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Abstract

We provide the first theoretical analysis on the convergence
rate of asynchronous mini-batch gradient descent with vari-
ance reduction (AsySVRG) for non-convex optimization.
Asynchronous stochastic gradient descent (AsySGD) has been
broadly used for deep learning optimization, and it is proved
to converge with rate of O(1/

√
T ) for non-convex optimiza-

tion. Recently, variance reduction technique is proposed and
it is proved to be able to accelerate the convergence of SGD
greatly. It is shown that asynchronous SGD method with vari-
ance reduction technique has linear convergence rate when
problem is strongly convex. However, there is still no work to
analyze the convergence rate of this method for non-convex
problem. In this paper, we consider two asynchronous parallel
implementations of mini-batch gradient descent method with
variance reduction: one is on distributed-memory architecture
and the other is on shared-memory architecture. We prove that
both methods can converge with a rate of O(1/T ) for non-
convex optimization, and linear speedup is accessible when
we increase the number of workers. We evaluate our meth-
ods by optimizing multi-layer neural networks on two real
datasets (MNIST and CIFAR-10), and experimental results
demonstrate our theoretical analysis.

Introduction
With the boom of data, training machine learning model
with large-scale datasets becomes a challenging problem.
Basing on batch gradient descent (GD) method, researchers
propose stochastic gradient descent (SGD) method or mini-
batch gradient descent method to relieve the complexity of
computation in each iteration and reduce the total time com-
plexity for optimization (Nemirovski et al. 2009; Lan 2012;
Ghadimi and Lan 2013; Ghadimi, Lan, and Zhang 2016;
Bottou 2010). Due to efficiency, SGD method has been
widely used to solve different kinds of large-scale machine
learning problems, including both convex and non-convex.
However, because we use stochastic gradient to approxi-
mate full gradient in the process, a decreasing learning rate
has to be applied to guarantee convergence, or it is very
easy to diverge from the optimal solution. Thus, it leads to
a sub-linear convergence rate of O(1/T ) on strongly con-
vex problem. Recently, stochastic variance reduced gradi-
ent (SVRG) (Johnson and Zhang 2013) and its variants,
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such as SAGA(Defazio, Bach, and Lacoste-Julien 2014),
m2SGD(Konečnỳ et al. 2014), have gained much attention
in stochastic optimization. Through reusing the previously
computed first order gradient information, these methods
are able to reduce the variance of gradient approximation
in the optimization and are proved to have linear conver-
gence rate on strongly convex problem. After that, SVRG is
then applied to solve non-convex problem (Allen-Zhu 2016;
Reddi et al. 2016), and it is proved to have a faster sub-linear
convergence rate of O(1/T ). Experiments are conducted on
neural networks and their results also validate that it outper-
forms SGD method for non-convex optimization.

Serial algorithm is not able to make good use of com-
putation resource. Therefore, parallel algorithms are intro-
duced to further speedup the computation task, including
synchronous optimization and asynchronous optimization.
Because there is no need of synchronization between work-
ers, asynchronous methods often have better performance.
Asynchronous parallelism has been successfully applied to
speedup many state-of-the-art optimization algorithms, such
as SGD (Recht et al. 2011; Lian et al. 2015), stochastic coor-
dinate descent (SCD) (Liu, Wright, and Sridhar 2014), SVRG
(Zhang, Zheng, and Kwok 2015) and DualFreeSDCA (Huo
and Huang 2016). There are mainly two kinds of distributed
architectures, one is distributed-memory architecture on mul-
tiple machines (Agarwal and Duchi 2011; Lian et al. 2015;
Zhang and Kwok 2014; Dean et al. 2012; Zhang, Zheng, and
Kwok 2015) and the other one is shared-memory architecture
on a multi-core machine (Recht et al. 2011; Zhao and Li 2016;
Langford, Smola, and Zinkevich 2009). Deep learning is a
typical situation where asynchronous SGD and its variants
have gained great success(LeCun, Bengio, and Hinton 2015;
Dean et al. 2012; Lian et al. 2015; Ngiam et al. 2011). It
is known that deep neural network always has large set of
parameters and trains with large-scale datasets.

Recently, asynchronous SVRG method has been imple-
mented and studied on both distributed-memory architecture
(Zhang, Zheng, and Kwok 2015) and shared-memory archi-
tecture (Zhao and Li 2016). It is proved that asynchronous
SVRG method has linear convergence rate on strongly convex
problem. Mini-batch gradient is implemented in the exper-
iments, while it is missing in their proof. Further, there is
no theoretical analysis of convergence rate for asynchronous
SVRG on non-convex problem yet.
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In this paper, we provide the convergence analysis of asyn-
chronous mini-batch gradient descent with variance reduction
method (asySVRG) for non-convex optimization. Two dif-
ferent algorithms and analysis are proposed on two different
distributed architectures, one is shared-memory architecture
and the other is distributed-memory architecture. The key dif-
ference between these two categories lies on that distributed-
memory architecture can ensure the atomicity of reading and
writing the whole vector of x, while the shared-memory ar-
chitecture can usually just ensure atomic reading and writing
on a single coordinate of x (Lian et al. 2015). We implement
asySVRG on two different architectures and analyze their
convergence rate based on the mini-batch setting. We prove
that asySVRG can get convergence rate of O(1/T ) on both
architectures. Besides, we also prove that linear speedup is
accessible when we increase the number of workers until
reaching an upper bound.

We list our main contributions as follows:
• We extend asynchronous shared-memory SVRG method

to solve non-convex problem. Our Shared-AsySVRG on
shared-memory architecture has faster convergence rate
than AsySGD. We prove that Shared-AsySVRG has a
convergence rate of O(1/T ) for non-convex optimization.

• We extend asynchronous distributed-memory SVRG
method to solve non-convex problem. Our Distributed-
AsySVRG on distributed-memory architecture has faster
convergence rate than AsySGD. We prove that Distributed-
AsySVRG has a convergence rate of O(1/T ) for non-
convex optimization.

• Both of Shared-AsySVRG and Distributed-AsySVRG
have linear speedup when we increase the number of
threads in a shared-memory architecture or workers in
a distributed-memory architecture until reaching an upper
bound.

Notation
In this paper, we consider the following empirical loss mini-
mization problem:

min
x∈Rd

f(x) =
1

n

n∑
i=1

fi(x) , (1)

where f(x) and fi(x) are Lipschitz smooth, they are not
necessarily convex. In this paper, we assume both of them
are non-convex.

Following the proof in (Lian et al. 2015; Reddi et al. 2016;
Allen-Zhu 2016) for non-convex optimization, we use the
weighted average of the �2 norm of full gradient ||∇f(x)||2
as metric to analyze its convergence property. For further anal-
ysis, throughout this paper, we make the following assump-
tions for problem (1). All of them are very common assump-
tions in the theoretical analysis for asynchronous stochastic
gradient descent method.
Assumption 1 Independence: All random samples i are se-
lected randomly and independently to each other.
Assumption 2 Unbiased Gradient: The stochastic gradient
∇fi(x) is unbiased:

E [∇fi(x)] = ∇f(x) (2)

Assumption 3 Lipschitz Gradient: We say ∇f(x) is Lips-
chitz continuous, and it holds that:

||∇f(x)−∇f(y)||2 ≤ L||x− y||2 (3)

Throughout, we also assume that the function ∇fi(x) is also
Lipschitz continuous, so that ||∇fi(x)−∇fi(y)||2 ≤ L||x−
y||2
Assumption 4 Maximum Time Delay: Time delay variable
τ of parameters in each worker is upper bounded, namely
max τ ≤ Δ. In practice, Δ is related with the number of
workers.

Asynchronous Mini-Batch Gradient Descent

with Variance Reduction for Shared-Memory

Architecture

In this section, we propose AsySVRG method for shared-
memory architecture, and prove that it converges with rate
O(1/T ). It is proved that SVRG has a convergence rate
of O(1/T ) on non-convex problem (Reddi et al. 2016;
Allen-Zhu 2016). In this section, we follow the convergence
analysis in (Reddi et al. 2016), and extends it to asynchronous
optimization on shared-memory architecture.

Algorithm Description

Following the setting in (Lian et al. 2015), we define one
iteration as a modification on any single component of x
in the shared memory. We use xs+1

t to denote the value of
parameter x in the shared memory after (ms+ t) iterations,
and Equation (4) represents the update rule of parameter x in
iteration t:

(xs+1
t+1 )kt

= (xs+1
t )kt

− η(vs+1
t )kt

, (4)

where kt ∈ {1, ..., d} is a random index of component in
x ∈ R

d, and learning rate η is constant. Descent direction
vs+1
t is defined as follows:

vs+1
t =

1

|It|
∑

it∈It

(∇fit(x̂
s+1
t )−∇fit(x̃

s) +∇f(x̃s)
)

(5)

where x̃s denotes a snapshot of x after every m iterations.
it denotes the index of a sample, and It is index set of mini-
batch samples, and mini-batch size is |It|. The definition of
x̂s+1
t follows the analysis in (Lian et al. 2015), where x̂s+1

t is
assumed to be some earlier state of x in the shared memory.

x̂s+1
t = xs+1

t −
∑

j∈J(t)

(xs+1
j+1 − xs+1

j ) (6)

where J(t) ∈ {t − 1, ...., t − Δ} is a subset of previous
iterations, Δ is the upper bound of time delay. In Algorithm
1, we summarize the Shared-AsySVRG on shared-memory
architecture.

Convergence Analysis

In this section, we prove that our proposed Shared-AsySVRG
method has a sub-linear convergence rate of O(1/T ) on non-
convex problem. Different from AsySGD method, we are
able to bound the variance of gradient update vs+1

t because
of the variance reduction technique. And it is crucial for our
convergence analysis.
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Algorithm 1 Shared-AsySVRG

Initialize x0 ∈ R
d.

for s = 0, 1, 2, , .., S − 1 do
x̃s ← xs;

Compute full gradient ∇f(x̃s) ← 1
n

n∑
i=1

∇fi(x̃
s);

Parallel Computation on Multiple Threads
for t = 0, 1, 2, ...,m− 1 do

Randomly select mini-batch It from {1, ....n};
Compute variance reduced gradient vs+1

t :
vs+1
t ← 1

|It|
∑

it∈It

(∇fit(x̂
s+1
t )−∇fit(x̃

s) +∇f(x̃s)
)

Randomly select kt from {1, ..., d};
Update (xs+1

t+1 )kt ← (xs+1
t )kt − η(vs+1

t )kt ;
end for
xs+1 ← xs+1

m ;
end for

Lemma 1 As per the definition of the variance reduced gra-
dient vs+1

t in Equation (5), we define,

us+1
t =

1

|It|
∑

it∈It

(∇fit (x
s+1
t )−∇fit (x̃

s) +∇f(x̃s)
)

(7)

We have the following inequality:

m−1∑

t=0

E
[||vs+1

t ||2] ≤ 2d

d− 2L2Δ2η2

m−1∑

t=0

E
[||us+1

t ||2] (8)

where E
[||us+1

t ||2] is upper bounded in (Reddi et al.
2015).

E
[||us+1

t ||2] ≤ 2E
[||∇f(xs+1

t )||2]+ 2L2

b
E
[||xs+1

t − x̃s||2] (9)

From Lemma 1, we know that the variance of vs+1
t goes to

zero when we reach the optimal solution if it exists. Thus, we
can maintain learning rate as a constant in the optimization.
Therefore, our Shared-AsySVRG has a faster convergence
rate as follows:
Theorem 1 Suppose all assumptions of f(x) satisfy. Let
cm = 0, learning rate η > 0 is constant, βt = β > 0,
b = |It| denotes the size of mini-batch samples in each itera-
tion. We define:

ct = ct+1(1 +
ηβt

d
+

4L2η2

(d− 2L2Δ2η2)b
)

+
4L2

(d− 2L2Δ2η2)b
(
L2Δ2η3

2d
+

η2L

2
) (10)

Γt =
η

2d
− 4

d− 2L2Δ2η2
(
L2Δ2η3

2d
+

η2L

2
+ ct+1η

2) (11)

such that Γt > 0 for 0 ≤ t ≤ m − 1. Define γ = mint Γt,
and x∗ is the optimal solution for non-convex problem. Then,
Shared-AsySVRG has the following convergence rate in iter-
ation T :

1

T

S−1∑
s=0

m−1∑
t=0

E
[||∇f(xs+1

t )||2] ≤ E
[
f(x0)− f(x∗)

]
Tγ

(12)

Now, we prove that our method has a convergence rate of
O(1/T ) if problem is non-convex. If we represent γ with
known parameters, we have the following theorem.
Theorem 2 Suppose all assumptions of f(x) satisfy. Let
η = u0b

Lnα , where 0 < u0 < 1 and 0 < α ≤ 1, β = 2L,
m = � dnα

6u0b
� and T is the number of total iterations. If the

maximum time delay Δ satisfies the following condition:

Δ2 < min{ d

2u0b
,
3d− 28u0bd

28u2
0b

2
} (13)

Then there exists universal constant u0 and σ, such that it
holds γ ≥ σb

dLnα and

1

T

S−1∑

s=0

m−1∑

t=0

E
[||∇f(xs+1

t )||2] ≤ dLnαE
[
f(x0)− f(x∗)

]

bTσ
(14)

In (14), we can find out that the convergence rate has nothing
to do with maximum time delay Δ, if it is upper bounded.
Thus in a specific domain, the negative effect of using stale
information of parameter x for approximating gradient evalu-
ation vanishes, and a linear speedup is accessible when we
increase the number of threads.

Asynchronous Mini-Batch Gradient Descent

with Variance Reduction for

Distributed-Memory Architecture

In this section, we propose Distributed-AsySVRG algorithm
for distributed-memory architecture, and prove that it con-
verges with rate O(1/T ) on non-convex problem.

Algorithm Description

In each iteration, parameter x is updated through the follow-
ing update rule,

xs+1
t+1 = xs+1

t − ηvs+1
t (15)

where learning rate η is constant, vs+1
t represents variance

reduced gradient, and it is defined as:

vs+1
t =

1

|It|
∑

it∈It

(∇fit (x
s+1
t−τ )−∇fit (x̃

s) +∇f(x̃s)
)

(16)

where x̃s means a snapshot of x after every m iterations,
and xs+1

t−τ denotes the current parameter used to compute
gradient in the worker. it denotes the index of a sample, τ
denotes time delay of parameter in the worker, and mini-
batch size is |It|. Suppose there are K workers in total, and
the number of dataset in worker k is nk. We summarize the
Distributed-AsySVRG on distributed-memory architecture
in the Algorithm 2 and Algorithm 3, Algorithm 2 shows
operations in server node, and Algorithm 3 shows operations
in worker node.

Convergence Analysis

Similar to the convergence analysis in Shared-AsySVRG, we
analyze the convergence rate for our proposed Distributed-
AsySVRG in this section. It has been proved in (Reddi et al.
2015) that the variance of vs+1

t is upper bounded, and it goes
to zero when x is close to the optimal solution.
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Algorithm 2 Distributed-AsySVRG Server Node

Initialize x0 ∈ R
d.

for s = 0, 1, 2, , .., S − 1 do
x̃s ← xs;
flag = True
Broadcast x̃s to all workers;

Receive and compute: ∇f(x̃s) ← 1
n

K∑
k=1

∇kf(x̃s);

Broadcast ∇f(x̃s) to all workers;
flag = False
for t = 0, 1, 2, ...,m− 1 do

Receive variance reduced gradient vs+1
t from worker;

Update xs+1
t+1 ← xs+1

t − ηvs+1
t ;

end for
xs+1 ← xs+1

m ;
end for

Algorithm 3 Distributed-AsySVRG Worker Node k

if flag is True then
Receive parameter x̃s from server;
Compute and send full gradient ∇kf(x̃s):

∇kf(x̃s) =
nk∑
i=1

∇if(x̃
s) ;

Receive full gradient ∇f(x̃s) from server;
else

Receive parameter xs+1
t−τ from server;

Randomly select mini-batch It from {1, ..., nk};
Compute vs+1

t and send it to server:
vs+1
t ← 1

|It|
∑

it∈It

(∇fit(x
s+1
t−τ )−∇fit(x̃

s) +∇f(x̃s)
)
;

end if

Theorem 3 Suppose all assumptions of f(x) satisfy. Let
cm = 0, learning rate η > 0 is constant, βt = β > 0, b
denotes the size of mini-batch. We define:

ct = ct+1

(
1 + ηβt +

4L2η2

(1− 2L2Δ2η2)b

)

+
4L2

(1− 2L2Δ2η2)b

(
L2Δ2η3

2
+

η2L

2

)
(17)

Γt =
η

2
− 4

(1− 2L2Δ2η2)
(
L2Δ2η3

2
+

η2L

2
+ ct+1η

2) (18)

such that Γt > 0 for 0 ≤ t ≤ m − 1. Define γ = mint Γt,
x∗ is the optimal solution for non-convex problem. Then, we
have the following convergence rate in iteration T :

1

T

S−1∑
s=0

m−1∑
t=0

E
[||∇f(xs+1

t )||2] ≤ E
[
f(x0)− f(x∗)

]
Tγ

(19)

Representing γ with known parameters, and then we have
the following theorem.

Theorem 4 Suppose all assumptions of f(x) satisfy. Let
ηt = η = u0b

Lnα , where 0 < u0 < 1 and 0 < α ≤ 1, β = 2L,
m = � nα

6u0b
� and T is total iteration. If the maximum time

delay Δ is upper bounded by:

Δ2 < min{ 1

2u0b
,
3− 28u0b

28u2
0b

2
} (20)

then there exists universal constant u0, σ, such that if it holds
γ ≥ σb

Lnα , we have the following inequality:

1

T

S−1∑

s=0

m−1∑

t=0

E
[||∇f(xs+1

t )||2] ≤ LnαE
[
f(x0)− f(x∗)

]

bTσ
(21)

Therefore, it is obvious that our proposed Distributed-
AsySVRG method has sub-linear convergence rate of
O(1/T ), and is much faster than the AsySGD with conver-
gence rate of O(1/

√
T ) (Lian et al. 2015). From inequality

(21), we know that the convergence rate has nothing to do
with Δ if it is upper bounded, linear speedup is also accessi-
ble when we increase the number of workers in a cluster.

Experiments

In this section, we perform experiments on shared-memory
architecture and distributed-memory architecture respectively.
One of the main purposes of our experiments is to validate the
faster convergence rate of asySVRG method, and the other
purpose is to demonstrate its linear speedup property. The
speedup we consider in this paper is running time speedup
when they reach similar performance, e.g. similar training
loss function value. Given K workers, running time speedup
is defined as,

Time speedup =
Running time for the serial computation

Running time of using K workers
(22)

Shared-Memory Architecture

We conduct experiments on a machine which has 2 sockets,
and each socket has 18 cores. OpenMP library 1 is used to
handle shared-memory parallelism. We consider the multi-
class classification task on MNIST dataset (LeCun et al.
1998), and use 10, 000 training samples and 2, 000 testing
samples in the experiment. Each image sample is a vector
of 784 pixels. We construct a toy three-layer neural network
(784× 100× 10), where ReLU activation function is used in
the hidden layer. We train this neural network with softmax
loss function, and �2 regularization with weight C = 10−3.
We set mini-batch size |It| = 10, and inner iteration length
m = 1, 000. Updating only one component of x in each iter-
ation is too time consuming, therefore we randomly select
and update 1, 000 components.

We compare following three methods in the experiment:

• SGD: We implement stochastic gradient descent (SGD)
algorithm and train with the best tuned learning rate. In our
experiment, we use polynomial learning rate η = α

(1+s)β
,

where α denotes initial learning rate and we tune it from
{1e−2, 5e−2, 1e−3, 5e−3, 1e−4, 5e−4, 1e−5, 5e−5}, β is
tuned from in {0, 0.1, 0.2, ..., 1} and s denotes the epoch
number.
1https://openmp.org
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Figure 1: Comparison of three methods: SGD, SVRG, SGD SVRG on MNIST dataset. Figure 1a shows the convergence of loss
function value on training dataset. Figure 1b shows the convergence of training error and Figure 1c shows the convergence of test
error.
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Figure 2: We run Shared-AsySVRG on a machine with different number of threads from 1 to 32. Figure 2a shows the convergence
of training loss value with respect to time. Figure 2b shows the convergence of error rate on testing data. Figure 2c represents the
running time speedup when we use different threads, where the dashed line represents ideal linear speedup.

• SVRG: We implement our Shared-AsySVRG method and
train with the best tuned constant learning rate α.

• SGD SVRG: SVRG method is sensitive to initial point,
and it is slower than SGD at first few iterations. Thus, we
apply Shared-AsySVRG on a pre-trained model learned
by SGD. In the experiment, we use a pre-trained model
after running 10 epochs of SGD method.
We evaluate three compared methods on MNIST dataset,

and each method trains with the best tuned learning rate.
Figure 1 shows the convergence of each method with re-
spect to different criterion: loss function value on training
dataset, training error, and testing error. Figure 1a shows the
curves of training loss function value, it is clear that SGD
method converges faster than SVRG method in the first 20 it-
erations, and after that, SVRG method outperforms SGD.
SGD SVRG method initializes with a pre-trained model,
and it has the best performance. Figure 1b and Figure 1c
present the performance of each method on training error and
testing error respectively. We can conclude that SVRG and
SGD SVRG method have better performance on the long
run, and SGD SVRG method has the fastest convergence.

To demonstrate that our proposed Shared-AsySVRG
method has linear speedup when we increase the number
of workers, we also evaluate Shared-AsySVRG with differ-
ent number of threads, and Figure 2 presents the result of our

experiment. In Figure 2a, all curves are reaching the simi-
lar training loss value. As we can see, the more threads we
use in the computation, the less time we need to achieve a
similar accuracy. This result is reasonable, because when we
distribute the whole work to multiple workers, each worker
focuses on its own subset independently and parallelly. The
ideal result of parallel computation is linear speedup, namely
if we use K threads, its running time should be 1

K of the
time when we just use a single thread. Figure 2c shows the
ideal speedup and actual speedup in our experiment. We can
find out that a nearly linear speedup is accessible when we
increase the thread number. When the number of threads
exceeds a threshold, performance will degrade. These find-
ings in the experiment are compatible with our theoretical
analysis.

Distributed-Memory Architecture

We conduct distributed-memory architecture experiment on
AWS platform2, and each node is a t2.micro instance with one
virtual CPU. Each server and worker takes a single node. The
point to point communication between server and workers
are handled by MPICH library3. We use CIFAR-10 dataset
(Krizhevsky and Hinton 2009) in the experiment, and this

2https://aws.amazon.com/
3http://www.mpich.org/
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Figure 3: Comparison of three methods: SGD, SVRG, SGD SVRG on CIFAR-10 dataset. Figure 3a shows the convergence of
loss function value on training dataset. Figure 3b shows the convergence of training error and Figure 3c shows convergence of
test error.
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Figure 4: We run Distributed-AsySVRG on multiple machines from 1 to 10. Figure 4a shows the convergence of training loss
value with respect to time. Figure 4b shows the convergence of error rate on testing data. Figure 4c represents the running time
speedup when using different number of workers, where the dashed line denotes ideal linear speedup.

dataset has 10 classes of color image of size 32× 32× 3. We
use 20, 000 samples as training data and 4, 000 samples as
testing data. We use a pre-trained CNN model in TensorFlow
tutorial (Abadi et al. 2016), and extract features from second
fully connected layer. Thus, each sample is a vector of size
384. We construct a three-layer fully connected neural net-
work (384 × 50 × 10). In the hidden layer, we use ReLU
activation function. We train this model with softmax loss,
and �2 regularization with weight C = 1e−4. In this exper-
iment, mini-batch size |It| = 10, and the inner loop length
m = 2, 000. We use the same compared methods as in the
last section, except that SGD SVRG method is initialized
with parameters learned after 1 epoch of SGD.

Performances of all three methods are presented in Figure
3. Curves in Figure 3a show that SGD is the fastest method
in the first few iterations, after that, SVRG-based method
will outperform it. It is obvious that SGD SVRG has better
convergence rate than SVRG method. We can also draw a
similar conclusion from Figure 3b. In Figure 3c, it shows that
the test error performance of three compared methods are
comparable.

We also test our Distributed-AsySVRG method with dif-
ferent number of workers, and Figure 4 illustrates the results
of our experiment. It is easy to know that when the number
of workers increases, our method has a near linear speedup.

Conclusion

In this paper, we propose and analyze asynchronous mini-
batch gradient descent method with variance reduction for
non-convex optimization on two distributed architectures:
shared-memory architecture and distributed-memory archi-
tecture. We analyze their convergence rate and prove that
both of them can get a convergence rate of O(1/T ) for non-
convex optimization. Linear speedup is accessible when we
increase the number of workers K, if K is upper bounded.
Experiment results on real dataset also demonstrate our anal-
ysis.
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