49

(AdaSent) (AdaSent) (AdaSent) (MNB) (MNB) (Appr.T) (CNN)

Table 8: Comparison with other models on sentence-level
datasets. Top group: TR models. Bottom group: ITR models.

Model MR CR Subj
CPHRASE (Pham et al. 2015) 75.7 78.8 91.1

PV (Le and Mikolov 2014) 74.8 78.1 90.5
Skip-Thought (Kiros et al.) 76.5 80.1 93.6

best one-hot+NB 78.43 81.16 92.27
NBSVM (Wang and Manning 2012) 79.4 81.8 93.18

our model 81.06 82.41 93.41
GrConv (Cho et al. 2014) 76.3 81.3 89.5

RNN (Zhao, Lu, and Poupart 2015) 77.2 82.3 93.7
CNN (Kim 2014) 81.5 85.0 93.4

BRNN (Zhao, Lu, and Poupart 2015) 82.3 82.6 94.2
AdaSent (Zhao, Lu, and Poupart 2015) 83.1 86.3 95.5

commonly used in previous models for text classification
(Maas et al. 2011; Dahl, Adams, and Larochelle 2012;
Mesnil et al. 2014; Johnson and Zhang 2015).

The results of above improvements are shown in Table 7.

Comparison Table 6 and Table 8 show more detailed
comparison of models. On sentence-level datasets, ITR
models are still dominant. It’s reasonable since ITR mod-
els focus on classification and are highly optimized for the
specific task. Our models, along with other TR models, fo-
cus on text representation and are trained for general usage.
Still, our model outperforms or is on par with ITR models
like CNN and RNN, while needs much less time to train.
Neural-BoN also outperforms previous text representation
(TR) models on all datasets except Subj.

Document-level datasets are previously dominated by
SVM with different features. Most ITR models are designed
to capture word order information in long range contexts.
This information is less crucial than that in sentence-level
tasks. Therefore, their complex architectures become bur-
densome: introducing noises while providing less useful in-
formation. Neural-BoN achieves new state-of-the-art results

Figure 4: Visualization of text vectors. Different colors rep-
resent different text classes. Models are trained using bi-
gram without any additional corpus or weighting techniques.

on these datasets, as shown in Table 7.

Visualization We also visualize text vectors learned by
Neural-BoN. As shown in Figure 4, all of our proposed mod-
els have the ability of clustering text in the same class to-
gether. It is a very interesting property especially for CGNR

3072

Table 9: Experimental results (Spearman/Pearson correlations) on semantic relatedness datasets. Ordered corpus requires the
target text to be associated with contextual texts. Best results overall are Underlined while best results in group are Bold.

Corpus requirement Gram NR
STS

SICK
News Forum WordNet Twitter Images Headlines

none

Uni
CGNR 0.62/0.64 0.36/0.37 0.71/0.67 0.67/0.73 0.67/0.69 0.58/0.60 0.59/0.64
TGNR 0.65/0.69 0.38/0.39 0.75/0.72 0.68/0.73 0.75/0.79 0.59/0.61 0.59/0.73

+Bi
CGNR 0.56/0.59 0.39/0.40 0.71/0.68 0.67/0.70 0.61/0.62 0.53/0.54 0.60/0.64
TGNR 0.61/0.63 0.44/0.45 0.76/0.74 0.69/0.71 0.73/0.76 0.57/0.59 0.61/0.74

SAE 0.17/0.16 0.12/0.12 0.30/0.23 0.28/0.22 0.49/0.46 0.13/0.11 0.32/0.31
SAE+embs. 0.52/0.54 0.22/0.23 0.60/0.55 0.60/0.60 0.64/0.64 0.41/0.41 0.47/0.49

SDAE 0.07/0.04 0.11/0.13 0.33/0.24 0.44/0.42 0.44/0.38 0.36/0.36 0.46/0.46
SDAE+embs. 0.51/0.54 0.29/0.29 0.56/0.50 0.57/0.58 0.59/0.59 0.43/0.44 0.46/0.46
PV-DBOW 0.31/0.34 0.32/0.32 0.53/0.50 0.43/0.46 0.46/0.44 0.39/0.41 0.42/0.46

PV-DM 0.42/0.46 0.33/0.34 0.51/0.48 0.54/0.57 0.32/0.30 0.46/0.47 0.44/0.46
one-hot+TF-IDF 0.48/0.48 0.40/0.38 0.60/0.59 0.63/0.65 0.72/0.74 0.49/0.49 0.52/0.58

ordered
SkipThought 0.44/0.45 0.14/0.15 0.39/0.34 0.42/0.43 0.55/0.60 0.43/0.44 0.57/0.60

FastSent 0.58/0.59 0.41/0.36 0.74/0.70 0.63/0.66 0.74/0.78 0.57/0.59 0.61/0.72

FastSent+AE 0.56/0.59 0.41/0.40 0.69/0.64 0.70/0.74 0.63/0.65 0.58/0.60 0.60/0.65

and TGNR, since they are learned without text class in-
formation. From clustering perspective alone, TGNR works
better than CGNR, and LGNR works best. However, text
vectors in LGNR is over clustered. It’s hard for the succes-
sive classifier to remedy cluster error from LGNR. LGNR
may not perform as good as it seems and the quantitative
evaluation results (e.g. TGNR outperforms LGNR on IMDB
dataset) also confirm this.

Semantic Relatedness

Semantic relatedness task aims at producing a semantic re-
latedness score of a text pair, which is compared with the hu-
man label. In contrast to text classification task which evalu-
ates the quality of text representations by the performance of
successive classifier, semantic relatedness task directly eval-
uates the quality of text representations by taking their co-
sine distance as the relatedness score.

The SICK (Marelli et al. 2014) and STS (Agirre et al.
2014) datasets are used for this task, the same as (Hill,
Cho, and Korhonen 2016). Similar to previous researches,
Toronto Books Corpus 2 is used as training data. Unlike
text classification task, semantic relatedness task provides
no texts’ labels. LGNR model is unsuitable for this task and
NB weighting technique is not used for models’ improve-
ments. The lack of labels also excludes implicit text repre-
sentation (ITR) models. In order to make fair comparison,
models which use structured resources (e.g. dictionary) are
not considered in this experiment.

Several observations can be drawn from Table 9:

• The importance of word order is unclear on semantic re-
latedness task. Adding bi-gram improves the performance
of Neural-BoN on SICK dataset, Forum and WordNet cat-
egories of STS dataset and . Adding tri-grams hurts the
performance slightly on all categories. The competitive
results of FAST model also support this claim, since it
ignores word order.

2http://www.cs.toronto.edu/∼mbweb/

• TGNR outperforms CGNR on all categories. This further
supports our claim that n-gram vectors learned by consid-
ering n-grams co-occurrence in context are insufficient.

• Our model achieves state-of-the-art results on all cate-
gories except Twitter. Twitter category contains many rare
n-grams (not in training corpus or appear very few times).
This limits Neural-BoN to fully learn their n-gram vec-
tors. In contrast to Neural-BoN, traditional BoN (one-
hot+TFIDF) can make use of each n-gram and obtains
good performance on this category.

Conclusion and Future Work

In this paper, we introduce the concept of Neural-BoN,
which learns text vector by summing its belonging neu-
ral n-gram vectors (with weights). 3 Compared to its uni-
gram version, adding bi-grams improves the performance
of Neural-BoN on most datasets, while further adding tri-
grams only improves its performance on large datasets. We
propose three types of n-gram representations and demon-
strate their effectiveness on text classification task and se-
mantic relatedness task: (1) Context Guided N-gram Rep-
resentation (CGNR) uses the same idea as traditional word
embeddings and is problematical for text-level tasks. (2)
Text Guided N-gram Representation (TGNR) performs con-
sistently well and especially suitable for document-level
dataset with large vocabulary. (3) Label Guided N-gram
Representation (LGNR) is more suitable for small datasets
and implicitly contains NB weighting.

Our model achieves the new state-of-the-art results on 4
document-level classification datasets and 6 semantic relat-
edness categories. Inspired by these results, in future work,
we will consider neural text representations beyond bag-of-
ngrams. For example, the weighted sum of TGNR/LGNR
can be replaced by composition functions based on syntac-
tic parse tree or document structure.

3The source code of Neural-BoN is published at https://github.
com/libofang/Neural-BoN.

3073

Acknowledgments

This work is supported by National Natural Science Foun-
dation of China (Grant No. 61472428 and No. 71271211),
the Fundamental Research Funds for the Central Universi-
ties, the Research Funds of Renmin University of China No.
14XNLQ06. This work is partially supported by ECNU-
RUC-InfoSys Joint Data Science Lab and a gift from Ten-
cent.

References

Agirre, E.; Banea, C.; Cardie, C.; Cer, D.; Diab, M.;
Gonzalez-Agirre, A.; Guo, W.; Mihalcea, R.; Rigau, G.; and
Wiebe, J. 2014. Semeval-2014 task 10: Multilingual seman-
tic textual similarity. In SemEval, 81–91.
Cho, K.; van Merrienboer, B.; Bahdanau, D.; and Bengio,
Y. 2014. On the properties of neural machine translation:
Encoder-decoder approaches. In EMNLP, 103–111.
Dahl, G. E.; Adams, R. P.; and Larochelle, H. 2012. Train-
ing restricted boltzmann machines on word observations. In
ICML.
Dai, A. M., and Le, Q. V. 2015. Semi-supervised sequence
learning. In NIPS, 3079–3087.
Fan, R.-E.; Chang, K.-W.; Hsieh, C.-J.; Wang, X.-R.; and
Lin, C.-J. 2008. Liblinear: A library for large linear clas-
sification. Journal of Machine Learning Research 9:1871–
1874.
Hill, F.; Cho, K.; and Korhonen, A. 2016. Learning dis-
tributed representations of sentences from unlabelled data.
In HLT-NAACL, 1367–1377.
Iyyer, M.; Manjunatha, V.; Boyd-Graber, J. L.; and III, H. D.
2015. Deep unordered composition rivals syntactic methods
for text classification. In ACL, 1681–1691.
Joachims, T. 1998. Text categorization with suport vector
machines: Learning with many relevant features. In ECML,
137–142.
Johnson, R., and Zhang, T. 2015. Effective use of word order
for text categorization with convolutional neural networks.
In NAACL, 103–112.
Kim, Y. 2014. Convolutional neural networks for sentence
classification. In EMNLP, 1746–1751.
Kiros, R.; Zhu, Y.; Salakhutdinov, R.; Zemel, R. S.; Torralba,
A.; Urtasun, R.; and Fidler, S. Skip-thought vectors. In
NIPS.
Lai, S.; Xu, L.; Liu, K.; and Zhao, J. 2015. Recurrent con-
volutional neural networks for text classification. In AAAI,
2267–2273.
Le, Q. V., and Mikolov, T. 2014. Distributed representations
of sentences and documents. In ICML, 1188–1196.
Levy, O., and Goldberg, Y. 2014. Dependency-based word
embeddings. In ACL, 302–308.
Levy, O.; Goldberg, Y.; and Dagan, I. 2015. Improving
distributional similarity with lessons learned from word em-
beddings. TACL 3:211–225.

Maas, A. L.; Daly, R. E.; Pham, P. T.; Huang, D.; Ng, A. Y.;
and Potts, C. 2011. Learning word vectors for sentiment
analysis. In ACL, 142–150.
Marelli, M.; Menini, S.; Baroni, M.; Bentivogli, L.;
Bernardi, R.; and Zamparelli, R. 2014. A sick cure for the
evaluation of compositional distributional semantic models.
In LREC, 216–223.
Maron, M. E., and Kuhns, J. L. 1960. On relevance, prob-
abilistic indexing and information retrieval. Journal of the
ACM (JACM) 7(3):216–244.
Mesnil, G.; Ranzato, M.; Mikolov, T.; and Bengio, Y. 2014.
Ensemble of generative and discriminative techniques for
sentiment analysis of movie reviews. In ICLR workshop.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In NIPS, 3111–3119.
Mikolov, T. 2012. Statistical language models based on
neural networks. PhD thesis.
Mitchell, J., and Lapata, M. 2010. Composition in distri-
butional models of semantics. Cognitive Science 34:1388–
1429.
Pennington, J.; Socher, R.; and Manning, C. D. 2014. Glove:
Global vectors for word representation. In EMNLP, 1532–
1543.
Pham, N. T.; Kruszewski, G.; Lazaridou, A.; and Baroni, M.
2015. Jointly optimizing word representations for lexical
and sentential tasks with the c-phrase model. In ACL, 971–
981.
Socher, R.; Huang, E. H.; Pennin, J.; Manning, C. D.; and
Ng, A. Y. 2011. Dynamic pooling and unfolding recursive
autoencoders for paraphrase detection. In NIPS, 801–809.
Socher, R.; Perelygin, A.; Wu, J. Y.; Chuang, J.; Manning,
C. D.; Ng, A. Y.; and Potts, C. 2013. Recursive deep models
for semantic compositionality over a sentiment treebank. In
EMNLP, volume 1631, 1642. Citeseer.
Sparck Jones, K. 1972. A statistical interpretation of term
specificity and its application in retrieval. Journal of docu-
mentation 28(1):11–21.
Tang, D.; Qin, B.; and Liu, T. 2015. Document modeling
with gated recurrent neural network for sentiment classifica-
tion. In EMNLP, 1422–1432.
Wang, S. I., and Manning, C. D. 2012. Baselines and bi-
grams: Simple, good sentiment and topic classification. In
ACL, 90–94.
Williams, D. R. G. H. R., and Hinton, G. 1986. Learn-
ing representations by back-propagating errors. Nature 323–
533.
Zhang, X.; Zhao, J.; and LeCun, Y. 2015. Character-level
convolutional networks for text classification. In NIPS, 649–
657.
Zhao, H.; Lu, Z.; and Poupart, P. 2015. Self-adaptive hier-
archical sentence model. In IJCAI, 4069–4076.

3074

