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Abstract

Policy search reinforcement learning (RL) allows agents to
learn autonomously with limited feedback. However, such
methods typically require extensive experience for success-
ful behavior due to their tabula rasa nature. Multitask RL is
an approach, which aims to reduce data requirements by al-
lowing knowledge transfer between tasks. Although success-
ful, current multitask learning methods suffer from scalability
issues when considering large number of tasks. The main rea-
sons behind this limitation is the reliance on centralized so-
lutions. This paper proposes to a novel distributed multitask
RL framework, improving the scalability across many differ-
ent types of tasks. Our framework maps multitask RL to an
instance of general consensus and develops an efficient de-
centralized solver. We justify the correctness of the algorithm
both theoretically and empirically: we first proof an improve-
ment of convergence speed to an order of O (

1
k

)
with k being

the number of iterations, and then show our algorithm sur-
passing others on multiple dynamical system benchmarks.

Introduction

Reinforcement learning (RL) allows agents to solve sequen-
tial decision-making problems with limited feedback. Ap-
plications with these characteristics range from robotics con-
trol (Kober and Peters 2009) to personalized medicine (Mur-
phy et al. 2007; Pineau et al. 2007). Though successful, typ-
ical RL methods require substantial experience before ac-
quiring acceptable behavior. The cost of obtaining such ex-
perience can be prohibitively expensive in terms of time and
data.

Transfer learning (Taylor and Stone 2009) and multitask
learning (Lazaric and Ghavamzadeh 2010; Li, Liao, and
Carin 2009) have been developed to remedy these problems
by allowing agents to reuse knowledge across tasks. Unfor-
tunately, both these techniques suffer from scalability prob-
lems as the number of tasks grows large.

Among the different methods proposed for handling scal-
ability in supervised learning, two directions stand-out.
First, data (i.e., trajectories or tasks)

are streamed sequentially online, leading to regret min-
imization games where the learner plays against an adver-
sary. Second, decentralized solvers allow multiple process-
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ing units to share work. For example, a distributed version
of multitask support vector machines can significantly out-
perform centralized solvers (Forero, Cano, and Giannakis
2010).

Centralized online solvers have been well studied under
the multitask learning setting (Ammar, Tutunov, and Eaton
2015; Bou Ammar et al. 2015; Gheshlaghi Azar, Lazaric,
and Brunskill 2013). For example, Bou Ammar et al. pro-
posed PG-ELLA, an online multitask policy search algo-
rithm. PG-ELLA decomposes a task’s policy parameters
into a shared latent repository, L, and task specific coef-
ficients, st, one per task. It allows for knowledge transfer
between tasks (using L) while streaming problems online.
The main drawback of PG-ELLA (and the like, e.g., (Kumar
and Daumé III 2012), (Bou Ammar et al. 2015), and (Bou-
Ammar et al. 2012)) is apparent when considering a large
number of tasks or dimensions — determining the shared
knowledge-base L becomes intractable due to two ineffi-
ciencies. The first inefficiency is that computing the expan-
sion’s operating point amounts to solving a local RL prob-
lem described by the current task’s observed trajectories.
These RL optima must be computed online at each round
(i.e., time-step of the interaction between the agent and ad-
versary) of PG-ELLA. This problem is remedied in the orig-
inal paper by taking gradient steps in the local MDP’s objec-
tive function, while reducing the number of trajectories used.
Unfortunately, such a solution has multiple drawbacks.1 The
second inefficiency reducing PG-ELLA’s scalability arises
when updating the shared repository L. The update involves
an inversion of a dp × dp matrix, with d being the number
of features. This leads to a complexity of O (

d3p2
)

at each
iteration of the algorithm. Consequently, such a method is
not scalable when the policy parameterization or latent di-
mensions p becomes high dimensional.

Moreover, as the number of tasks grows large, these cen-
tralized methods (used in updating L or computing θ̃�

j ) be-

1Crucial to the success of PG-ELLA are “good-enough” local
policy parameters that are encoded by the shared repository. Fol-
lowing a policy gradient step, however, is not guaranteed to provide
informative local parameters due to the

O(1/
√
k) convergence rate of gradient-based methods, which

is the fastest rate for gradient-based techniques (Wei and Ozdaglar
2012) known so far, reduction in the number of trajectories used,
and the local minima problems inherit to such techniques.
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come intractable due to computational and memory con-
straints.

This paper introduces the first framework for addressing
the multitask RL problem in a distributed and scalable man-
ner.

Our method maps multitask policy search to an instance
of general consensus. We justify the correctness of our
method both theoretically and empirically. First, we show
linear convergence speeds in the order of O (

1
k

)
with k be-

ing the iteration count. Second, we demonstrate that our al-
gorithm can surpass state-of-the-art techniques on a vari-
ety of benchmark dynamical systems. This paper’s contribu-
tions can be summarized as: i) developing the first scalable
multitask policy search reinforcement learner, ii) formally
describing the relation between RL and general consen-
sus optimization, iii) developing a distributed multidimen-
sional alternating direction method of multipliers (ADMM)
solver for multitask RL, iv) proving linear convergence in
the multidimensional setting, and v) empirically outperform-
ing state-of-the-art techniques on five benchmark dynamical
systems.

Reinforcement Learning

Reinforcement learning (RL) is a technique used to solve
sequential decision making problems with limited feedback.

RL typically models such problems as a Markov decision
process (MDP): 〈X ,U ,P, R, γ〉, where X ⊆ R

d is the (po-
tentially infinite) state-space, U ⊆ R

c is the action space,
P : X × U × X → [0, 1] is the transition function describ-
ing the environment’s dynamics, R : X × U × X → R is
the reward function quantifying the agent’s behaviour, and
γ ∈ (0, 1] is the discount factor.

The dynamics of an RL agent commences as follows. At
each time step h, the agent resides in a state xh ∈ X . Upon
applying an action uh ∈ U , the agent transitions to a new
state xh+1 ∈ X according to xh+1 ∼ P (xh+1|xh,uh)
and receives a reward rh+1 = R(xh,uh,xh+1) quantifying
such a transition. Repeating the aforementioned process for
a horizon length H , the agent accumulates a sequence of
state-action pairs, which we refer to as a trajectory denoted
by τ = [x1:H ,u1:H ].

The agent’s goal is then defined as that of finding an ac-
tion selection rule (i.e., a policy π) that maximizes the total
accumulated rewards over multiple interactions with the en-
vironment.

Policy Search Reinforcement Learning

Policy search RL has shown successes in high-dimensional
control problems (e.g., robotics control (Kober and Peters
2011)). In policy search, πθ is the policy, parameterized by
a vector of parameters θ ∈ R

d. The agent’s goal is to deter-
mine θ, maximizing:

J (θ) = Epθ(τ ) [R(τ )] =

∫
τ

pθ(τ )R(τ )dτ , (1)

where pθ(τ ) and R(τ ) are the probabilities of acquiring a
trajectory τ and its total accumulated reward:

pθ(τ ) = P0(x0)

H∏
h=1

P (xh+1|xh,uh)πθ (uh|xh)

R(τ ) =
1

H

H∑
h=1

rh+1,

with P0 : X → [0, 1] being the initial state distribution.
Most policy gradient algorithms maximize a lower-bound

to Equation 1 by generating trajectories using the current
policy (πθ) and then comparing the result with a new policy
parameterized by θ. As detailed elsewhere (Kober and Pe-
ters 2011), the expected return can be lower-bounded using
Jensen’s inequality and the concavity of the logarithm:

logJ (θ) = log

∫
pθ(τ )R(τ )dτ (2)

≥
∫

pθ(τ )R(τ ) log

[
pθ(τ )

pθ(τ )

]
+ constant

∝ −DKL
(
pθ(τ )R(τ )||pθ(τ )

)
= JL,θ

(
pθ(τ )

)
,

where DKL (p(τ )||q(τ )) =
∫
p(τ ) log p(τ )

q(τ )dτ . We see that
this is equivalent to minimizing the KL divergence between
the reward-weighted trajectory distribution of πθ and the tra-
jectory distribution pθ of the new policy πθ .

Multi-Task Policy Search

Multitask policy search (MTPS) allows knowledge sharing
and transfer across a group of domains. In MTPS, the agent
is faced with a set of T tasks, each being an MDP denoted
by 〈Xt,Ut,Pt, Rt, γt〉. The goal of the agent is to learn a set
of policies Π = {π1, . . . , πT }, one for each task.

Following policy gradients, we parameterize the pol-
icy for a task t by a vector θt ∈ R

d, which must be
found by maximizing the total expected return Jt (θt) =∫
τt
pθt

(τt)Rt(τt)dτt. Consequently, when considering all
tasks from t = 1 to t = T , the MTPS optimization problem
is:

min
θ1:θT

−
T∑

t=1

Jt(θt) + Reg (θ1,θ2, . . . ,θT ) ,

where Reg (θ1,θ2, . . . ,θT ) is a regularization function that
ensures improvement over single task learning, imposing
shared structure between task policies. To allow for knowl-
edge transfer between tasks, we assume a factored model
represents the policy parameters, similar to the settings
introduced elsewhere (Ammar, Tutunov, and Eaton 2015;
Kumar and Daumé III 2012). Namely, we assume θt = Lst.
Here, L ∈ R

d×k is a matrix used to represent k latent knowl-
edge components, shared across all tasks. Furthermore, the
task-specific coefficient vectors st ∈ R

k×1 “specialize” this
knowledge to a task t by filtering over the shared repository
L. Given the above factored model, we rewrite the optimiza-
tion problem of MTPS as:

min
L,s1:sT

−
T∑

t=1

[Jt (Lst) + μ1 ||st||1] + μ2||L||2F,
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with ||A||F denoting the Frobenius norm of a matrix A, and
||·||1 being the L1 norm used to induce sparsity. The remain-
ing ingredient needed to finalize the definition of MTPS is
the usage of the lower-bound derived in Equation 2, instead
of Jt(·), leading to:

min
L,s1:sT

−
T∑

t=1

Epθt (τt)

[
Rt (τt) log (pLst

(τt))

]
(3)

+ μ1 ||st||1 + μ2||L||2F,
where we wrote the optimization variable θt = Lst to in-
troduce transfer through L, and

pLst (τt) = P0,t(x0,t)

Ht−1∏
ht=1

Pt (xh+1,t|xh,t,uh,t) (4)

× πLst (uh,t|xh,t)

Rt(τt) =
1

Ht

Ht∑
h=1

Rt (xh,t,uh,t,xh+1,t) . (5)

Multi-Action RL & Gaussian Policies

Recent MTPS work typically focuses on systems exhibiting
multidimensional state spaces and one dimensional actions.

We generalize this notion to the multidimensional ac-
tion case by considering a matrix feedback controller. To
do so, we assume a matrix Φh,t (xh,t) ∈ R

c×d encodes
multidimensional features of the state space for a task t ∈
{1, . . . , T} at time step h ∈ {1, . . . , Ht}. Hence, a c-
dimensional control vector uh,t can be written as: uh,t =
Φh,t (xh,t)θt + εh,t, where εh,t ∈ R

c is a c-dimensional
Gaussian noise used for exploration. Consequently, the
stochastic multidimensional policy is:

πθt
(uh,t|xh,t) = N

(
Φtθt,Σ

−1
h,t

)
, (6)

where Σ−1
h,t ∈ R

c×c is a time-dependent covariance matrix.
Substituting Equations 6 and 4 in 3 finalizes the MTPS prob-
lem:

min
L,s1:sT

T∑
t=1

Epθt (τt)

[
Rt (τt)

Ht−1∑
h=1

∣∣∣∣∣∣
∣∣∣∣∣∣uh,t −Φh,t Lst︸︷︷︸

θt

∣∣∣∣∣∣
∣∣∣∣∣∣
2

Σ−1
h,t

(7)
+ μ1 ||st||1

]
+ μ2||L||2F.

Equation 7 can also be explained intuitively. In the second
term, the agent is solving an extended (over the Horizon of
the trajectory) least squares problem with trajectory rewards
acting as weights. In other words, a sample point (being a
trajectory in our setting) is given high values if the reward
attained is high and its significance is reduced in case of
low values. Hence, when a “good” trajectory is observed,
the agent tries to replicate the chosen actions by minimizing
the error-norm between its model (i.e., Φh,tLst) and the real
action uh,t. These norms are then summed over the horizon
and a total number of exploratory trajectories (i.e., the ex-
pectation) to ensure successful learning. Finally, the outer

summation (i.e.,
∑

t) ensures a “good-enough” repository
over all tasks t ∈ {1, . . . , T}.
Drawbacks of Current Solvers: Solving the problem in
Equation 7 appears difficult due to the non-convexity im-
posed by the bi-product of L and st. In the case of bi-
products, standard solutions from general optimization rec-
ognize that Equation 7 is convex in each of the variables
while fixing the others and consider a two-step alternating
optimization approach. In the first step, the repository is de-
termined while fixing s1, . . . , sT , while in the second step,
task coefficients are computed given an updated L. Though
successful, such methods typically assume a centralized ap-
proach.

In the supervised learning setting, two techniques help
scalability. In the first technique, data is streamed sequen-
tially online, leading to a regret-minimization game against
an adversary. The field of online multitask RL is typi-
cally referred to as lifelong RL and techniques such as PG-
ELLA (Bou-Ammar et al. 2014; Bou Ammar et al. 2015)
have been developed to handle this problem. PG-ELLA (and
others) still assume central computations and adopt slow
first-order methods for computing latent models. Further-
more, due to the usage of approximations to the original loss
function (e.g., second-order Taylor expansions), these meth-
ods can become inaccurate and restrictively slow, especially
when the task distribution varies widely between domains.

The second technique relies on distributed optimization
where multiple processing units are considered. Such a di-
rection has not been well-explored yet in the multitask RL
setting. Next, we present the first distributed solver for
MTPS and demonstrate that our method improves the con-
vergence speed of current techniques used for scalability
(e.g., PG-ELLA) to O (

1
k

)
, with k being the iteration count.

Scalable Multitask Policy Search

We assume the processing units are connected by an undi-
rected graph G = (V, E), with a node set V and an edge-set
E . We assume the n nodes are connected via m edges, and
we do not impose additional constraints on the topology of
G. We further assume a natural ordering among the nodes
from 1, . . . , |V| and eij ∈ E to denote the edges between
nodes i and j with i < j. We define a block matrix A to have
|E| rows and |V| columns. Suppose edge eij is the kth edge
in E represented by the kth row in matrix A. Entry (k, i) of
matrix A equals the identity matrix I (i.e., A(k, i) = I),
entry A(k, j) of matrix A equals −I (i.e., A(k, j) = −I),
and other entires are set to matrix 0. A(I) is the general
edge-node incident matrix with identity matrix I .

Each node i ∈ V is randomly assigned a set of tasks.
Given a set of trajectories for all T tasks, the first step is
to randomly assign chunks of data to each processor. The
next step is to devise a procedure to determine the latent
model based on partial information. The model we consider
exhibits a product of two terms: 1) the shared repository L,
and 2) the task specific coefficient st for each task. Due to
the non-convexity of the product, our technique adopts al-
ternating optimization. When considering each of the alter-
nating steps, computing task projections can be performed
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fully distributed as long as each node is equipped with a
Lasso solver. Updating the repository L, on the other hand,
requires more care due to its unifying nature across all tasks.

Our method will handle the repository while each node
computes a separate update based on its assigned tasks.
This can be achieved if we map the MTPS problem to
distributed general consensus. To do so, we start by intro-
ducing vec(L) to be a “column-wise unrolled” version of
L — the operator vec(L) vectorizes the d × k repository
into a vector of size dk with the columns of L concate-
nated consecutively. Using vec(L), it can be shown that
the parameter model, Φh,t (xh,t)Lst, can be written as:
vec (Φh,t (xh,t)Lst) =

(
sTt ⊗Φh,t (xh,t)

)
vec(L), with

⊗ denoting the Kronecker product. Having updated the task
coefficients, we can rewrite the optimization problem in
Equation 7 in terms of vec(L) as:

min
vec(L)

T∑
t=1

[
Epθt (τt)

[
Rt (τt)

Ht−1∑
h=1

∣∣∣∣∣∣uh,t −
(
sT
t ⊗Φh,t (xh,t)

)
vec(L)

∣∣∣∣∣∣2
Σ−1

h,t

]

+ μ1 ||st||1
]
+ μ2||vec(L)||22 .

Having split data across n processing units, we can
rewrite the MTPS in a equivalent distributed form as:

min
vec(L1):vec(Ln)

n∑
i=1

Ji (vec (Li)) + μ2||vec (Li) ||22 (8)

s.t. vec(L1) = vec(L2) = · · · = vec(Ln),

where Ji (vec (Li)) denotes the per-node loss function de-
fined as:

Ji (vec (Li)) =

Ti∑
t=1

[
Epθt (τt)

[
Rt (τt)

Ht−1∑
h=1

∣∣∣∣uh,t −
(
sTt ⊗Φh,t

(
xh,t

))
vec(L)

∣∣∣∣2
Σ−1

h,t

]

+ μ1||st||1
]
,

where Ti represents all tasks assigned to node i ∈ V such
that T1+T2+ · · ·+Tn = T . The distributed form is equiva-
lent to the MTPS problem derived in Equation 7. The crucial
difference, however, is that in distributed MTPS, each node
i ∈ V updates a version of the shared repository based on
only partial knowledge of the total number of tasks. These
repositories are then unified using the consensus constraint
(i.e., vec(L1) = · · · = vec(Ln)) to generate a single com-
mon knowledge base vec(L) ∈ R

dk.
Solving Distributed Multitask Policy Search: At this
stage, any off-the-shelve distributed optimization package
could be used for determining L. Distributed first-order
methods (e.g., distributed sub-gradients), however, exhibit
slow convergence speeds leading to problems similar to
these of PG-ELLA (Bou-Ammar et al. 2014). Our goal is
an MTPS algorithm with linear convergence.

The alternating direction method of multipliers (ADMM)
is an optimization technique that exhibits fast convergence

speeds. ADMM solves constrained problems by relying on
dual methods, where it decomposes the original problem to
two subproblems. These are then solved by updating dual
variables. In our setting, a decentralized ADMM solver is
needed.

Wei and Ozdaglar (2012) have already proposed a dis-
tributed version of ADMM and showed linear convergence
of the form O (

1
k

)
with k being the total number of itera-

tions. However, this technique is not readily applicable to
our setting for two reasons. First, the method focuses on the
univariate setting, which is limited by its one-dimensional
setting. Second, the convergence proofs are rather restric-
tive. We therefore

1) generalize distributed ADMM to the multidimensional
case, handling high-dimensional shared repositories, and 2)
modify the convergence proofs to better suit RL.

The strategy we follow in deriving our algorithm relies
on decomposition techniques using a Lagrangian augmented
with a penalty term. To derive the corresponding form, we
first introduce a generalized edge-node adjacency matrix
Ã = A(Idk×dk) ∈ R

dkm×dkn, where Idk×dk is a dk-
dimensional identity matrix. Notice that Ã is just the origi-
nal adjacency matrix, A, but considers all the repository’s
dimensions. Further, we introduce a vector vec

(
L̃
)

=

[vec(L1), . . . , vec(Ln)]
T ∈ R

dkn to be a vector concate-
nating all the repositories between the nodes of G.

We can now rewrite Equation 8 in a more compact form
as:

min
vec(L1):vec(Ln)

n∑
i=1

Ji (vec (Li)) + μ2||vec (Li) ||22

s.t. Ãvec
(
L̃
)
= 0dkm.

To solve the above constraint optimization problem, we then
introduce a vector of Lagrange multiplies λ ∈ R

dkm and
write the augmented Lagrangian as:

LAug

(
vec

(
L̃
)
,λ

)
=

n∑
i=1

Ji (vec (Li)) + μ2||vec (Li) ||22

− λTÃvec
(
L̃
)
+

ρ

2

∣∣∣∣∣∣Ãvec
(
L̃
)∣∣∣∣∣∣2

2
,

where ρ > 0 is a parameter of the penalty term. The aug-
mented Lagrangian is the standard Lagrangian, typically
used in constrained optimization, in addition to a penalty

term of the form
∣∣∣∣∣∣Ãvec

(
L̃
)∣∣∣∣∣∣2

2
used to ensure stability

(e.g, see (Wei and Ozdaglar 2012; Boyd and Vandenberghe
2004)). To derive shared repository updates, we follow the
standard strategy proposed in the original ADMM with cru-
cial changes needed for the distributed setting. Contrary
to (Wei and Ozdaglar 2012), we assume that each processor
i keeps a multidimensional local decision estimate vec(Li)
and a vector of dual variables λki with k < i. We define
two sets for the neighbors of a node i, denoted by Pi and Si.
Here, Pi collects all nodes having an index lower than i, i.e.,
Pi = {j|eij ∈ E , j < i} and Si all nodes with index higher
than i, i.e., Si = {j|eij ∈ E , i < j}. Our method determines

vec�
(
L̃
)

using the instructions in Algorithm 1.
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Algorithm 1 consists of two steps. First, primal updates
are performed by each node in G (line 3). Primal updates
can be seen similar to standard ADMM with the crucial dif-
ference of being performed completely locally due to the
introduction of Pi and Si. Second, given the primal, the dual
variables are then computed as shown in line 4. Note that in
the case of multidimensional Gaussian policies2, the primal
updates on line 3 of Algorithm 1 can be computed in closed
form3 after approximating the expectation by the sample
mean over Mt trajectories for all tasks t ∈ {1, . . . , T}:

vec
(
L

(k+1)
i

)
=

[
Pi +

ρdegi
2

Idk×dk

]−1(
ci

+
ρ

2

( ∑
j∈Si

[
vec(L(k)

j ) +
1

ρ
λ
(k)
ij

]

+
∑
j∈Pi

[
vec(L(k+1)

j )− 1

ρ
λ
(k)
ji

]))
,

where

Pi =

Ti∑
t=1

1

Mt

Mt∑
m=1

R
(
τ
(m)
t

)H
(m)
t−1∑

h=1

(
sTt ⊗Φ

(m)
h,t

(
x
(m)
h,t

))T

×Σ−1
h,t

(
sTt ⊗Φ

(m)
h,t

(
x
(m)
h,t

))
ci =

Ti∑
t=1

1

Mt

Mt∑
m=1

R
(
τ
(m)
t

)H
(m)
t−1∑

h=1

(
sTt ⊗Φh,t

(
x
(m)
h,t

))T

×Σ−1
h,tu

(m)
h,t ,

where degi is the degree of processing unit i.
Theoretical Guarantees: We now show the theorem that
derives an improvement over other techniques

(
e.g., PG-

ELLA with O
(

1√
k

) )
to a linear convergence rate for our

proposed method. Before detailing our theoretical result,
however, we note the following standard assumptions (Boyd
and Vandenberghe 2004; Wei and Ozdaglar 2012):
Assumption 1 (Saddle Point & Penalty Boundedness)
The augmented Lagrangian has a saddle point. That is,
there is a solution

(
vec

(
L̃�

)
,λ�

)
such that:

LAug (·) ≤ LAug

(
vec

(
L̃�

)
,λ�

)
≤ LAug (·) .

We further assume that ||Ã ˜vec(L)||22 ≤ γ, for γ > 0.
Assuming the above, the appendix proves:

Theorem 1 The sequence {vec
(
L̃(k)

)
,λ(k)}k≥0, con-

verges linearly with a rate given by O (
1
k

)
.

Experiments & Results

We empirically validate our method on five existing bench-
mark dynamical systems (Bou Ammar et al. 2015).

2This derivation can be generalized to any policy in the expo-
nential family.

3The derivation can be found in the appendix.

Algorithm 1 Scalable Multitask Policy Search

1: Initialize vec(Li), ∀i ∈ {1, . . . , n}, and set ρ > 0.
2: for k = 0, . . . ,K do
3: Each agent i updates, vec(Li) in a sequential order

from i = 1, . . . , |V| using:

vec
(
L

(k+1)
i

)
= arg min

vec(Li)

[
Ji (vec (Li)) + μ2||vec (Li) ||22

+
ρ

2

∑
l∈Pi

∣∣∣∣
∣∣∣∣vec

(
L

(k+1)
i

)
− vec

(
L

(k
i

)
− 1

ρ
λ
(k)
li

∣∣∣∣
∣∣∣∣
2

2

+
ρ

2

∑
l∈Si

∣∣∣∣
∣∣∣∣vec (Li)− vec

(
L

(k)
i

)
− 1

ρ
λ
(k)
il

∣∣∣∣
∣∣∣∣
2

2

]
.

4: Each agent updates λli for l ∈ Pi as:

λ
(k+1)
li = λ

(k)
li − ρ

(
vec

(
L

(k)
l

)
− vec

(
L

(k+1)
l

))
.

5: end for

The cart pole (CP) system is controlled by the cart’s mass
mc in kg, the pole’s mass mp in kg and the pole’s length l in
meters. The state is given by the cart’s position and velocity
v, as well as the pole’s angle θ and angular velocity θ̇. The
goal is to control the pole in an upright position.

The double inverted pendulum (DIP) is an extension of
the cart pole system. It has one cart m0 in kg and two poles
in which the corresponding lengths are l1 and l2 in meters.
We assume the poles have no mass and there are two masses
m1 and m2 in kg on the top of each pole. The state consists
of the cart’s position x1 and velocity v1, the lower pole’s
angle θ1 and angular velocity θ̇1, as well as the upper pole’s
θ2 and angular velocity θ̇2. The goal is also to learn a policy
to control the two poles in a specific state.

A linearized model of a
helicopter (HC) assumes constant horizontal motion,
characterized by two matrices A ∈ R

4×4 and B ∈ R
4×2.

The main goal is to stabilize the helicopter by controlling the
collective and differential rotor thrust.

The simple mass (SM) system is characterized by the
spring constant k in N/m, the damping constant d in Ns/m
and the mass m in kg. The system’s state is given by the po-
sition x and the velocity, v, of the mass. The goal is to train
a policy for guiding the mass to a specific state.

The double mass (DM) is an extension of the simple mass
system with two masses m1,m2 (in kg), two springs (with
spring constants k1 and k2 in N/m), and two damping con-
stants (d1 and d2 in Ns/m). The state consists of the big
mass’ position x1 and velocity v1, as well as the small mass’
position x2 and velocity v2. The goal is also to learn a policy
to control the two mass in a specific state.

We generated 150 tasks for each domain by varying the
dynamical parameters of each of the domains (for 750 in
total). The cost was given by

√
||xm − xref||22, where xref

was the goal state. We run each task for a total of 200 itera-
tions. At each iteration, the learner observed a task through
50 trajectories of 150 steps and performed algorithmic up-
dates. We used eNAC (Peters and Schaal 2008), a standard
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Figure 1: Figures (a)-(e) report average cost versus iterations and demonstrate that Dist-MTLPS is capable of outperforming
other methods. Figure (f) shows the agreement error across processors on three sample systems. Figures (g) and (h) show that
Dist-MTLPS also often outperforms the competition in the jumpstart and asymptotic performance.

PG algorithm, as the base learner. We compare our method
(Dist-MTLPS) to standard PG, PG-ELLA (an online vari-
ant of multitask learning introduced to handle scalability to
large number of tasks), and GO-MTL (Kumar and Daume
2012). For a fair comparison against PG-ELLA, we ap-
proximate the original loss of an RL problem by a second-
order Taylor expansion around a local optimum computed
at a given set of trajectories. Our method therefore solves
the same problem as PG-ELLA. This comparison with PG-
ELLA allows us to understand wether our method is capable
of outperforming state-of-the-art techniques that adapt re-
gret minimization games for scaling-up multitask reinforce-
ment learning. We show in Figures (1a)-(1e) that our method
can outperform all comparison methods in terms of the
data complexity. One could worry that these improvements
are only possible because of increased computation. How-
ever, Figure 2a shows that our technique actually achieves
these data improvements while improving wall clock run-
ning times.

To distribute our computations, we made use of MAT-
LAB’s parallel pool running on 10 nodes. For Dist-MTLPS,
we assigned 150 tasks evenly across 10 agents. The edges
between agents were generated randomly to increase the
likelihood of expander graphs, which provide improved
practical consideration (e.g., low condition numbers lead-
ing to increased computational stability). To make sure every
node in the graph has at least one predecessor and successor,
we connect every node i to node i + 1 (and wrap around to
node 1 for node 10). We then randomly assigned 20 addi-
tional edges to the graph.

Figures 1(a)-1(e) report the average cost on the different
benchmark in terms of iterations. In all systems, our method
outperforms the others in total cost incurred. As we con-
sider constraint optimization, it is crucial for Dist-MTLPS
to acquire a solution that satisfies the constraints. Figure 1(f)
shows that our method is capable of acquiring feasible so-
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(b) Novel Domain

Figure 2: (a) shows Dist-MTLPS takes less time to optimize
the multitask learning objective function (seconds) and (b)
shows our method can generalize to novel tasks.

lutions by reporting the consensus error on three example
systems — our method not only acquires good reposito-
ries, but is also capable of converging to an agreement be-
tween the processing units. Interestingly, when interpreted
differently, this result can pave the way for considering safe-
MTPS (which we leave as a direction for future work).

Figures 1(g) and 1(h) demonstrate the our algorithm is ca-
pable of outperforming PG-ELLA and GO-MTL in terms of
jumpstarts and asymptotic performance. Figure 2(a) demon-
strates that our method takes less wall clock time to optimize
the objective function. As tasks become more complex, the
advantage of using our distributed method increases. For in-
stance, Dist-MTLPS can solve a problem with 50 HC tasks
in about 9 seconds, compared to ∼ 200 seconds for PG-
ELLA and over 4000 seconds for GO-MTL.

Multitask learning provides significant advantages when
the agent faces a novel task domain. To evaluate this, we
chose the most complex of the task domains (HC) and
trained the multitask learner, using Dist-MTLPS, on 149
tasks to yield an effective shared knowledge base for each
of the algorithms. Then, we evaluated the ability to learn a
new task from the helicopter domain, comparing the benefits
of Dist-MTLPS transfer from LDist-MTLPS with PG-ELLA
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(from LPG-ELLA), GO-MTL (from LGO-MTL), and PG. Fig-
ure 2(b) depicts the result of learning on a novel domain, av-
eraged over HC tasks, showing that Dist-MTLPS converges
fastest in this scenario.

Conclusions and Future Work

This paper introduces the first distributed, scalable multi-
task policy search framework. We show our method achieves
linear convergence speeds, a significant improvement over
gradient-based methods. We further assess our technique
empirically and demonstrated superiority to state-of-the-art
methods on a variety of benchmark dynamical systems. Fu-
ture work will include targeting the more general cross-
domain multitask learning setting and running our method
on real-world multiple-robotics applications.
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