
Estimating Uncertainty Online Against an Adversary

Volodymyr Kuleshov
Stanford University
Stanford, CA 94305

tkuleshov@cs.stanford.edu

Stefano Ermon
Stanford University
Stanford, CA 94305

ermon@cs.stanford.edu

Abstract

Assessing uncertainty is an important step towards en-
suring the safety and reliability of machine learning sys-
tems. Existing uncertainty estimation techniques may
fail when their modeling assumptions are not met,
e.g. when the data distribution differs from the one seen
at training time. Here, we propose techniques that assess
a classification algorithm’s uncertainty via calibrated
probabilities (i.e. probabilities that match empirical out-
come frequencies in the long run) and which are guar-
anteed to be reliable (i.e. accurate and calibrated) on
out-of-distribution input, including input generated by
an adversary. This represents an extension of classical
online learning that handles uncertainty in addition to
guaranteeing accuracy under adversarial assumptions.
We establish formal guarantees for our methods, and we
validate them on two real-world problems: question an-
swering and medical diagnosis from genomic data.

Introduction

Assessing uncertainty is an important step towards ensur-
ing the safety and reliability of machine learning systems. In
many applications of machine learning — including medical
diagnosis (Jiang et al. 2012), natural language understand-
ing (Nguyen and O’Connor 2015), and speech recognition
(Yu, Li, and Deng 2011) — assessing confidence can be as
important as obtaining high accuracy. This work explores
confidence estimation for classification problems.

An important limitation of existing methods is the as-
sumption that data is sampled i.i.d. from a distribution
P(x, y); when test-time data is distributed according to a
different P∗, these methods may become overconfident and
erroneous. Here, we introduce new, robust uncertainty esti-
mation algorithms guaranteed to produce reliable confidence
estimates on out-of-distribution input, including input gen-
erated by an adversary.

In the classification setting, the most natural way of mea-
suring an algorithm’s uncertainty is via calibrated probabil-
ity estimates that match the true empirical frequencies of
an outcome. For example, if an algorithm predicted a 60%
chance of rain 100 times in a given year, its forecast would
be calibrated if it rained on about 60 of those 100 days.
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Background. Calibrated confidence estimates are typi-
cally constructed via recalibration, using methods such as
Platt scaling (Platt 1999) or isotonic regression (Niculescu-
Mizil and Caruana 2005). In the context of binary clas-
sification, these methods reduce recalibration to a one-
dimensional regression problem that, given data (xi, yi)

n
i=1,

trains a model g(s) (e.g. logistic regression) to predict prob-
abilities pi = g(si) from uncalibrated scores si = h(xi)
produced by a classifier h (e.g. SVM margins). Fitting
g is equivalent to performing density estimation targeting
P(Y = 1|h(X) = si) and hence may fail on out-of-
distribution testing data.

The methods we introduce in this work are instead based
on calibration techniques developed in the literature on on-
line learning in mathematical games (Foster and Vohra 1998;
Abernethy, Bartlett, and Hazan 2011). These classical meth-
ods are not suitable for standard prediction tasks in their
current form. For one, they do not admit covariates xi that
might be available to improve the prediction of yi; hence,
they also do not consider the predictive power of the fore-
casts. For example, predicting 0.5 on a sequence 01010...
formed by alternating 0s and 1s is considered a valid cali-
brated forecaster. The algorithms we present here combine
the advantages of online calibration (adversarial assump-
tions), and of batch probability recalibration (covariates and
forecast sharpness).

Online learning with uncertainty. Whereas classical on-
line optimization aims to accurately predict targets y given
x (via a convex loss �(x, y)), our algorithms aim to accu-
rately predict uncertainties p(y = ŷ). The p here are defined
as empirical frequencies over data seen so far; it turns out
that these probability-like quantities can be estimated under
the standard adversarial assumptions of online learning. We
thus see our work as extending classical online optimization
to handle uncertainty in addition to guaranteeing accuracy.

Example. As a concrete motivating example, consider a
medical system that diagnoses a long stream of patients in-
dexed by t = 1, 2, ..., outputting a disease risk pt ∈ [0, 1] for
each patient based on their medical record xt. Provably cali-
brated probabilities in this setting may be helpful for making
informed policy decisions (e.g. by providing guaranteed up-
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per bounds on the number of patients readmitted after a dis-
charge) and may be used to communicate risks to patients in
a more intuitive way. This setting is also inherently online,
since patients are typically observed one at a time, and may
not be i.i.d. due to e.g., seasonal disease outbreaks.

Contributions. More formally, our contributions are to:

• Formulate a new problem called online recalibration,
which requires producing calibrated probabilities on po-
tentially adversarial input, while retaining the predictive
power of a given baseline uncalibrated forecaster.

• Propose a meta-algorithm for online recalibration that
uses classical online calibration as a black box subroutine.

• Show that our technique can recalibrate the forecasts of
any existing classifier at the cost of an O(1/

√
ε) overhead

in the convergence rate of A, where ε > 0 is the desired
level of accuracy.

• Surprisingly, both online and standard batch recalibration
(e.g., Platt scaling) may be performed only when accuracy
is measured using specific loss functions; our work char-
acterizes the losses which admit a recalibration procedure
in both the online and batch settings.

Background

Below, we will use IE denote the indicator function of E,
[N ] and [N ]0 to (respectively) denote the sets {1, 2, ..., N}
and {0, 1, 2, ..., N}, and Δd to denote the d-dimensional
simplex.

Learning with Expert Advice

Learning with expert advice (Cesa-Bianchi and Lugosi
2006) is a special case of the general online optimization
framework (Shalev-Shwartz 2007) that underlies online cal-
ibration algorithms. At each time t = 1, 2, ..., the fore-
caster F receives advice from N experts and chooses a
distribution wt ∈ ΔN−1 over their advice. Nature then
reveals an outcome yt and F incurs an expected loss of∑N

i=1 wti�(yt, ait), where �(yt, ait) is the loss under expert
i’s advice ait. Performance in this setting is measured using
two notions of regret.

Definition 1. The external regret Rext
T and the internal re-

gret Rint
T are defined as

Rext
T =

T∑
t=1

�̄(yt, pt)− min
i∈[N ]

T∑
t=1

�(yt, ait)

Rint
T = max

i,j∈[N ]

T∑
t=1

pt,i (�(yt, ait)− �(yt, ajt)) ,

where �̄(y, p) =
∑N

i=1 pi�(y, ait) is the expected loss.

External regret measures loss with respect to the best fixed
expert, while internal regret is a stronger notion that mea-
sures the gain from retrospectively switching all the plays of
action i to j. Both definitions admit algorithms with sublin-
ear, uniformly bounded regret.

Figure 1: Our method bins uncalibrated scores and runs on-
line calibration subroutines in each bin (not unlike the his-
togram recalibration method targeting P(y = 1 | s = t)).

In this paper, we will be particularly interested in proper
losses �, whose expectation over y is minimized by the prob-
ability corresponding to the average y.
Definition 2. A loss �(y, p) : {0, 1}× [0, 1] → R+ is proper
if p ∈ argminq Ey∼Ber(p)�(y, q) ∀p.

Examples of proper losses include the L2 loss �2(y, p) =
(y−p)2, the log-loss �log(y, p) = y log(p)+(1−y) log(1−
p), and the the misclassification loss �mc(y, p) = (1 −
y)Ip<0.5 + yIp≥0.5. Counter-examples include the L1 and
the hinge losses.

Calibration in Online Learning

Intuitively, calibration means that the true and predicted fre-
quencies of an event should match. For example, if an al-
gorithm predicts a 60% chance of rain 100 times in a given
year, then we should see rain on about 60 of those 100 days.
More formally, let F cal be a forecaster making predictions in
the set { i

N | i = 0, ..., N}, where 1/N is called the resolu-

tion of F cal; consider the quantities ρT (p) =
∑T

t=1 ytIpt=p∑T
t=1 Ipt=p

and

Cp
T =

N∑
i=0

∣∣∣∣ρT (i/N)− i

N

∣∣∣∣
p
(

1

T

T∑
t=1

I{pt=
i
N }

)
. (1)

The term ρT (p) denotes the frequency at which event y = 1
occurred over the times when we predicted p. Our intuition
was that ρT (p) and p should be close to each other; we cap-
ture this using the notion of calibration error Cp

T for p ≥ 1;
this corresponds to the weighted �p distance between the
ρT (i/N) and the predicted probabilities i

N ; typically one
assumes that p = 1 or p = 2. To simplify notation, we will
use the term CT when the exact p is unambiguous.
Definition 3. We say that F cal is an (ε, �p)-calibrated algo-
rithm with resolution 1/N if lim supT→∞ Cp

T ≤ ε a.s.
There exists a vast literature on calibration in the on-

line setting (Cesa-Bianchi and Lugosi 2006) which is pri-
marily concerned with constructing calibrated predictions
pt ∈ [0, 1] of a binary outcome yt ∈ {0, 1} based solely
on the past sequence y1, ..., yt−1. Surprisingly, this is pos-
sible even when the yt are chosen adversarially by reduc-
ing the problem to internal regret minimization relative to
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N +1 experts with losses (yt− i/N)2 and proposed predic-
tions i/N for i ∈ [N ]0. All such algorithms are randomized,
hence our results will hold almost surely (a.s.). See Chapter
4 in Cesa-Bianchi and Lugosi for details.

Online Recalibration

Unfortunately, existing online calibration methods are not
directly applicable in real-world settings. For one, they do
not take into account covariates xt that might be available to
improve the prediction of yt. As a consequence, they cannot
produce accurate forecasts: for example, they would con-
stantly predict 0.5 on a sequence 01010... formed by alter-
nating 0s and 1s.

To address these shortcomings, we define here a new
problem called online recalibration, in which the task is to
transform a sequence of uncalibrated forecasts pFt into pre-
dictions pt that are calibrated and almost as accurate as the
original pFt . The forecasts pFt may come from any existing
machine learning system F ; our methods treat it as a black
box and preserve its favorable convergence properties.

Formally, we define the online recalibration task as a gen-
eralization of the classical online optimization framework
(Shalev-Shwartz 2007; Cesa-Bianchi and Lugosi 2006). At
every step t = 1, 2, ...:

1: Nature reveals features xt ∈ R
d.

2: Forecaster F predicts pFt = σ(wt−1 · xt) ∈ [0, 1].
3: A recalibration algorithm A produces a calibrated prob-

ability pt = A(pFt ) ∈ [0, 1].
4: Nature reveals label yt ∈ {0, 1}; F incurs loss of

�(yt, pt), where � : [0, 1] × {0, 1} → R
+ is convex

in pt for all yt.
5: F chooses wt+1; A updates itself based on yt.

Here, σ is a transfer function chosen such that the task is
convex in wt. In the medical diagnosis example, xt repre-
sents medical or genomic features for patient t; we use fea-
ture weights wt to predict the probability pFt that the patient
is ill; the true outcome is encoded by yt. We would like A
to produce pFt that are accurate and well-calibrated in the
following sense.

Definition 4. We say that A is an (ε, �cal)-accurate online
recalibration algorithm for the loss �acc if (a) the forecasts
pt = A(pFt ) are (ε, �cal)-calibrated and (b) the regret of pt
with respect to pFt is a.s. small in terms of �acc:

lim sup
T→∞

1

T

T∑
t=1

(
�acc(yt, pt)− �acc(yt, p

F
t )

) ≤ ε. (2)

Algorithms for Online Recalibration

Next, we propose an algorithm for performing online prob-
ability recalibration; we refer to our approach as a meta-
algorithm because it repeatedly invokes a regular online cal-
ibration algorithm as a black-box subroutine. Algorithm 1
outlines this procedure.

At a high level, Algorithm 1 partitions the uncal-
ibrated forecasts pFt into M buckets/intervals I =
{[0, 1

M ), [ 1
M , 2

M ), ..., [M−1
M , 1]}; it trains an independent in-

stance of F cal on the data {pFt , yt | pFt ∈ Ij} belonging to

Algorithm 1 Online Recalibration

Require: Online calibration subroutine F cal and number of
buckets M

1: Let I = {[0, 1
M ), [ 1

M , 2
M ), ..., [M−1

M , 1]} be a set of in-
tervals that partition [0, 1].

2: Let F = {F cal
j | j = 0, ...,M − 1} be a set of M

independent instances of F cal.
3: for t = 1, 2, ...: do
4: Observe uncalibrated forecast pFt .
5: Let Ij ∈ I be the interval containing pFt .
6: Let pt be the forecast of F cal

j .
7: Output pt. Observe yt and pass it to F cal

j .

each bucket Ij ∈ I; at prediction time, it calls the instance of
F cal associated with the bucket of the uncalibrated forecast
pFt .

Algorithm 1 works because a calibrated predictor is at
least as accurate as any constant predictor; in particular, each
subroutine F cal

j is at least as accurate as the prediction j
M ,

which also happens to be approximately pFt when F cal
j was

called. Thus, each F cal
j is as accurate as its input sequence of

pFt . One can then show that if each each F cal
j is accurate and

calibrated, then so it their aggrgate, Algorithm 1. The rest of
this section provides a formal version of this argument; due
to space limitations, we defer most of our full proofs to the
appendix.

Calibration and Accuracy of Online Recalibration

Notation. We define the calibration error of F cal
j and of

Algorithm 1 at i/N as (respectively)

C
(j)
T,i =

∣∣∣∣ρ(j)T (i/N)− i

N

∣∣∣∣
p
(

1

Tj

T∑
t=1

I
(j)
t,i

)

CT,i =

∣∣∣∣ρT (i/N)− i

N

∣∣∣∣
p
(

1

T

T∑
t=1

It,i

)
,

where It,i = I{pt = i/N}. Terms marked with a (j) denote
the restriction of the usual definition to the input of sub-
routine F cal

j (see the appendix for details). We may write

the calibration losses of F cal
j and Algorithm 1 as C

(j)
T =∑N

i=0 C
(j)
T,i and CT =

∑N
i=0 CT,i.

Assumptions. In this section, we will assume that the sub-
routine F cal used in Algorithm 1 is (ε, �1)-calibrated and
that C(j)

Tj
≤ RTj

+ ε uniformly (RTj
= o(1) as Tj → ∞; Tj

is the number of calls to instance F cal
j ). This also implies �p-

calibration (by continuity of �p), albeit with different rates
RTj

and a different ε. Abernethy, Bartlett, and Hazan intro-
duce (ε, �1)-calibrated Fj . We also provide proofs for the �2
loss in the appendix.
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Crucially, we assume that the loss � used for measuring
accuracy is proper and bounded with �(·, i/N) < B for
i ∈ [N ]0; since the set of predictions is finite, this is a
mild requirement. Finally, we make additional continuity as-
sumptions on � in Lemma 2.

Recalibration with proper losses. Surprisingly, not ev-
ery loss � admits a recalibration procedure. Consider, for
example, the following continuously repeating sequence
001001001... of yt’s. A calibrated forecaster must converge
to predicting 1/3 (a constant prediction) with an �1 loss
of ≈0.44; however predicting 0 for all t has an �1 loss of
1/3 < 0.44. Thus we cannot recalibrate this sequence and
also remain equally accurate under the �1 loss. The same
argument also applies to batch recalibration (e.g. Platt scal-
ing): we only need to assume that yt ∼ Ber(1/3) i.i.d.

However, recalibration is possible for a very large class of
proper losses. Establishing this fact will rely on the follow-
ing key technical lemma.
Lemma 1. If � is a proper loss bounded by B > 0, then an
(ε, �1)-calibrated F cal a.s. has a small internal regret w.r.t. �
and satisfies uniformly over time T the bound

R
int
T = max

ij

T∑

t=1

Ipt=i/N (�(yt, i/N) − �(yt, j/N)) ≤ 2B(RT + ε).

According to Lemma 1, if a set of predictions is cali-
brated, then we never want to retrospectively switch to pre-
dicting p2 at times when we predicted p1. Intuitively, this
makes sense: if predictions are calibrated, then p1 should
minimize the total (or average) loss

∑
t:pt=p1

�(yt, p) over
the times t when p1 was predicted (at least better so than
p2). However, our �1 counter-example above shows that this
intuition does not hold for every loss; we need to explicitly
enforce our intuition, which amounts to assuming that � is
proper, i.e. that p ∈ argminq Ey∼Ber(p)�(y, q).

Accuracy and calibration. An important consequence of
Lemma 1 is that a calibrated algorithm has vanishing re-
gret relative to any fixed prediction (since minimizing in-
ternal regret also minimizes external regret). Using this fact,
it becomes straightforward to establish that Algorithm 1 is
at least as accurate as the baseline forecaster F .

Lemma 2 (Recalibration preserves accuracy). Consider Al-
gorithm 1 with parameters M ≥ N > 1/ε and let � be a
bounded proper loss for which

1. �(yt, p) ≤ �(yt, j/M)+B/M for p ∈ [j/M, (j+1)/M);
2. �(yt, p) ≤ �(yt, i/N) +B/N for p ∈ [i/N, (i+ 1)/N);

Then the recalibrated pt a.s. have vanishing �-loss regret
relative to pFt and we have uniformly:

1

T

T∑
t=1

�(yt, pt)− 1

T

T∑
t=1

�(yt, p
F
t ) < NB

M∑
j=1

Tj

T
RTj

+3Bε.

Proof (sketch). When pt is the output of a given Fj , we have
�(yt, p

F
t ) ≈ �(yt, j/M) ≈ �(yt, ij/M) (since pFt is in the j-

th bucket, and since M ≥ N is sufficiently high resolution).

Subroutine Regret Minimization Blackwell Approchability

Time / step O(1/ε) O(log(1/ε))

Space / step O(1/ε2) O(1/ε2)

Calibration O(1/ε
√
εT ) O(1/ε

√
T )

Advantage Simplicity Efficiency

Table 1: Time and space complexity and convergence rate of
Algorithm 1 using different subroutines.

Since Fj is calibrated, Lemma 1 implies the pt have vanish-
ing regret relative to the fixed prediction ij/N ; aggregating
over j yields our result.

The assumptions of Lemma 2 essentially require that �
be Lipschitz with constant B, which holds e.g. for convex
bounded losses that are studied in online learning. Our as-
sumption is slightly more general since � may also be dis-
continuous (like the misclassification loss). When � is un-
bounded (like the log-loss), its values at the baseline algo-
rithm’s predictions must be bounded away from infinity.

Next, we also establish that combining the predictions of
each F cal

j preserves their calibration.

Lemma 3 (Preserving calibration). If each F cal
j is (ε, �p)-

calibrated, then Algorithm 1 is also (ε, �p)-calibrated and
the bound CT ≤ ∑M

j=1
Tj

T RTj + ε holds uniformly over T .

These two lemmas lead to our main claim: that Algorithm
1 solves the online recalibration problem.

Theorem 1. Let F cal be an (�1, ε/3B)-calibrated online
subroutine with resolution N ≥ 3B/ε. and let � be a proper
loss satisfying the assumptions of Lemma 2. Then Algorithm
1 with parameters F cal and M = N is an ε-accurate online
recalibration algorithm for the loss �.

Proof. By Lemma 3, Algorithm 1 is (�1, ε/3B)-calibrated
and by Lemma 2, its regret w.r.t. the raw pFt tends to <
3B/N < ε. Hence, Theorem 1 follows.

In the appendix, we provide a detailed argument for how
� can be chosen to be the misclassificaiton loss.

Interestingly, it also turns out that if � is not a proper loss,
then recalibration is not possible for some ε > 0.

Theorem 2. If � is not proper, then no algorithm achieves
recalibration w.r.t. � for all ε > 0.

The proof of this algorithm is a slight generalization of
the counter-example provided for the �1 loss. Interestingly,
it holds equally for online and batch settings. To our knowl-
edge, it is one of the first characterizations of the limitations
of recalibration algorithms.

Convergence rates. Next, we are interested in the rate
of convergence RT of the calibration error CT of Algo-
rithm 1. For most online calibration subroutines F cal, RT ≤
f(ε)/

√
T for some f(ε). In such cases, we can further
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Figure 2: We compare predictions from an uncalibrated ex-
pert F (blue), Algorithm 1 (green), and REGMIN (red) on
sequences yt ∼ Ber(0.5) (plots a, b) and on adversarially
chosen yt (plots c, d).

bound the calibration error in Lemma 3 as
∑M

j=1
Tj

T RTj
≤∑M

j=1

√
Tjf(ε)

T ≤ f(ε)√
εT

. In the second inequality, we set the
Tj to be equal.

Thus, our recalibration procedure introduces an overhead
of 1√

ε
in the convergence rate of the calibration error CT and

of the regret in Lemma 2. In addition, Algorithm 1 requires
1
ε times more memory (we run 1/ε instances of F cal

j ), but
has the same per-iteration runtime (we activate one F cal

j per
step). Table 1 summarizes the convergence rates of Algo-
rithm 1 when the subroutine is either the method of Aber-
nethy, Bartlett, and Hazan based on Blackwell approacha-
bility or the simpler but slower approach based on internal
regret minimization (Mannor and Stoltz 2010).

Multiclass prediction. In the multiclass setting, we seek
a recalibrator A : ΔK−1 → ΔK−1 producing calibrated
probabilities pt ∈ ΔK−1 that target class labels yt ∈
{1, 2, ...,K}. In analogy to binary recalibration, we may
discretize the input space ΔK−1 into a K-dimensional grid
and train a classical multi-class calibration algorithm F cal

(Cesa-Bianchi and Lugosi 2006) on each subset of pFt as-
sociated with a cell. Just like in the binary setting, a classi-
cal calibration method F cal

j predicts calibrated pt ∈ ΔK−1

based solely on past multiclass labels y1, y2, ..., yt−1; it can
serve as a subroutine within Algorithm 1.

However, in the multi-class setting, this construc-
tion will require O(1/εK) running time per iteration,
O(1/ε2K) memory, and will have a convergence rate of
O(1/(ε2K

√
T )). The exponential dependence on K can-

not be avoided, since the calibration problem is fundamen-
tally PPAD-hard (Hazan and Kakade 2012). However, there
may exist practical workarounds inspired by popular heuris-
tics for the batch setting, such as one-vs-all classification
(Zadrozny and Elkan 2002).

Experiments

We now proceed to study Algorithm 1 empirically. Algo-
rithm 1’s subroutine is the standard internal regret minimiza-
tion approach of Cesa-Bianchi and Lugosi ("REGMIN"). We
measure calibration and accuracy in the �2 norm.

Predicting a Bernoulli sequence. We start with a simple
setting where we observe an i.i.d. sequence of yt ∼ Ber(p)
as well as uncalibrated predictions (pFt )

T
t=1 that equal 0.3

whenever yt = 0 and 0.7 when yt = 1. The forecaster F is
essentially a perfect predictor, but is not calibrated.

In Figure 2, we compare the performance of REG-
MIN (which does not observe pFt ) to Algorithm 1 and to
the uncalibrated predictor F . Both methods achieve low cal-
ibration error after about 300 observations, while the expert
is clearly uncalibrated (Figure 2b); however, REGMIN is a
terrible predictor: it always forecasts pt = 0.5 and therefore
has high �2 loss (Figure 2a). Algorithm 1, on the other hand,
makes perfect predictions by recalibrating the input pFt .

Prediction against an adversary. Next, we test the abil-
ity of our method to achieve calibration on adversarial input.
At each step t, we choose yt = 0 if pt > 0.5 and yt = 1
otherwise; we sample pFt ∼ Ber(0.5), which is essentially
a form of noise. In Figure 2 (c, d), we see that Algorithm
1 successfully ignores the noisy forecaster F and instead
quickly converges to making calibrated (albeit not very ac-
curate) predictions (it reduces to REGMIN).

Natural language understanding. We used Algorithm 1
to recalibrate a state-of-the-art question answering system
(Berant and Liang 2014) on the popular Free917 dataset
(641 training, 276 testing examples). We trained the system
on the training set as described in (Berant et al. 2013) and
then calibrated probabilities using Algorithm 1 in one pass
over first the training, and then the testing examples. This
setup emulates a pre-trained system that further improves it-
self from user feedback.

Figure 3 (left) compares our predicted pt to the raw sys-
tem probabilities pFt via calibration curves. Given pairs of
predictions and outcomes pt, yt, we compute for each of
N buckets B ∈ {[ i

N , i+1
N ) | 0 ≤ i ≤ 1}, averages

p̄B =
∑

t:pt∈B pt/NB and ȳB =
∑

t:pt∈B yt/NB , where
NB = |{pt ∈ B}|. A calibration curve plots the ȳB as a
function of p̄B ; perfect calibration corresponds to a straight
line.

Calibration curves indicate that the pFt are poorly cali-
brated in buckets below 0.9, while Algorithm 1 fares better.
Figure 3a confirms that our accuracy (measured by the �2
loss) tracks the baseline forecaster.

Medical diagnosis. Our last task is predicting the risk of
type 1 diabetes from genomic data. We use genotypes of
3,443 subjects (1,963 cases, 1,480 controls) over 447,221
SNPs (The Wellcome Trust Case Control Consortium 2007),
with alleles encoded as 0, 1, 2 (major, heterozygous and mi-
nor homozygous resp.). We use an online �1-regularized lin-
ear support vector machine (SVM) to predict outcomes one
patient at a time, and report performance for each t ∈ [T ].
Uncalibrated probabilities are normalized raw SVM scores
st, i.e. pFt = (st +mt)/2mt, where mt = max1≤r≤t |sr|.

Figure 3 (right) measures calibration after observing all
the data. Raw scores are not well-calibrated outside of the
interval [0.4, 0.6]; recalibration makes them almost perfectly
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Figure 3: Algorithm 1 (green) is used to recalibrate probabilities from a question answering system (left) and a medical diagnosis
system (right; both in blue). We track prediction (a) and calibration error (b) over time; plot (c) displays calibration curves after
seeing all the data; circle sizes are proportional to the number of predictions in the corresponding bucket.

calibrated. Figure 3 further shows that the calibration error
of Algorithm 1 is consistently lower throughout the entire
learning process, while accuracy approaches to within 0.01
of that of pFt .

Previous Work

Calibrated probabilities are widely used as confidence mea-
sures in the context of binary classification. Such proba-
bilities are obtained via recalibration methods, of which
Platt scaling (Platt 1999) and isotonic regression (Niculescu-
Mizil and Caruana 2005) are by far the most popular.
Recalibration methods also possess multiclass extensions,
which typically involve training multiple one-vs-all predic-
tors (Zadrozny and Elkan 2002), as well as extensions to
ranking losses (Menon et al. 2012), combinations of esti-
mators (Zhong and Kwok 2013), and structured prediction
(Kuleshov and Liang 2015).

In the online setting, the calibration problem was formal-
ized by Dawid; online calibration techniques were first pro-
posed by Foster and Vohra. Existing algorithms are based
on internal regret minimization (Cesa-Bianchi and Lugosi
2006) or on Blackwell approachability (Foster 1997); re-
cently, these approaches were shown to be closely related
(Abernethy, Bartlett, and Hazan 2011; Mannor and Stoltz
2010). Recent work has shown that online calibration is
PPAD-hard (Hazan and Kakade 2012).

The concepts of calibration and sharpness were first for-
malized in the statistics literature (Murphy 1973; Gneiting,
Balabdaoui, and Raftery 2007). These metrics are captured
by a class of proper losses and can be used both for evaluat-
ing (Buja, Stuetzle, and Shen 2005; Brocker 2009) and con-
structing (Kuleshov and Liang 2015) calibrated forecasts.

Discussion and Conclusion

Online vs batch. Algorithm 1 can be understood as a di-
rect analogue of a simple density estimation technique called
the histogram method. This technique divides the pFt into N
bins and estimates the average y in each bin. By the i.i.d. as-
sumption, output probabilities will be calibrated; sharpness
will be determined by the bin width. Note that by Hoeffd-
ing’s inequality, the average in a given bin with converge at a
rate of O(1/

√
Tj) (Devroye, Györfi, and Lugosi 1996). This

is faster than the O(1/
√
εTj) rate of Abernethy, Bartlett,

and Hazan and suggests that calibration is more challenging
in the online setting.

Checking rules. An alternative way to avoid uninforma-
tive predictions (e.g. 0.5 on 010101...) is via the framework
of checking rules (Cesa-Bianchi and Lugosi 2006). How-
ever, these rules must be specified in advance (e.g. the pat-
tern 010101 must be known) and this framework does not
explicitly admit covariates xt. Our approach on the other
hand recalibrates any xt, yt in a black-box manner.

Defensive forecasting. Vovk, Takemura, and Shafer de-
veloped simultaneously calibrated and accurate online learn-
ing methods under the notion of weak calibration (Aber-
nethy and Mannor 2011). We use strong calibration, which
implies weak, although it requires different (e.g. random-
ized) algorithms. Vovk et al. also use a different notion of
precision; their algorithm ensures a small difference be-
tween average predicted pt and true yt at times t when
pt ≈ p∗ and xt ≈ x∗, for any p∗, x∗. The relation ≈ is
determined by a user-specified kernel (over e.g. sentences or
genomes xt). Our approach, on the other hand, does not re-
quire specifying a kernel, and matches the accuracy of any
given baseline forecaster; this may be simpler in some set-
tings. Interestingly, we arrive at the same rates of conver-
gence under different assumptions.

Conclusion. Current recalibration techniques implicitly
require that the data is distributed i.i.d., which potentially
makes them unreliable when this assumption does not hold.
In this work, we introduced the first recalibration technique
that provably recalibrates any existing forecaster with a van-
ishingly small degradation in accuracy. This method does
not make i.i.d. assumptions, and is provably calibrated even
on adversarial input. We analyzed our method’s theoretical
properties and showed excellent empirical performance on
several real-world benchmarks, where the method converges
quickly and retains good accuracy.
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