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Abstract

Support vector machine (SVM) model is one of most success-
ful machine learning methods and has been successfully ap-
plied to solve numerous real-world application. Because the
SVM methods use the hinge loss or squared hinge loss func-
tions for classifications, they usually outperform other classi-
fication approaches, e.g. the least square loss function based
methods. However, like most supervised learning algorithms,
they learn classifiers based on the labeled data in training set
without specific strategy to deal with the noise data. In many
real-world applications, we often have data outliers in train
set, which could misguide the classifiers learning, such that
the classification performance is suboptimal. To address this
problem, we proposed a novel capped �p-norm SVM classi-
fication model by utilizing the capped �p-norm based hinge
loss in the objective which can deal with both light and heavy
outliers. We utilize the new formulation to naturally build the
multiclass capped �p-norm SVM. More importantly, we de-
rive a novel optimization algorithms to efficiently minimize
the capped �p-norm based objectives, and also rigorously
prove the convergence of proposed algorithms. We present
experimental results showing that employing the new capped
�p-norm SVM method can consistently improve the classi-
fication performance, especially in the cases when the data
noise level increases.

Introduction

As one of the most fundamental problems in data mining,
classification has numerous applications in different areas
such as information retrieval (Cao et al. 2009; Sriram et
al. 2010), computer vision (Krizhevsky, Sutskever, and Hin-
ton 2012), bioinformatics (Brown et al. 2000), medical im-
age computing (Chen, Daponte, and Fox 1989), natural lan-
guage processing (Wang and Mannin 2012) etc. Given train-
ing data from multiple classes, the classification task is to
learn the classifiers in a supervised way and find the cor-
rect class to which a test example belongs. Many classi-
fication models have been proposed in literature. Among
them, the support vector machine (SVM) (Boser, Guyon,
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and Vapnik 1992) is one of the most successful classification
models and has been applied to solve various applications.
One of main reasons for SVM models (Mangasarian 2002;
Keerthi and DeCoste 2005; Lin, Weng, and Keerthi 2008;
Chang, Hsieh, and Lin 2008; Hsieh et al. 2008) to out-
perform other classification methods is their unilateral loss
function, e.g. hinge loss or squared hinge loss. The unilateral
loss is more suitable for classification tasks than the bilateral
loss, which has been used in regression models.

However, like most supervised learning algorithms, ex-
isting SVM models learn classifiers based on the labeled
data in training set without considering the noise problem.
In many real-world applications, we often have data outliers
in train set, e.g. the incorrectly labeled data, the data signif-
icantly different to other data in the same class, etc. These
data outliers could mislead the classifiers training task, such
that the learned classifiers are not optimal and the classi-
fication performance is reduced. Thus, the robust classifi-
cation model is desired to deal with the classification tasks
in real-world applications. Although sparse learning models
have been applied to SVM methods in literature, such as �1-
SVM (Bradley and Mangasarian 1998), �2,1-SVM (Cai et al.
2011), Hybrid Huberized SVM (Wang, Zhu, and Zou 2007),
Sparse SVM (Cotter, Shalev-Shwartz, and Srebro 2013),
these methods mainly focus on selecting significant features
or reducing the number of support vectors to improve the
classification tasks. None of them are specifically designed
to deal with the data outliers for robust classifications.

To address this challenging problem, we propose a novel
capped �p-norm SVM classification model by utilizing the
capped �p-norm based loss function. Different to the hinge
loss and squared hinge loss used in existing SVM meth-
ods, which are not robust to data outliers, the capped �p-
norm is theoretically robust to both light and heavy outliers.
Because the data outliers usually have large residues, the
capped norm can help the model eliminate these outliers in
model training process. In term of multiclass classifications,
the existing research often uses the one-vs-one or one-vs-
rest strategies to utilize the binary SVM classifier for solving
multiclass classification tasks, but the label ambiguity prob-
lem has been well-known for such situations. Thus, we also
introduce the new formulation for multiclass SVM model,
which can directly solve the multiclass classification prob-
lem. Based on the new multiclass SVM formulation, we can
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naturally build the multiclass capped �p-norm SVM model.
The capped �p-norm in our new loss functions increases

the non-smoothness of the objectives, thus it is challenging
to solve them. To tackle this problem, we introduce new
optimization algorithms to efficiently solve the proposed
capped �p-norm SVM problem. The proposed optimization
algorithm can solve the general capped �p-norm based ob-
jectives (even for general concave functions) with rigor-
ously proved local optimum convergence. As a result, our
new algorithm can be applied to solve many other capped
norm applications, such as capped �p-norm logistic regres-
sion, etc. The validation experiments have been conducted
on six benchmark datasets. All empirical results demonstrate
that our new capped �p-norm SVM method is robust to data
outliers and consistently improve the classification perfor-
mance. The experimental results also show that our new
method is not sensitive to parameters, but other related meth-
ods are sensitive to parameter tuning. Thus, our new capped
�p-norm SVM method is suitable for practical applications.

Our main contributions of this paper can be summarized
in the following three folds:
1) We propose a novel capped �p-norm SVM classification
model for robust classifications. The capped �p-norm based
loss function is robust to the data outliers by eliminating the
abnormal data points with very large residues, such that the
classification model training step is robust to the noise and
incorrect labels.
2) Because the proposed capped �p-norm SVM loss func-
tion is non-smooth and non-convex, we introduce a new
optimization algorithm to solve it. More importantly, our
new optimization algorithm can solve the general capped �p-
norm based objectives, thus our optimization algorithm can
be applied to other capped norm problems.
3) In order to avoid the ambiguity problem existing in well-
known one-vs-one or one-vs-rest multiclass classification
strategies, we present the new formulation for multiclass
SVM model and further derive the multiclass capped �p-
norm SVM method.

Motivation and Proposed New Objective

In a classification task, given the training data X =
[x1, · · · , xn] ∈ �d×n, we usually learn a linear model by
solving the following problem:

min
w,b

n∑
i=1

ξ(w, b |xi ) + γ ‖w‖22 , (1)

where the first term is the loss and the second term is the
regularization, γ is a parameter to balance these two terms.
The w ∈ �d×1 is the projection vector and b ∈ � is the bias
term in the linear model wTx+ b.

In the past decades, many loss functions have been pro-
posed for learning classifiers. Different loss functions lead
to various classifiers. One of the most popular and success-
ful loss function is the hinge loss function, which leads to
the classical Support Vector Machines (SVM) classifier.

The hinge loss function is defined as follows:

ξh(w, b |xi ) = max
(
1− yi(w

Txi + b), 0
)

(2)

where yi ∈ {1,−1} is the given class label of the data point
xi. Another popularly used loss function is the squared hinge
loss function, which is defined as:

ξsh(w, b |xi ) = (ξh(w, b |xi ))
2

=
(
max

(
1− yi(w

Txi + b), 0
))2

. (3)

In contrast with the hinge loss function, the squared hinge
loss function is differentiable, such that it can be easily opti-
mized.

Unilateral Loss vs Bilateral Loss

In Fig. 1(a) and Fig. 1(c), the hinge loss function and the
squared hinge loss function are plotted. Both of them are
unilateral loss. In contrast, the bilateral loss corresponding
to the hinge loss is the �1-norm loss as follows (as shown in
Fig. 1(b)):

ξ
�1
(w, b |xi ) =

∣∣1− yi(w
Txi + b)

∣∣
=

∣∣wTxi + b− yi
∣∣ . (4)

The bilateral loss corresponding to the squared hinge loss
is the �2-norm loss (as shown in Fig. 1(d)):

ξ
�2
(w, b |xi ) = (1− yi(w

Txi + b))2

= (wTxi + b− yi)
2 . (5)

For classification tasks, if the data point xi is correctly
classified, i.e. yi(wTxi + b) − 1 ≥ 0, the loss should be
zero. The unilateral loss functions (shown in Fig. 1(a)) and
Fig. 1(c)) meet this requirement, but the bilateral loss func-
tions (shown in Fig. 1(b)) and Fig. 1(d)) do not. Therefore,
the unilateral loss based classification models are more suit-
able for classification than the bilateral loss based classifi-
cation models. In other words, the unilateral loss is more
suitable for classification problem while the bilateral loss
is more suitable for regression problem.

Robust Unilateral Loss with Capped �p-Norm

From the above analysis we know that the hinge loss and
the squared hinge loss are suitable for classification tasks.
However, as can been seen in Fig. 1(a) and Fig. 1(c), if the
data point xi is not correctly classified, the loss could be
infinite. Therefore, the hinge loss and the squared hinge loss
are not robust enough to data outliers.

To solve this problem, in this paper, we propose to use
the capped �p-norm in the unilateral loss for robust clas-
sification. In recent research work (Zhang 2008; 2010;
Huo, Nie, and Huang 2016; Gao et al. 2015; Jiang, Nie,
and Huang 2015), the capped �1-norm was successfully used
to approximate the �0-norm. Our new robust unilateral loss
function using capped �p-norm is defined as follows:

ξch(w, b |xi ) = min ((ξh(w, b |xi ))
p
, ε)

= min
((

max(1− yi(w
Txi + b), 0)

)p
, ε
)
. (6)

To illustrate the advantage to utilize the capped �p-norm in
unilateral loss function, we plot capped �1-norm based hinge
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Figure 1: The plots of different unilateral loss functions and bilateral loss functions. The abscissa is the value of yi(wTxi+b)−1.
In term of classification performance, the hinge loss or square hinge loss functions usually are better than the least square loss
functions, because of they use one-side functions as visualized. The capped hinge loss function is further robust to data outliers,
because the abnormal data points with large residues are eliminated (capped) as illustrated.

loss function1 in Fig. 1(e), where p = 1 and ε = 1. From
Fig. 1(e), we can see that no matter how misclassified the
data point is, the loss is at most ε. This property makes the
loss function very robust to data outliers, especially for the
heavy outliers. With this robust unilateral loss, we propose
to solve the following capped �p-norm SVM problem for
robust classification:

min
w,b

n∑
i=1

ξch(w, b |xi ) + γ ‖w‖22 . (7)

Multiclass Capped �p-Norm SVM

In the above capped �p-norm SVM problem (7), we only
consider the binary class case. In order to extend the problem
in (7) to the multiclass case, firstly we need to reformulate
the unilateral loss function. It can be easily verified that the
hinge loss in Eq. (2) can be reformulated as follows (Xiang
et al. 2012):

ξh(w, b |xi ) = min
mi≥0

∣∣wTxi + b− yi − yimi

∣∣ , (8)

where the introduced mi ∈ � is a slack variable to encode
the unilateral loss of xi. Similarly, the proposed robust uni-
lateral loss defined in Eq. (6) can be reformulated as follows:

ξch(w, b |xi )

= min

(
min
mi≥0

∣∣wTxi + b− yi − yimi

∣∣p , ε
)
. (9)

In the multiclass problem, we are given a class label vector
yi ∈ �c×1 for each data point xi, where the k-th element of
yi is 1 if xi is labeled as class k, and is −1 otherwise. In-
spired by Eq. (9) in the binary class case, the robust unilat-
eral loss with �p-norm in the multiclass case can be naturally
defined as follows:

ξchm(W, b |xi )

= min

(
min
mi≥0

∥∥WTxi + b− yi − yi ◦mi

∥∥p

2
, ε

)
, (10)

1Interestingly, it can be proved that minimizing this loss func-
tion (p = 1 and ε = 1) is equivalent to minimizing the classifica-
tion error on training data.

where W ∈ �d×c is the projection matrix and b ∈ �c×1 is
the bias term in the linear model WTx + b, the introduced
mi ∈ �c×1 is a slack variable to encode the unilateral loss
of xi.

Therefore, the capped �p-norm SVM problem (7) in the
binary class case can be extended to the multiclass case as
follows:

min
W,b

n∑
i=1

ξchm(W, b |xi ) + γ ‖W‖2F (11)

Based on the definition in Eq. (10), the problem (11) can be
written as

min
W,b,M≥0

n∑
i=1

min
(∥∥WTxi + b− yi − yi ◦mi

∥∥p

2
, ε
)

+γ ‖W‖2F (12)
where M ∈ �c×n with the i-th column as mi.

The capped hinge loss introduces the difficulty to opti-
mize the problem in (12). For example, for capped hinge
loss in Fig. 1(e), the non-smoothness comes from the def-
initions of both capped norm and �1-norm, and the stan-
dard sparse learning optimization algorithms cannot be di-
rectly applied to solve the capped norm based objectives.
Although recent research work on capped norm presented
certain optimization algorithms (Sun, Xiang, and Ye 2013;
Gong, Ye, and Zhang 2013), they mainly solve the bi-convex
problems and cannot be directly applied to solve our capped
�p-norm SVM objective. To address this problem, in next
section, we are going to introduce an efficient optimization
framework, which can be utilized to solve various capped
norm based objectives.

Optimization Algorithm for Multiclass

Capped �p-Norm SVM
In this section, we will introduce an efficient and theoretical
guaranteed algorithm to solve a general problem with the
problem (12) as a special case.

Algorithm to Solve a General Problem

We consider to solve a general problem as follows:

min
x∈C

f(x) +
∑
i

hi(gi(x)) , (13)
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where hi(x) is an arbitrary concave function in the domain
of gi(x), and x ∈ C is arbitrary constraint on x. Please note
that x and gi(x) can be scalar, vector or matrix. The details
to solve problem (13) is described in Algorithm 1, where
h′
i(gi(x)) denotes any supergradient of the concave function

hi at point gi(x).

Algorithm 1 Re-weighted method to solve problem (13).
Initialize x ∈ C
while not converge do

1. For each i, calculate the supergradient of the concave
function: Di = h′

i(gi(x))
2. Update x by the optimal solution to the problem:
min
x∈C

f(x) +
∑
i

Tr(DT
i gi(x))

end while

Convergence Analysis of Algorithm 1

Theorem 1 The Algorithm 1 will decrease the objective
value of the problem (13) in each iteration until it converges.

Proof: Suppose the updated x is x̃ in the Step 2 of Algo-
rithm 1. According to Step 2, we know:

f(x̃)+
∑
i

Tr(DT
i gi(x̃)) ≤ f(x)+

∑
i

Tr(DT
i gi(x)), (14)

where the equality holds when and only when the algorithm
converges.

Because hi(x) is concave for each i, according to the def-
inition of supergradient, we have:

hi(gi(x̃))− hi(gi(x)) ≤ Tr(DT
i gi(x̃))− Tr(DT

i gi(x)) .

Thus, we have:∑
i

hi(gi(x̃))−
∑
i

Tr(DT
i gi(x̃))

≤
∑
i

hi(gi(x))−
∑
i

Tr(DT
i gi(x)) . (15)

Summing Eq. (14) and Eq. (15) on both sides, we arrive at:

f(x̃) +
∑
i

hi(gi(x̃)) ≤ f(x) +
∑
i

hi(gi(x)) . (16)

Please note that the equality in Eq. (16) holds only when
the algorithm converges. Thus the Algorithm 1 will mono-
tonically decrease the objective of the problem (13) in each
iteration until the algorithm converges. �

More importantly, we need further prove the converged
solution is a local minimum of the problem (13). To this
end, we need the following chain rule:
Lemma 1 (chain rule) If both x and g(x) are scalar, vector
or matrix, we have

∂h(g(x))

∂x
=

Tr
(
(h′(g(x)))T∂g(x)

)
∂x

. (17)

The convergence analysis of our algorithm is summarized
by the following theorem:

Theorem 2 The Algorithm 1 will converge to a stationary
point of the problem (13).
Proof: The Lagrangian function of the problem (13) is

L1(x, λ) = f(x) +
∑
i

hi(gi(x))− r(x, λ) , (18)

where r(x, λ) is a certain function to encode the constraint
x ∈ C in the Lagrangian function. Based on the KKT condi-
tion, by setting the derivative of L1(x, λ) w.r.t. x to zero, we
have:
∂L1(x, λ)

∂x
= f ′(x) +

∑

i

∂hi(gi(x))

∂x
− ∂r(x, λ)

∂x
= 0 . (19)

According to the chain rule, Eq. (19) can be rewritten as

∂L1(x, λ)

∂x

= f ′(x) +
∑
i

Tr
(
(h′

i(gi(x)))
T∂gi(x)

)
∂x

− ∂r(x, λ)

∂x

= 0 . (20)

On the other hand, in the second step of Algorithm 1, we
solve the problem min

x∈C
f(x) +

∑
i

Tr(DT
i gi(x)). The La-

grangian function of this problem is:

L2(x, λ) = f(x) +
∑
i

Tr(DT
i gi(x))− r(x, λ) . (21)

By setting the derivative of L2(x, λ) w.r.t. x to zero, we
have:

∂L2(x, λ)

∂x
= f ′(x)+

∑
i

∂Tr(DT
i gi(x))

∂x
− ∂r(x, λ)

∂x
= 0 .

(22)
Thus, we find a solution satisfying Eq. (22) in each iteration
according to the second step of Algorithm 1. In the conver-
gence of the Algorithm 1, please note that Di = h′

i(gi(x))
according to the first step of Algorithm 1, Eq. (22) is equal
to:

f ′(x) +
∑
i

Tr
(
(h′

i(gi(x)))
T∂gi(x)

)
∂x

− ∂r(x, λ)

∂x
= 0 ,

which is exactly the same as the KKT condition of the prob-
lem (13) in Eq. (20). Therefore, in the convergence of Al-
gorithm 1, the solution x satisfies the KKT condition of the
problem (13). Thus the Algorithm 1 will converge to a sta-
tionary point of the problem (13), which usually is also a
local minimum. �

Empirical evidences show Algorithm 1 converges very
fast and usually converges in 20 iterations.

Optimization Algorithm to Solve Problem in (12)

We define the function hi(·) as follows:

hi(gi(W, b,mi))=min
(
gi(W, b,mi)

p
2 , ε

)
, (23)

where

gi(W, b,mi) =
∥∥WTxi + b− yi − yi ◦mi

∥∥2

2
.
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It can be easily seen that the function hi(·) is concave
when 0 < p ≤ 2. Therefore, the problem (12) is also a
special case of the general problem (13) when 0 < p ≤ 2,
and thus we can apply the Algorithm 1 to solve the proposed
problem (12) for multiclass robust classification.

According to the second step of Algorithm 1, we need
to solve the following problem in each iteration for solving
problem (12):

min
W,b,M≥0

n∑
i=1

di
∥∥WTxi + b− yi − yi ◦mi

∥∥2

2
+ γ ‖W‖2F

(24)
where

di =

{
p
2gi(W, b,mi)

p−2
2 , gi(W, b,mi)

p
2 ≤ ε

0, otherwise
(25)

according to the first step of Algorithm 1 and Eq. (23).
When the M is fixed, the problem (24) can be written in

matrix form as:

min
W,b

Tr((WTX + b1T − Z)D(WTX + b1T − Z)T )

+γ ‖W‖2F , (26)

where 1 ∈ �n×1 is the vector with all elements as 1, Z ∈
�c×n with the i-th column as zi = yi + yi ◦mi, and D is a
diagonal matrix with the i-th diagonal element as di defined
in Eq. (25).

By setting the derivative of Eq. (26) w.r.t. b to zeros, we
have:

b =
1

1TD1
ZD1− 1

1TD1
WTXD1 . (27)

Substituting Eq. (27) into Eq. (26), the problem (26) be-
comes:

min
W

Tr(WT (XHXT+γI)W )−2Tr(WTXHZT ) , (28)

where I ∈ �d×d is an identity matrix.
By setting the derivative of Eq. (28) w.r.t. W to zeros, we

have:
W = (XHXT + γI)−1XHZT , (29)

where H = D − 1
1TD1

D11TD .
When the W and b are fixed, the problem (24) can be

solved by separately solving the following problem for each
mi:

min
mi≥0

∥∥WTxi + b− yi − yi ◦mi

∥∥2

2
. (30)

Note that yi ∈ ±1, the problem (30) can be equivalently
rewritten as:

min
mi≥0

∥∥yi ◦ (WTxi) + yi ◦ b− 1−mi

∥∥2

2
, (31)

where 1 ∈ �c×1 is the vector with all elements as 1. It can
be easily seen that the optimal solution to the problem (31)
is:

mi = (yi ◦ (WTxi) + yi ◦ b− 1)+ , (32)
where the k-th element of vector (v)+ is max(vk, 0).

Based on the above analysis, the detailed algorithm to
solve the multiclass capped �p-norm SVM problem (12) is
summarized in Algorithm 2.

Algorithm 2 Algorithm to solve the problem (12).
Initialize D = I . Initialize all the elements of M as 0.
while not converge do

1. Calculate Z, where the i-th column zi = yi+yi◦mi

2. Update W by Eq. (29):
W = (XHXT + γI)−1XHZT

3. Update b by Eq. (27):
b = 1

1TD1
ZD1− 1

1TD1
WTXD1

4. Update M , where the i-th column mi is by Eq. (32):
mi = (yi ◦ (WTxi) + yi ◦ b− 1)+
5. Update the diagonal matrix D, where the i-th diago-
nal element di is calculated by Eq. (25):

di =

{
p
2gi(W, b,mi)

p−2
2 , gi(W, b,mi)

p
2 ≤ ε

0, otherwise

end while

Experimental Results

To experimentally validate the classification ability of our
proposed method, in this section we will compare with five
related methods and exhibit the experimental results on six
benchmark datasets. For simplicity, we denote our capped
�p SVM method as CappedSVM in the following context.

Datasets Description

The six benchmark datasets involved in our experiments are:
ALLAML data set (Fodor 1997), the Human Lung Carcino-
mas (LUNG) data set (Bhattacharjee et al. 2001), the Hu-
man Carcinomas (Carcinomas) data set (Su et al. 2001),
the Prostate Cancer Gene Expression (Prostate-GE) data set
(Singh et al. 2002), the Japanese Female Facial Expression
(JAFFE) data set (Lyons, Kamachi, and Gyoba 1997), the
chemical analysis of wine (Wine) data set, and the physical
measurements of abalone (Abalone) data set, the first four
of which are gene expression microarray data sets, the lat-
ter one is an image data set while the last one is a daily life
data set from the UCI Machine Learning Repository (Bache
and Lichman 2013). The property of these six data sets is
summarized in Table 1.

Table 1: Description of Datasets
Datasets # of Samples Features Classes

ALLAML 72 7129 2
LUNG 203 3312 5

Carcinomas 174 9182 11
Prostate-GE 102 5966 2

JAFFE 213 1024 10
Wine 178 13 3

Classification Results Comparison

We compared our classification method with k-Nearest
Neighbors algorithm (KNN), Support Vector Machine
(SVM) and the Least Square Support Vector Machine
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Figure 2: Classification Accuracy under Different Parameter Settings

(LSSVM) (Suykens et al. 2002). We exploited the program
from LIBSVM2 for the linear SVM method.

Before classification, all data sets are normalized to the
range of [0, 1] and randomly divided using 5-fold cross val-
idation.

The evaluation of different methods is based on the clas-
sification accuracy. For the KNN method, we set k = 1. For
all other methods involving a parameter, including SVM,
LSSVM and CappedSVM, we tuned the parameter to be
{10−3, 10−2, 10−1, 1, 10, 100} separately and recorded the
best results. In our method, we set the value of ε in a heuris-
tic way, that is, in the first five iterations, we selected 10%
data with the largest noise to determine ε.

From Table 2, we can come into the conclusion that our
proposed method works very well on real benchmark data
sets. Our Capped SVM method has a high potential to out-
perform other traditional methods on these various kinds of
data sets. In addition, we compared the classification accu-
racy of different methods under different parameters. The
comparison results in Fig. 2 confirms the stability of our
method. Compared with SVM and LSSVM, our method is
more robust to the setting of parameters, which alleviates the
burden of tuning parameters to a large extent.

Conclusions

Although the SVM models have been successfully applied
to solve numerous classification tasks, the hinge loss and
squared hinge loss used in existing SVM methods are

2http://www.csie.ntu.edu.tw/˜cjlin/libsvm/.

Datasets KNN SVM LSReg CappedSVM

ALLAML 87.32 97.13 75.89 97.14

LUNG 94.64 96.47 75.95 98.03

Carcinomas 82.51 90.96 95.54 96.66

Prostate-GE 79.36 91.27 93.09 93.18

JAFFE 99.51 99.59 100.00 100.00

Wine 95.49 98.33 97.75 99.44

Table 2: Classification Accuracy (%) on Real Benchmark
Datasets

not robust to data outliers, which often exist in the real-
world applications. To tackle this problem, we proposed
a novel capped �p SVM classification model by utilizing
a new capped �p-norm based objective. Our capped �p-
norm based objective is theoretically and empirically ro-
bust to data outliers. To solve the new objective, we de-
rived new efficient optimization algorithms with rigorously
proved convergence. The experimental results on six bench-
mark datasets show that our new capped �p SVM method is
robust to data outliers and consistently improve the classifi-
cation performance.
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