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Abstract

Probabilistic topic models could be used to extract low-
dimension topics from document collections. However, such
models without any human knowledge often produce top-
ics that are not interpretable. In recent years, a number
of knowledge-based topic models have been proposed, but
they could not process fact-oriented triple knowledge in
knowledge graphs. Knowledge graph embeddings, on the
other hand, automatically capture relations between entities
in knowledge graphs. In this paper, we propose a novel
knowledge-based topic model by incorporating knowledge
graph embeddings into topic modeling. By combining latent
Dirichlet allocation, a widely used topic model with knowl-
edge encoded by entity vectors, we improve the semantic co-
herence significantly and capture a better representation of
a document in the topic space. Our evaluation results will
demonstrate the effectiveness of our method.

Introduction

Probabilistic topic models such as PLSA and latent Dirich-
let allocation (LDA) (Hofmann 1999; Blei, Ng, and Jordan
2003) are widely used for text modeling and analysis. How-
ever, these unsupervised models without any human knowl-
edge often result in topics that are difficult to interpret. In
other words, they could not produce semantically coherent
concepts (Chang et al. 2009; Mimno et al. 2011).

To overcome the drawback of interpretability in topic
model, especially in LDA, some previous works incorpo-
rate prior domain knowledge in different forms into topic
model. Although these efforts incorporate knowledge in
many ways, they could not process knowledge in the form of
fact-oriented triples in knowledge graphs, which is the main
knowledge form for machines (Wang et al. 2014c).

Recently a new research direction called knowledge graph
embedding has gained much attention (Bordes et al. 2011;
2013; Wang et al. 2014b; Guo et al. 2015). It aims at em-
bedding components of a knowledge graph like WordNet
and Freebase into continuous vectors, so as to simplify
the knowledge representation while preserving the inherent
structure of the original knowledge graph.

In this work, we propose a new knowledge-based
topic model, called Knowledge Graph Embedding LDA
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(KGE-LDA), which combines topic model and knowledge
graph embeddings. The proposed method explicitly models
document-level word co-occurrence in a corpus with knowl-
edge encoded by entities’ vectors automatically learned
from a knowledge graph in a unified model, which could
extract more coherent topics and better representation of a
document in the topic space.

The contributions of the paper are threefold:

• It proposes a novel knowledge-based topic model based
on multi-relational knowledge graphs.

• It provides a Gibbs sampling inference method which
could handle the knowledge encoded by knowledge graph
embeddings properly.

• Experimental results on three widely used datasets
demonstrate that our method outperforms several state-
of-the-art knowledge-based topic models and entity topic
models on two tasks.

Related Work

Knowledge-based Topic Models

To overcome the drawback of interpretability in topic model,
especially in LDA, some previous works incorporated prior
domain knowledge into topic model in different forms.

Word Correlation Knowledge The DF-LDA (Dirichlet
Forest LDA) model in (Andrzejewski, Zhu, and Craven
2009) could incorporate knowledge in the form of must-
links and cannot-links input by users. A must-link states that
two words should share the same topic, while a cannot-link
indicates two words should not be in the same topic. (New-
man, Bonilla, and Buntine 2011) put forward two Bayesian
regularization methods to improve topic coherence. Both
methods exploited additional word co-occurrence data to
improve the interpretability of learned topics.

Lately, General Knowledge based LDA (GK-LDA) (Chen
et al. 2013) was put forward. GK-LDA could use must-link
knowledge from multiple domains. (Xie, Yang, and Xing
2015) incorporated word correlation into LDA by building a
Markov Random Field regularization. To learn word corre-
lation knowledge automatically, AMC (topic modeling with
Automatically generated Must-links and Cannot-links) was
proposed (Chen and Liu 2014). AMC could learn must-link
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or cannot-link knowledge automatically from multiple do-
mains to improve topic modeling in each domain.

Word Semantic Category Knowledge (Andrzejewski
and Zhu 2009) proposed topic-in-set knowledge which re-
stricts topic assignment of words to a subset of topics.
Similarly, (Chemudugunta et al. 2008) proposed Concept-
topic model to assign topics of words by utilizing human-
defined concepts with a hierarchical structure. (Hu, Boyd-
Graber, and Satinoff 2011) presented a framework that al-
lows users to iteratively refine the topics by adding con-
straints that enforce a set of words must appear together in
the same topic. (Jagarlamudi, Daumé III, and Udupa 2012)
proposed to guide topic modeling by setting a set of seed
words that users believe could represent certain topics. Re-
cently, (Doshi-Velez, Wallace, and Adams 2015) proposed
a method for achieving interpretability by exploiting con-
trolled structured vocabularies in which words are organized
into tree-structured hierarchies.

Other Knowledge Forms (Andrzejewski et al. 2011) ex-
tended the topic-in-set knowledge by incorporating general
knowledge specified by first-order logic. Lately, Probase-
LDA (Yao et al. 2015), a method that combines topic model
and a probabilistic knowledge base was put forward. The
method can model text content with the consideration of
probabilistic knowledge base for detecting better topics. (Du
et al. 2015) linked LDA with constraints derived from doc-
ument relative similarities. (Hu et al. 2016) firstly combined
statistical topic representation with structural entity taxon-
omy, which provides a useful scheme to accurately induce
grounded semantics.

Some recent works used word embeddings (Mikolov et al.
2013) to encode semantic regularities. (Nguyen et al. 2015)
improved topic models by incorporating latent feature vector
representations of words trained on very large corpora. (Das,
Zaheer, and Dyer 2015) replaced LDA’s parameterization of
“topics” as categorical distributions over words with multi-
variate Gaussian distributions on the word embedding space,
in which the semantic similarity is measured by Euclidean
distance of word vectors. More recently, (Batmanghelich et
al. 2016) proposed to use the von Mises-Fisher distribution
to model the cosine distance between word vectors in a non-
parametric topic model. These methods inspired us to inte-
grate prior knowledge in the form of knowledge graph em-
bedding into topic modeling.

Although above mentioned knowledge-based topic mod-
els utilized knowledge in many ways, they failed to han-
dle knowledge in large scale fact-oriented triple knowledge
graphs. In this work, we focus on this form of knowledge
which is extensively used.

Knowledge Graph Embedding

A typical knowledge graph usually depicts knowledge as
multi-relational data and represents knowledge as triple facts
(head entity, relation, tail entity), which demonstrate the re-
lation between two entities.

Knowledge graph embedding aims at embedding en-
tities and relationships of knowledge graphs in vector
spaces (Bordes et al. 2011; 2013; Wang et al. 2014b; 2014a;

Guo et al. 2015; Xie et al. 2016). A knowledge graph is
embedded into a low-dimensional continuous vector space
while certain properties of the graph are preserved. Gener-
ally, each entity is treated as a point in the vector space and
each relation is viewed as an operation over entity embed-
dings. For example, TransE (Bordes et al. 2013) interpreted
a relation as a translation from the head entity to the tail
entity. The embedding vectors are usually obtained by mini-
mizing a global loss function regarding all entities and rela-
tions so that each entity vector captures both global and local
structural patterns of the original knowledge graph. Thus, we
can utilize entity embeddings to encode prior knowledge for
topic modeling.

Knowledge Graph Embedding LDA

In this section, we present the KGE-LDA model, the Gibbs
sampling inference and parameter learning method.

We incorporate entity embeddings into topic modeling by
extending two classical entity topic models conditionally-
independent LDA (CI-LDA) (Newman, Chemudugunta, and
Smyth 2006) and correspondence LDA (Corr-LDA) (Blei
and Jordan 2003). The two models can handle words and en-
tities in the same topic space, but they only consider named
entities recognized in text. To utilize triples in knowledge
graphs, it’s straightforward for us to use entity embeddings
which encode knowledge graph structure instead of entities
only.

Since cosine distance is typically used to measure similar-
ity between entity embeddings (Ji et al. 2015; He et al. 2015;
Yang et al. 2015) and some knowledge graph embeddings lie
on a unit sphere (�2 norm equals to 1) (Bordes et al. 2011;
2013; 2014; Yang et al. 2015; Garcia-Duran et al. 2016),
we use the von Mises-Fisher (vMF) distribution (Mardia
and Jupp 2009; Gopal and Yang 2014) to model them. The
vMF distribution is widely used to model such directional
data, which has also been employed by (Batmanghelich et al.
2016). Moreover, we found the inference is much more ef-
ficient using vMF distribution instead of multivariate Gaus-
sian distribution in our preliminary experiment, which has
also been shown in (Batmanghelich et al. 2016). vMF is a
distribution that defines a probability density over points on
a unit-sphere. The probability density function of the vMF
distribution is

f(x|μ, κ) = Cl(κ) exp(κμ
�x);Cl(κ) =

κ0.5l−1

(2π)0.5lI0.5l−1(κ)
(1)

where x ∈ R
l lies on a l − 1 dimensional sphere, i.e.,

‖x‖2 = 1. μ is the mean parameter with ‖μ‖2 = 1 and
κ > 0 is the concentration parameter, the former defines the
direction of the mean and the latter determines the spread of
the probability mass around the mean. Iν(a) is the modified
Bessel function of the first kind at order ν and argument a.
μ�x is the cosine similarity between x and mean μ, κ plays
the role of the inverse of variance.

Representation and Generative Process

We name our model based on CI-LDA as KGE-LDA(a) and
our model based on Corr-LDA as KGE-LDA(b). The graph-
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Figure 1: The graphical representation of KGE-LDA.

ical representations of KGE-LDA(a) and KGE-LDA(b) are
given in Figure 1. We illustrate the mathematical notations
in Table 1.

Here we introduce the details of our model. Let D be
the number of documents where each document d has Nwd

words and Ned entities linked to existing knowledge graphs
by existing entity linking tools, wdn is the n-th word in d and
edm is the L-dimensional entity embedding of m-th entity
in d, which is obtained by TransE in this work. We choose
TransE because it is simple and effective, and it achieves the
state-of-the-art performance in encoding knowledge. More-
over, entity vectors of TransE naturally have unit �2 norm
which need not to be post-processed. zdn and z′dm are latent
topic assignments for wdn and edm respectively. Let K be
the number of topics, φk is the V -dimensional topic-word
multinomial for topic k ∈ 1 . . .K, where V is the vocabu-
lary size and θd is the K-dimensional document-topic multi-
nomial for d. Since our entities are continuous vectors on a
unit-sphere, we characterize each entity topic k ∈ 1 . . .K
as a vMF distribution with parameters (μk, κk). α and β are
hyperparameters of the Dirichlet priors on θd and φk respec-
tively. μ0, C0 are the hyperparameters of the prior vMF dis-
tribution of μk. m and σ are the mean and standard deviation
of the prior logNormal distribution of κk.

The generative process of KGE-LDA(a) is given as:
1. For each document d draw θd ∼ Dir(α) .
2. For each topic k in 1 . . .K:

(a) Draw φk ∼ Dir(β).
(b) Draw μk ∼ vMF(μ0, C0).
(c) Draw κk ∼ logNormal(m,σ2).

3. For each of the Nwd
words in document d:

(a) Draw a topic zdn ∼ Mult(θd).
(b) Draw a word wdn ∼ Mult(φzdn).

Symbol Description

D The number of documents.

K The number of topics.

V The number of unique words.

L The dimension of entity embeddings.

Nwd
The number of words in document d.

Ned
The number of entities in document d.

wdn The n-th word in document d.

edm The embedding of the m-th entity in document d.

zdn The latent topic assignment for wdn.

z′
dm The latent topic assignment for edm.

φk The topic-word multinomial for topic k.

θd The document-topic multinomial for document d.

(μk, κk) The vMF distribution parameters of entity topic k.

α Hyperparameter of the Dirichlet prior on θd.

β Hyperparameter of the Dirichlet prior on φk .

(μ0, C0) Hyperparameter of the prior vMF distribution.

(m,σ) Hyperparameter of the prior log-normal distribution.

Table 1: Mathematical notations.

4. For each of the Ned entities in document d:

(a) Draw a topic z′dm ∼ Mult(θd).
(b) Draw entity embedding edm ∼ vMF(μz′

dm
, κz′

dm
).

The generative process of KGE-LDA(b) is similar to
KGE-LDA(a). The only difference is the entity embeddings
are generated by topics of words in the same document:

• For each of the Ned entities in document d:

1. Draw a topic z′dm ∼ Unif(zd1, . . . , zdNwd
).

2. Draw entity embedding edm ∼ vMF(μz′
dm

, κz′
dm

).

Inference and Parameter Learning

We use Gibbs sampling to infer latent topic assignments zdn
and z′dm. The Gibbs sampling equation for zdn in both two
proposed models is defined as:

p(zdn = k|wdn,w−dn, z−dn, z
′, α, β)

∝ ndk + α

Nwd
+Ned +Kα

× nkwdn
+ β

nk + V β

(2)

where k is a topic, w−dn are all words except wdn, z−dn

are topic assignments for all words except wdn, z′ are topic
assignments for all entities, ndk is the number of times topic
k is assigned to a word or an entity in document d, nkwdn

is
the number of times wdn is assigned to topic k and nk is the
number of times any word is assigned to topic k.

The Gibbs sampling equations for z′dm are similar to
Gibbs sampling equations in (Gopal and Yang 2014). We
can develop efficient sampling techniques by using the fact
that vMF distributions are conjugate. This enables us to
completely integrate out μk and update the model only by
maintaining the topic assignment variable z′dm and the con-
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centration parameters κk. The inference equations for KGE-
LDA(a) are given by:

p(z′dm = k|edm, z′−dm, e−dm, z, κk, α, μ0, C0,m, σ) ∝
ndk + α

Nwd
+Ned +Kα

× CL(κk)×
CL(‖κk

∑
j �=dm,z′

j=k ej + C0μ0‖)
CL(‖κk

∑
j:z′

j=k ej + C0μ0‖)
(3)

p(κk|κ−k, ..) ∝ CL(C0)CL(κk)
n′
k

CL(‖κk

∑
j:z′

j=k ej + C0μ0‖)×

logNormal(κk|m,σ2)

(4)

where z′−dm are topic assignments for all entities except
edm, e−dm are embeddings of all entities except edm, z are
topic assignments for all words, n′

k is the number of times
any entity is assigned to topic k. CL(κk) has the same mean-
ing as Cl(κ) in equation (1) if we replace L and κk with l
and κ. Since κk is drawn from the logNormal distribution,
we first sample some κk samples (100 samples in our exper-
iment, we also try other numbers, but don’t find much differ-
ence) from logNormal(κk|m,σ2), then sample the final κk

from these samples using equation (4).
The inference equations for KGE-LDA(b) are very similar

to KGE-LDA(a), the only distinction is:

p(z′dm = k|edm, z′−dm, e−dm, z, κk, α, μ0, C0,m, σ) ∝
ndk

Nwd

× CL(κk)×
CL(‖κk

∑
j �=dm,z′

j=k ej + C0μ0‖)
CL(‖κk

∑
j:z′

j=k ej + C0μ0‖)
(5)

With Gibbs sampling, we can estimate θd and φk using
the two factors in equation (2).

θdk =
ndk + α

Nwd
+Ned +Kα

(6)

φkwdn
=

nkwdn
+ β

nk + V β
(7)

Experiment

In this section we evaluate our Knowledge Graph Embed-
ding LDA on two experimental tasks. Specifically we wish
to determine:

• Can our model find coherent and meaningful topics?

• Can our model learn better topic distribution for docu-
ment classification?

Baselines. We compare our KGE-LDA with six state-of-
the-art topic models:

• LDA (Blei, Ng, and Jordan 2003), the most widely used
topic model.

• Corr-LDA (Blei and Jordan 2003), a classical entity topic
model.

• CI-LDA (Newman, Chemudugunta, and Smyth 2006), a
classical entity topic model.

• Concept-topic model (CTM) (Chemudugunta et al. 2008),
a knowledge-based topic model that can exploit word se-
mantic category knowledge.

• GK-LDA (Chen et al. 2013), a knowledge-based topic
model that can process must-link knowledge. It can au-
tomatically deal with wrong knowledge1.

• LF-LDA (Nguyen et al. 2015), a knowledge-based topic
model using word embeddings trained from large external
data2.

Datasets. We run our experiments3 on three widely used
datasets 20-Newsgroups (20NG), NIPS and the Ohsumed
corpus. The 20NG dataset4 (“bydate” version) contains
18,846 documents evenly categorized into 20 different cat-
egories. 11,314 documents are in the training set and 7,532
documents are in the test set. The NIPS dataset5 contains
1,740 papers from the NIPS conference. The Ohsumed cor-
pus is from the MEDLINE database, which is a biblio-
graphic database of important medical literature maintained
by the National Library of Medicine. In this study, we con-
sider the 13,929 unique Cardiovascular diseases abstracts in
the first 20,000 abstracts of the year 19916. Each document
in the set has one or more associated categories from the 23
disease categories. As we focus on single-label text classi-
fication, the documents belonging to multiple categories are
eliminated so that 7,400 documents belonging to only one
category remain. 3,357 documents are in the training set and
4,043 documents are in the test set.

The datasets are tokenized with Stanford CoreNLP. After
standard pre-processing of removing stop words, low fre-
quency words (appearing less than 10 times) and words do
not appear in pre-trained word embeddings (see next para-
graph), there are 20,881 distinct words in the 20NG dataset,
14,482 distinct words in the NIPS dataset and 8,446 distinct
words in the Ohsumed dataset.

External Knowledge. The knowledge graph we em-
ploy is WordNet (Miller 1995). WordNet is a large lexi-
cal knowledge graph. Entities in WordNet are synonyms
which express distinct concepts. Relations in WordNet are
conceptual-semantic and lexical relations. In this work, we
use a subset of WordNet (WN18) introduced in (Bordes et
al. 2013) 7. WN18 contains 151,442 triplets with 40,943 en-
tities and 18 relations. We link tokenized words to entities in
WN18 via NLTK8. For CI-LDA and Corr-LDA, the linked
entities are the external knowledge. For KGE-LDA, we pre-
train 50-dimensional entity vectors using TransE, we find
experimental results are not sensitive to dimensions of entity
vectors. For CTM, we treat the linked entities in WN18 as
concepts of words (in vocabulary). For GK-LDA, we view

1https://github.com/czyuan/GKLDA
2https://github.com/datquocnguyen/LFTM
3We released the implementation of this paper at the first au-

thor’s GitHub: https://github.com/yao8839836/KGE-LDA.
4http://qwone.com/∼jason/20Newsgroups/
5http://www.cs.nyu.edu/∼roweis/data.html
6http://disi.unitn.it/moschitti/corpora.htm
7available at https://everest.hds.utc.fr/doku.php?id=en:transe
8http://www.nltk.org/howto/wsd.html
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Figure 2: Average PMI Topic Coherence of all models on three datasets with different number of topics K. We run all models
10 times and report the mean ± standard deviation. A higher PMI score implies a more coherent topic. Improvements of
KGE-LDA(a) and KGE-LDA(b) over LDA, CI-LDA and Corr-LDA are significant (p < 0.01) based on student t-test.

words (in vocabulary) linking to the same entity as must-
links. For LF-LDA, we pre-train 50-dimensional Skip-Gram
word2vec (Mikolov et al. 2013) word vectors using a full
snapshot of the English-language edition of Wikipedia in
Feb 2015 9. The corpus has 4,776,093 articles.

Settings. For all the methods in comparison, we set the
hyperparameters as α = 50/K, β = 0.01, a com-
monly used setting which has often been employed in prior
work (Steyvers and Griffiths 2007). For KGE-LDA, we ini-
tialize each dimension of μ0 with a Gaussian distribution
N(0, 1) and then normalize μ0 into a unit norm vector, we
set C0 = 0.01, m = 0.01, σ = 0.25, we also experiment
with other settings of these priors but do not find much dif-
ference. We set other parameters as the recommended set-
tings in baseline papers, i.e., entity (concept) topic hyper-
parameter β′ = 0.01 for CI-LDA, Corr-LDA and CTM,
λ = 0.6 for LF-LDA and λ = 2000, ε = 0.07 for GK-LDA.
All models are trained using 1000 Gibbs sampling iterations.
The only exception is that 1200 iterations (1000 initial iter-
ations with LDA model + 200 iterations with LF-LDA) are
run for LF-LDA. This setting can lead to a fair comparison
with LDA because the differences are in the 200 LF-LDA
iterations.

Topic Coherence

Quantitative Analysis. We evaluate topics produced by
each model based on point-wise mutual information (PMI)
Topic Coherence (Newman et al. 2010). Typically topic
models are evaluated based on perplexity. Unfortunately,
perplexity on the held-out test set does not reflect the in-
terpretability of topics and may be contrary to human judg-
ments (Chang et al. 2009). Alternatively, the Topic Coher-
ence metric has been shown to correlate well with human
judging (Lau, Newman, and Baldwin 2014). Since our goal
is to discover coherent or meaningful topics, Topic Coher-
ence is more suitable for our evaluation. The PMI Topic Co-

9http://deepdive.stanford.edu/opendata/

herence of a topic k is defined as:

PMI(k) =
N∑

j=2

j−1∑

i=1

log
p(wi, wj)

p(wi)p(wj)
(8)

where N is the number of top words of k, p(wi) is the prob-
ability that word wi appears in a document, p(wi, wj) is the
probability that word wi and wj co-occur in the same docu-
ment. A higher PMI score implies a more coherent topic. We
compute the average Topic Coherence of top N = 10 words
of each topic. We use top 10 words because they show the
most important semantic information of a topic, and many
papers using PMI (including the original work by (Newman
et al. 2010)) consider top 10 words. In order to compute
PMI, we need a large external corpus. In our experiments,
we use the 4,776,093 Wikipedia articles.

Figure 2 plots average PMI Topic Coherence of all models
on three datasets. We can observe that CI-LDA and Corr-
LDA perform slightly better than LDA, which means us-
ing entities in text can improve topic interpretability, but
the improvements are not significant. When using entity em-
beddings instead of entities, the topic coherence scores are
significantly improved because entity embeddings encode
more information about knowledge graph structure. CTM
does not perform well, this maybe because the number of
unique concepts (several thousand in our experiments) is far
more than the number of topics, which skews the original
topic space. GK-LDA can produce some very good results
on 20NG and NIPS, which shows its ability to utilize must-
link knowledge. However, the results on Ohsumed are not
satisfactory, for the generated must-links using WN18 may
not help topic modeling in medical domain. LF-LDA per-
forms well on 20NG but not on NIPS and Ohsumed, which
means word vectors learned from Wikipedia can help topic
modeling in general domain, but may not be useful for spe-
cific domains such as machine learning and medicine.

Qualitative Analysis. Table 2 shows some example top-
ics with their PMI scores learned from the three corpora
by LDA and our KGE-LDA(a) model. We try to find the
best possible matches from the topics. We can note that

3123



20NG NIPS Ohsumed
LDA

information car card model control learning cancer gene treatment
list cars video distribution system examples tumor dna therapy

group buy apple data motor generalization tumors analysis dose
send engine monitor probability model training carcinoma protein effects
mail article memory gaussian position error breast normal drug

address writes mac models trajectory set cases region days
posting oil ram parameters controller space primary genetic study

questions subject speed mixture robot algorithm malignant found day
book organization organization bayesian figure vector lesions mrna effective

internet dealer drivers likelihood learning support local mutation placebo
67.181 57.443 58.594 130.151 72.418 76.053 136.831 88.789 97.110

KGE-LDA(a)
internet car drive distribution control kernel cancer gene treatment

mail cars windows bayesian trajectory support tumor dna therapy
email engine dos gaussian robot xi survival protein dose
list oil card prior controller vector tumors region drug

send miles disk posterior arm margin carcinoma genetic effects
e-mail dealer mac probability model examples breast analysis placebo

information speed scsi variables forward set stage mutation trial
address buy memory markov motor kernels malignant sequence oral

fax ford system distributions trajectories svm chemotherapy molecular mg
network drive apple approximation inverse machines primary mrna effective
89.216 63.679 84.378 154.842 86.199 88.283 149.913 107.788 106.555

Table 2: Example topics learned from three datasets by LDA and our KGE-LDA(a) model with K = 30. The last row for each
model is the topic coherence (PMI) computed using the 4,776,093 Wikipedia documents as reference.

KGE-LDA(a) finds more closely related words in a topic.
For 20NG, KGE-LDA(a) finds “e-mail” and “network” in
the first email topic which are not discovered by LDA, and
“questions” and “book” in LDA topic are not related words.
In the second car topic, the closely related words “speed”,
“miles”, “ford” and “drive” are in KGE-LDA(a) topic, and
noisy words “article”, “writes”, “subject” and “organiza-
tion” are in LDA topic. In the third computer topic, LDA
still shows a noisy word “organization” while KGE-LDA(a)
words are all related to the topic. The results are similar
for NIPS and Ohsumed. For NIPS, KGE-LDA(a) presents
more related words in the Bayesian topic (e.g., “prior” and
“posterior”), the robotics topic (e.g., “arm” and “trajecto-
ries”) and the Support Vector Machines topic (e.g., “kernel”
and “svm”). For Ohsumed, more words in KGE-LDA(a) are
related to the cancer topic (e.g., “chemotherapy” and “sur-
vival”), the gene topic (e.g., “sequence” and “molecular”)
and the drug topic (e.g., “oral” and “mg”). The observations
are consistent with quantitative results.

Document Classification Evaluation

We perform document classification with the learned θd
as the feature vector of document d, and employ a linear
kernel Support Vector Machines (SVM) classifier LIBLIN-
EAR (Fan et al. 2008).

Table 3 gives the classification accuracy on the two la-
beled datasets. We can see that Corr-LDA and CI-LDA per-

form similarly to LDA, which means using entities only
could not help to distinguish documents. This is probably
because entities in WordNet usually have the same name
with the linked words, which may not provide additional
information for the task. The best variation of KGE-LDA
significantly outperforms LDA, which shows using entity
embeddings can also lead to a more distinguishable docu-
ment representation. CTM could not produce good results
as in the topic coherence evaluation, because the skewed
topic vectors are difficult to be classified. GK-LDA and LF-
LDA also perform similarly to LDA, which shows must-
links and pre-trained word vectors may not be helpful for
document topic representation. The only exception is GK-
LDA on Ohsumed with K = 20 and 25, the highest accu-
racies maybe because the number of LR-sets (must-links)
for Ohsumed is small, so when K is small, the statistics for
topic–LR-set–word and the word correlation computing are
more sufficient in GK-LDA.

Conclusion

This paper presents KGE-LDA, which combines topic
model and knowledge graph embeddings, in particular LDA
model and TransE. The proposed method models document-
level word co-occurrence with knowledge encoded by en-
tity vectors automatically learned from external knowledge
graphs, could extract more coherent topics and better topic
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Dataset Model K = 20 K = 25 K = 30 K = 35 K = 40 K = 45

20NG

LDA 0.556 ± 0.021 0.618 ± 0.012 0.646 ± 0.017 0.659 ± 0.019 0.681 ± 0.019 0.693 ± 0.012
Corr-LDA 0.547 ± 0.018 0.604 ± 0.031 0.652 ± 0.024 0.671 ± 0.032 0.678 ± 0.020 0.684 ± 0.020
CI-LDA 0.556 ± 0.022 0.598 ± 0.015 0.628 ± 0.022 0.655 ± 0.022 0.672 ± 0.017 0.689 ± 0.019

CTM 0.193 ± 0.009 0.225 ± 0.010 0.249 ± 0.008 0.280 ± 0.008 0.295 ± 0.009 0.312 ± 0.006
GK-LDA 0.557 ± 0.000 0.620 ± 0.000 0.634 ± 0.000 0.641 ± 0.000 0.679 ± 0.000 0.678 ± 0.000
LF-LDA 0.541 ± 0.023 0.583 ± 0.018 0.632 ± 0.019 0.661 ± 0.019 0.662 ± 0.021 0.673 ± 0.023

KGE-LDA(a) 0.586 ± 0.023 0.638 ± 0.024 0.666 ± 0.028 0.692 ± 0.025 0.699 ± 0.018 0.705 ± 0.011
KGE-LDA(b) 0.571 ± 0.025 0.634 ± 0.027 0.670 ± 0.019 0.669 ± 0.017 0.688 ± 0.016 0.695 ± 0.015

Ohsumed

LDA 0.401 ± 0.012 0.427 ± 0.015 0.448 ± 0.008 0.452 ± 0.012 0.468 ± 0.009 0.476 ± 0.013
Corr-LDA 0.408 ± 0.010 0.440 ± 0.018 0.453 ± 0.009 0.462 ± 0.011 0.471 ± 0.010 0.486 ± 0.008
CI-LDA 0.411 ± 0.015 0.429 ± 0.015 0.440 ± 0.013 0.451 ± 0.013 0.458 ± 0.011 0.475 ± 0.009

CTM 0.240 ± 0.017 0.244 ± 0.010 0.247 ± 0.007 0.252 ± 0.005 0.260 ± 0.015 0.268 ± 0.009
GK-LDA 0.425 ± 0.000 0.446 ± 0.000 0.425 ± 0.000 0.463 ± 0.000 0.459 ± 0.000 0.457 ± 0.000
LF-LDA 0.397 ± 0.009 0.424 ± 0.012 0.445 ± 0.011 0.454 ± 0.008 0.462 ± 0.016 0.479 ± 0.010

KGE-LDA(a) 0.418 ± 0.008 0.444 ± 0.020 0.455 ± 0.010 0.470 ± 0.008 0.476 ± 0.008 0.490 ± 0.014
KGE-LDA(b) 0.418 ± 0.012 0.443 ± 0.009 0.455 ± 0.009 0.465 ± 0.011 0.477 ± 0.011 0.490 ± 0.009

Table 3: Classification accuracy of all models on two labeled datasets with different number of topics K. We run all models
10 times and report the mean ± standard deviation. Improvements of the best variation of KGE-LDA over LDA are significant
(p < 0.05) based on student t-test. The best results are in bold font.

representation. Experimental results on three datasets show
the effectiveness of the proposed method. We plan to ex-
plore more effective ways to incorporate entity embeddings
and experiment with more knowledge graphs in future work.
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