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Abstract

Multi-Armed Bandit (MAB) framework has been success-
fully applied in many web applications. However, many com-
plex real-world applications that involve multiple content rec-
ommendations cannot fit into the traditional MAB setting.
To address this issue, we consider an ordered combinatorial
semi-bandit problem where the learner recommends S ac-
tions from a base set of K actions, and displays the results
in S (out of M ) different positions. The aim is to maximize
the cumulative reward with respect to the best possible subset
and positions in hindsight. By the adaptation of a minimum-
cost maximum-flow network, a practical algorithm based on
Thompson sampling is derived for the (contextual) combina-
torial problem, thus resolving the problem of computational
intractability. With its potential to work with whole-page rec-
ommendation and any probabilistic models, to illustrate the
effectiveness of our method, we focus on Gaussian process
optimization and a contextual setting where click-through-
rate is predicted using logistic regression. We demonstrate
the algorithms’ performance on synthetic Gaussian process
problems and on large-scale news article recommendation
datasets from Yahoo! Front Page Today Module.

Introduction

The Multi-Armed Bandit (MAB) problem is a classic and
natural framework for many machine learning applications.
In this setting, the learner takes an action and only observes
partial feedback from the environment. MAB naturally ad-
dresses the fundamental trade-off between exploration and
exploitation (Auer, Cesa-Bianchi, and Fischer 2002; Lang-
ford and Zhang 2008). Traditional MAB is a sequential de-
cision making setting defined over a set of K actions. At
each time step t, the learner selects a single action It and
observes some payoff Xt,It . In stochastic MAB, the reward
of each arm is assumed to be drawn from some unknown
probability distribution. The goal is to maximize the cumu-
lative payoff obtained in a sequence of n allocations over
time, or equivalently minimize the regret.

MAB has been extensively studied, and many algorithms
are proposed and have found applications in various do-
mains. Some successful web applications are news and
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movie recommendation, web advertising, vertical search and
query autocompletion (Li et al. 2011; Chapelle and Li 2011;
Chu et al. 2011; Jie et al. 2013). Despite these advances,
many real-world applications cannot fit into the traditional
multi-armed bandit framework.

We use news article recommendation as a motivating ex-
ample. Fig. 1 is a snapshot of a portal website. In this view,
there are totally 6 slots to display news articles. These slots
differ in positions, container sizes and visual appearance.
Several studies (Liu et al. 2015; Lagun and Agichtein 2014)
indicate that users do not sequentially scan the webpages.
How to make whole-page recommendations, that is, select 6
articles from a larger pool and place them accordingly in the
webpage, is a combinatorial problem that is beyond ranking.
The goal is to find an optimal layout configuration to maxi-
mize the expected total click-through-rate (CTR). A related
work on this topic is the optimal page presentation (Wang
et al. 2016). Yet even though search engine works in a real
time fashion, their models are trained on batch data rather
than in an online learning setting, thus neglecting the explo-
ration/exploitation tradeoff.

There are some existing work that addresses the bandits
with multi-plays, for example, subset regret problems (Kale,
Reyzin, and Schapire 2010; Gopalan, Mannor, and Mansour
2014; Wang et al. 2015; Gai, Krishnamachari, and Liu 2011;
Swaminathan et al. 2016), batch-mode bandit optimiza-
tion with delayed feedbacks (Desautels, Krause, and Bur-
dick 2014) and ranked bandits (Radlinski, Kleinberg, and
Joachims 2008). This class of learning problems was also
recently formulated as a combinatorial bandit/semi-bandit
(Gai, Krishnamachari, and Jain 2012; Audibert, Bubeck, and
Lugosi 2013; Wen et al. 2015; Krishnamurthy, Agarwal, and
Dudik 2016). However, the complex combinatorial setting in
our example is beyond the capacity of existing methods.

To model this scenario, we consider the following ordered
combinatorial bandit problem. Given optional context infor-
mation, instead of selecting one arm, the learner selects a
subset of S actions and displays them on S different posi-
tions from M possible positions. Our novelty lies in:

1. Our method does not resort to an oracle to provide ap-
proximation solutions. Instead, we formulate the problem
via the minimum-cost maximum-flow network, and effi-
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Figure 1: An example of news article recommendation.

ciently provide exact solutions.

2. To the best of our knowledge, our model is the first to
deal with general layout information where the number of
positions can be larger than the subset of arms selected,
i.e. S < M .

3. We use Thompson sampling as the bandit instance. One
advantage of Thompson sampling is that no matter how
complex the stochastic reward function, it is computation-
ally easy to sample from the posterior distribution and se-
lect the action with the highest reward under the sampled
parameter. Thus it has the potential to work with any prob-
abilistic user click models, e.g. the Cascade Model and the
Examination Hypothesis.

Problem Settings

Due to position and layout bias, it is reasonable to assume
that for every article and every position, there is a click-
through-rate associated with the (content, position) pair,
which specifies the probability that a user will click on the
content if it is displayed in a certain position. In a sequence
of rounds t = 1, 2, ..., T , the learner is required to choose S
actions from a base set A of K actions to display in S (out of
M ) different positions, and receives a reward that is the sum
of the rewards of (action, position) pair in the chosen sub-
set. All the payoff for each displayed (content, position) pair
is revealed. This feedback model is known as semi-bandits
(Audibert, Bubeck, and Lugosi 2013). Since in this work, we
explicitly model the positions of the subset of selected arms,
we call this setting ordered combinatorial semi-bandits.

Ordered (Contextual) Combinatorial Bandits. In each
round t, the learner is presented with a (optional) context
vector xt. In order to take layout information into consid-
eration, a feature vector ak,m is constructed for each (ac-
tion, position) pair (k,m), such that ak ∈ A, and m ∈
{1, 2, ...,M}. The learner chooses S actions from A to dis-
play in S (out of M ) different positions. Thus a valid com-
binatorial subset is a mapping from S different actions to
S different positions; or more concisely, it is a one-to-one
mapping πt : {1, 2, ..., S} �→ (A, {1, 2, ...,M}). We fur-
ther refer to each πt as a super arm. The learner then receives
reward rπt(s)(t) for each chosen (action, position) pair. The
total reward of round t is the sum of the rewards of each po-
sition

∑S
s=1 rπt(s)(t). The goal is to maximize the expected

cumulative rewards over time E

[∑T
t=1

∑S
s=1 rπt(s)(t)

]
.

An important special case of the contextual combinatorial
bandits is the context-free setting in which the context xt re-
mains constant for all t. By setting S, K to special values,
many existing methods can be seen as special cases of our
combinatorial bandits setting. For example, S = 1 is equiv-
alent to the traditional contextual K-armed bandits. If we set
K = 1 as a dummy variable and treat N positions as actions,
our combinatorial bandit problem degenerates to the un-
ordered subset regrets problems (Kale, Reyzin, and Schapire
2010; Gopalan, Mannor, and Mansour 2014). The bandit or-
dered slate problem (Kale, Reyzin, and Schapire 2010) and
ranked bandits (Radlinski, Kleinberg, and Joachims 2008)
are also special cases of our setting with S = M . Yet our set-
ting is not restricted to learn-to-rank and is general enough
to optimize whole-page presentation.

Thompson Sampling

In (contextual) K-armed bandit problems, at each round an
optional context information x is provided. The learner then
chooses an action a ∈ A and observes a reward r. Thompson
Sampling (Thompson 1933; Chapelle and Li 2011) for the
contextual bandit problems is best understood in a Bayesian
setting as follows. Each past observation consists of a triplet
(xi, ai, ri) and the likelihood function of the reward is mod-
eled in the parametric form Pr(r|a, x, θ) over some param-
eter set Θ. Given some known prior distribution over Θ,
the posterior distribution of these parameters is given by the
Bayes rule based on the past observations. At each time step
t, the learner draws θ̂t from the posterior and chooses the ac-
tion that has the largest expected reward based on the sam-
pled θ̂t, as described in Algorithm 1.

Algorithm 1: Thompson sampling

input : Prior Distribution P (θ) and history D0 = ∅
for t = 1 to T do

Receive context xt

1. Draw θt from P (θ|Dt−1)

2. Draw arm at = argmaxa E[r|a, xt, θ̂
t]

Observe reward rt
3. Dt = Dt−1 ∪ {xt, at, rt}

Update posterior distribution P (θ|Dt)
end

Algorithms for the Ordered Combinatorial

Semi-Bandits

Our main algorithmic idea is to use Thompson sampling for
ordered semi-bandits due to its flexibility for complex re-
ward functions.

On each round t, the ordered combinatorial semi-bandit
problem involves choosing S actions from a set A of K
actions to display in S (out of M ) different positions, and
receiving a reward that is the sum of the chosen subset. A
naive approach is to treat each complex combination as a
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super arm and apply a traditional bandit algorithm which in-
volves enumerating the values on all the super arms. This
approach may have practical and computational limitations
since the number of super arms blows up very quickly.

Suppose the likelihood function of the reward of each
context x and (action, position) pair ak,m is modeled in
the parametric form Pr(r|x, a, θ). The next three sections
develop special variants of Thompson sampling which ef-
ficiently find the optimal mapping π∗t : {1, 2, ..., S} �→(A, {1, 2, ...,M}) such that

π∗t ∈ argmax
πt

S∑
s=1

E[r|aπt(s), xt, θ̂
t]. (1)

Action selection as a constrained optimization

In order to find the best super arm π∗t as in Eq. (1) without
enumeration, we first denote the expected reward of each
(action, position) pair E[r|ak,m, xt, θ̂

t] for displaying action
ak at position pm, given context xt and sampled parameter
θ̂t, as ek,m to simplify notations. We also define indicator
variable fk,m to denote whether action ak is displayed at
position pm, fk,m ∈ {0, 1}. We next translate a valid super
arm into mathematical constraints. First, since each action
can be displayed at most once, it corresponds to the con-
straint

∑
m fk,m ≤ 1, ∀k. Second, no two actions can be

placed in the same position and thus we have
∑

k fk,m ≤ 1,
∀m = 1, ...,M . Finally, there should be exactly S actions
chosen, which is equivalent to

∑
k

∑
m fk,m = S. The max-

imization over the super arms in Eq. (1) can thus be repre-
sented as the following integer programming:

max
f

K∑

k=1

M∑

m=1

fk,mek,m

subject to
M∑

m=1

fk,m ≤ 1, ∀k = 1, . . . ,K

K∑

k=1

fk,m ≤ 1, ∀m = 1, . . . ,M

K∑

k=1

M∑

m=1

fk,m = S

fk,m ∈ {0, 1}, ∀k = 1, . . . ,K, m = 1, . . . ,M
(2)

In general, integer programming problems cannot be solved
efficiently. However, as shown in the next section, the given
formulation can be interpreted as a network flow that admits
polynomial time solutions [and enjoys interesting properties
such as the max–flow min–cut duality (Vazirani 2013)].

Network flow

The integer optimization problem (2) can be interpreted as a
minimum-cost maximum-flow formulation with edge costs
−ek,m as depicted in Figure 2. The decision variables fk,m
represent the amount of flow to be transferred along the
edges of a bipartite graph with expected rewards ek,m. In ad-
dition, S represents the total size of the network flow. More-
over, the flow capacity of the edges adjacent to the bipartite

Figure 2: Capacity[cost]. Network flow problem with a max-
imum capacity of S.

graph is 1, which implies that those edges can accommodate
a flow of at most 1 unit. Furthermore, we can change inte-
ger programming formulation of (2) to a linear programming
by relaxing the last set of constraints with their continuous
equivalent fk,m ∈ [0, 1]. The constraint matrices of such
problems feature special properties:

Theorem 1 (Ahuja, Magnanti, and Orlin 1993) The node-
arc incidence matrix of a directed network is totally unimod-
ular.

Hence, we know that the set of constraints in the linear pro-
gramming relaxation of problem (2) can be represented in
standard form as Ax = b, x ≥ 0 with a totally unimod-
ular constraint matrix A. Since the incidence matrix of a
graph has linearly independent rows and S is an integer,
we know that the linear programming relaxation (2) of the
super arm selection problem will result in an integer opti-
mal solution f∗ ∈ {0, 1}K×M (Ahuja, Magnanti, and Or-
lin 1993). Furthermore, linear programming problems can
be solved in polynomial time using interior–point methods
(Nesterov, Nemirovskii, and Ye 1994), and therefore we can
solve the super arm selection problem efficiently. Please note
that in general, specialized algorithms for min–cost network
flow problems can have better running times than the linear
programming approach. However, such specialized methods
usually do not allow for the introduction of addition con-
straints which can arise in practice, and the development and
testing of such methods is beyond the scope of the current
paper. For these reasons, we use a linear programming solver
in our numerical experiments.

Thompson sampling for the combinatorial
semi-bandits with Gaussian processes

As before, we make the assumption that there is an un-
known reward function value g(·) for each (price, posi-
tion) pair. In this section, we consider the cases where ob-
servations occur in a continuous domain. At each time, if
we choose to measure a point ak,m ∈ (A,M), we get to
see its function value perturbed by i.i.d. Gaussian noises
yt = g(ak,m) + εt, εt ∼ N (0, σ2). We can enforce im-
plicit properties like smoothness by modeling the unknown
function g as a sample of a Gaussian process (GP) whose re-
alizations consist of random variables associated with each
ak,m. Each Gaussian process GP(μ,K) can be specified
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by its mean function μ and covariance (or kernel) func-
tion K = [k(ak,m, ak′,m′)]ak,m,ak′,m′∈(A,M). We denote
the normal distribution N (μ0,K0) as the prior distribution
over g. We introduce the σ-algebra Ft formed by previous
t observations of super arms Yt = {y1, ...,yt} at points
Xt = {π1, ..., πt}, where yt = [yt,1, ..., yt,S ]

T . We de-
fine μt = E[g|Ft] and Kt = Cov[g|Ft]. By the prop-
erty of Gaussian Processes, conditioning on Ft, we have
g ∼ N (μt,Kt).

At time t, for any order of the chosen arm {ai1 , ..., aiS} =
{πt(1), ..., πt(S)}, we loop over S arms and recursively up-
date the statistics, starting from μt+1 ← μt, Kt+1 ← Kt:

μt+1 ← μt+1 +
yt+1,j − μt+1,xij

σ2 + σ2
t+1(xij )

Kt+1exij
,

Kt+1 ← Kt+1 −
Kt+1exij

(exij
)TKt+1

σ2 + σ2
t+1(xij )

,

where σ2
t+1(x) = kt+1(x, x) and ex is a column vector with

only the element x one and others zero.
At each round, Thompson sampling first draws a random

parameter θ̂tk,m from the posterior N (μt,Kt) and then uses
the linear programming to solve optimization problem (2) to
select the super arm πt with ek,m = θ̂tk,m.

Thompson sampling for the combinatorial bandits
with logistic regression

In web applications, observations are usually binary values
which cannot be properly modeled by a continuous Gaus-
sian process. To this end, we instead use Bayesian logistic
regression to model the likelihood (CTR) depending on both
the position and the action itself. Exact Bayesian inference is
intractable since the evaluation of the posterior comprises a
product of logistic link functions. In our model, the posterior
on the weights is approximated by a Gaussian distribution
with a diagonal covariance matrix. With a Gaussian prior on
the weights wj ∼ N (mj , q

−1
j ), the Laplace approximation

can be obtained by first finding the mode of the posterior
distribution and then fitting a Gaussian distribution centered
at that mode (see Chapter 4.5 of (Bishop 2006)).

In order to continuously refresh the system with new
data, the Bayesian logistic regression has been extended to
leverage for model updates after each batch of training data
(Chapelle and Li 2011; Wang, Wang, and Powell 2016),
where the Laplace approximated posterior serves as a prior
on the weights to update the model when a new batch of
training data becomes available. To be more specific, given
a new batch of training data (xi, yi), based on the current
prior distribution wj ∼ N (mj , q

−1
j ), we first find the MAP

(maximum a posteriori) estimation

ŵ = argmax
w
−1

2

d∑

j=1

qi(wi −mi)
2 −

n∑

i=1

log(1 + exp(−yiwTxi)).

(3)
Then, by finding the Hessian evaluated at ŵ, we can compute the in-
verse variance of each weight wj as:

qj = qj +

n∑

i=1

σ(ŵTxi)(1− σ(ŵTxi)x
2
ij . (4)

Hence the approximated posterior is wj ∼ N(ŵj , q
−1
j ).

The past training example is made of (x, a, p, r) with x
as the context, a as the action, p as the position and r as a
binary reward. Suppose each context x and action a is rep-
resented by feature vectors φx, and ψa, respectively. To re-
flect the effect of different physical positions on the page, the
click-through probability is modeled as Pr(r = 1|x, a, p) =
σ
(
F (x, a, p)

)
, where

F (x, a, p) = μ+αTφx + βTψa +

M∑
m=1

γmI(p, pm), (5)

σ(z) = ez

1+ez is the logistic link function and I(x, y) is the
indicator function that is one if x = y and zero otherwise.

We use w to denote the unknown parameter set w =
[μ;α;β;γ]. At each round, we first draw a random parame-
ter ŵt from the approximated posterior N (mi, q

−1
i ). Since

reward r is Bernoulli distributed with Pr(r = 1|x, a, p) =
σ
(
F (x, a, p)

)
, we have E[r|ak,m, xt, ŵ

t] = σ(ΦT ŵt),
where Φ = [1;φxt

;ψak
; em] with em as a column vector

with only the mth element one and zeros otherwise. We then
use the linear programming to select the super arm π that
maximizes the reward function (1) with E[r|ak,m, xt, ŵ

t] =
σ(ΦT ŵt). Our model does not require the action set A
to be fixed. This offers great benefit for web applications,
in which, for example, the pool of available news articles
for each user visit changes over time. The algorithm of
Thompson sampling for the combinatorial semi-bandits with
Bayesian logistic regression is summarized in Algorithm 2.

Algorithm 2: Thompson sampling for the combinatorial
bandits with logistic regression

input : Regularization parameter λ > 0
mj = 0, qj = λ.
for t = 1 to T do

Receive context xt

1. Draw ŵt
j from N (mj , q

−1
j )

2. Comput ek,m = E[r|ak,m, xt, ŵ
t], ∀k,m

Solve the optimization problem (2) and get [f̂ t
k,m]

Display the super arm according to [f̂ t
k,m]

Observe rewards r(t)
3. Update mj , qj according to Algorithm Eq. (3)(4)

end

We close this section by briefly illustrating the flexibility
on different choices of user click models. As an example, we
consider the extended user click models with content quality
features Qi(a, p) (whether the quality of link above/below is
better and the number of links above/below which are better)
(Becker, Meek, and Chickering 2007):

F (x, a, p) = μ+αTφx+βTψa+

M∑

m=1

γmI(p, pm)+

|Q|∑

i=1

ηiQi(a, p).

Intuitively, if the action of interest is placed below a good
action, the click-through rate will be lower. Therefore the
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quality feature functions Qi depends on the values of α and
β. A boosting-style algorithm can be used to learn the pa-
rameters. In Bayesian settings, after we get a new batch of
training data, we first set each Qi = 0 and use Eq. (3)(4)
to find mj and qj . Next, we update the Qi value using the
updated mj and qj . We then use updated Qi values to calcu-
late Eq. (3)(4) to get new values of mj and qj . We iterate this
process until the first iteration in which the log-likelihood of
the data decreases. We use the final mj and qj as the poste-
rior parameter value from which we get the sampled ŵ and
then solve the optimization problem (2) to select the super
arms. That is to say, due to the unique properties of Thomp-
son sampling, the user click model is encapsulated in its own
probabilistic updates. Hence any probabilistic modeling of
user clicks, e.g. the Cascade Model (Craswell et al. 2008)
and the Examination Hypothesis (Richardson, Dominowska,
and Ragno 2007), has the potential to be incorporated in our
ordered combinatorial bandit settings.

Experiments
We provide experimental results on both synthesis datasets
and Yahoo! Front Page Webscope datasets. We demonstrate
the ability of our approach to solve real-world problems that
can be modeled as ordered contextual combinatorial semi-
bandits and that have not been throughly studied before.

Baseline algorithms

As baseline algorithms to compare against our proposed al-
gorithms, we consider the following approaches.

Random. Randomly select S actions and S positions.
Unordered ε-Greedy (U-ε-greedy). It maintains an es-

timate of the function value of each action (regardless of
positions). For the case of learning-to-rank with S = M ,
the exploitation part selects top-M actions base on current
estimations and places them in order. For other cases where
S < M or for whole-page optimization which can not trans-
late to a ranked list, this approach does not apply since it is
not obvious on how to place the actions.

Exploitation. This is an extension of pure exploitation al-
gorithm based on our network flow techniques. It maintains
an estimate of the function value of each (action, position)
pair. At each step, instead of enumerating the values on all
super arms or using any approximation heuristics, it can in
fact benefit from the network flow formulation and use linear
programming to find the exact solution of Eq. (2).
ε-Greedy. Use Exploitation with probability 1−ε and use

Random with probability ε.
Ranked bandits (Radlinski, Kleinberg, and Joachims

2008). This approach works only for learn-to-rank with
S = M . It runs an multi-armed bandit (MAB) instance
MABm for each rank m. MABm is responsible for select
which action is displayed at rank m. If this action is already
chosen at higher ranks, it randomly chooses a different ac-
tion. The MAB instance is chosen as the UCB1-Normal al-
gorithm (Auer, Cesa-Bianchi, and Fischer 2002) for context-
free Gaussian processes optimization.

GP-UCB (Srinivas et al. 2009). This approach only works
for Gaussian process optimization. A linear programing ap-
proach can not be used to select the best super arm with the

highest upper confident bound. Hence we treat each com-
plex combination as a super arm and apply the traditional
GP-UCB algorithm which involves enumerating the values
on all the super arms at each time step. Since the number of
super arms explodes quickly, this approach does not scale.

Experiments on context-free Gaussian processes

We first consider learning-to-rank experimental settings with
S = M . In terms of the true function values for each (ac-
tion, position) pair, similar to the Examination Hypothe-
sis (Richardson, Dominowska, and Ragno 2007) that lower-
ranked places has lower probability to be examined, we as-
sume that the value for each action k is discounted by e−dk

at lowered ranks. Specifically, we use the arithmetic progres-
sion μk = 0.5 − 0.025k, k = 1, ...,K, as the true function
value for each arm k at rank 1. The value of (ak, pm) is
then ckm = μke

−(m−1)dk . To make the learning settings
more interesting, dk is randomly generated from [0.3, 0.8]
for different action k. Different sampling noise levels σ
and different choices of S,M,K are used in the experi-
ments. For Gaussian processes, we start with a mean vec-
tor of zeros and choose the Squared Exponential Kernel
k(x, x′) = α2 exp(−β1(k − k′)2 − β2(m − m′)2) with
α = 100, β1 = 0.2, β2 = 0.1 in the experiments.

The experimental results are reported on 100 repetitions.
For Thompson sampling, we also consider the impact of
posterior reshaping Kt → α2Kt in the posterior sampling
step. In particular, decreasing the variance would have the
effect of increasing exploitation over exploration.

The first row in Fig. 3 shows the mean average regret of
different algorithms at the best value of its tuning parame-
ter across time. We also report the distribution of the regret
at T = 150 of different algorithms with different parameter
values in the second row. On each box, the central red line
is the median, the edges of the box are the 25th and 75th
percentiles, and outliers are plotted individually. The corre-
spondence between algorithms and boxes is the following:
• Box 1-3: Thompson sampling (TS) with posterior reshap-

ing parameter α = 0.25, 0.5, 1.
• Box 4: Exploitation.
• Box 5: Random.
• Box 6-8: U-ε-greedy with ε = 0.02, 0.01, 0.005.
• Box 9-11: ε-greedy with ε = 0.02, 0.01, 0.005.
• Box 12-14: GP-UCB with α = 2, 1, 0.5.
• Box 15-17: RBA with α = 4, 2, 1.

It can be seen from the figure that Thompson sampling
clearly outperforms others. It not only achieves the lowest
regret, but also has small variance. The good performance
of Thompson sampling is consistent with other empirical
evaluations in existing literature on K-armed bandits. With-
out explicitly considering the position bias, the unordered
ε-greedy does not yield good performances. RBA performs
well on some datasets while poorly on others. One possi-
ble explanation is that even though we use RBA algorithm
for multiple clicks per time, it is designed on one click per
ranked list.
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Figure 3: Comparison of performance: Thompson sampling and various heuristics. Top: average regret as a function of T over
100 repetitions. Bottom: distribution of the regret at T = 150.

In terms of posterior reshaping, value of smaller α in gen-
eral yields lower regret since it is in favor of exploitation
over exploration. The price to pay is higher variance. As for
the impact of noise level, the variance of the algorithm grows
when the noise level increases. U-ε-greedy is the biggest vic-
tim and Thompson sampling is the least affected.

News Article Recommendation

We consider applying Thompson sampling for contextual
combinatorial bandits to personalization of news article rec-
ommendation on Yahoo! front page (Agarwal et al. 2009;
Li et al. 2011; Chapelle and Li 2011). Our work differs from
previous literature in that rather than only recommending
one article (e.g. only at the story position) at each user visit
(see Fig. 1 for an illustration), we have the ability to opti-
mize whole-page presentation. The candidate article pool is
dynamic over time with an average size around 20. Suppose
the user can click on more than one article during each view
session. The goal is to maximize the total number of clicks.

In Yahoo! Webscope datasets (Yahoo! Webscope 2009),
for each visit, the user and each of the candidate articles are
associated with a feature vector (Chu et al. 2009). We treat
each user vector as the context information x and the news
articles as actions a. We set the number of possible positions
M = 5. We use recursive Bayesian logistic regression (Eq.
(3)(4)) based on the user click model (5) to predict article
CTRs.

We can not use the unbiased offline evaluation (Li et al.
2011) in our case. Since in the combinatorial problems, the
number of super arms is gigantic (e.g.

(
20
5

)
= 15504), it is

rare to have a logged data point that matches the selected

super arm. This reduces the effective data size substantially.
Based on the real-world context and article features in

the Yahoo! Webscope datasets, we instead simulate the true
clicks using a weight vector w∗. To make it more realistic,
we first use all the user click data on May 1, 2009 to train
a weight vector using logistic regression and then construct
w∗ by perturbation. We experiment with different choices of
S. For the reasons explained in baseline algorithms, we com-
pare our approach with Random, Exploitation and ε-greedy.

Since in a real-world system, it is infeasible to update the
model after each user feedback, we model this behavior by
refreshing the system after every 10 minutes. We report the
average reward after 590,747 user visits that is normalized
with respect to the number of selected actions in Table 1.

Thompson sampling yields the best result. Exploit and ε-
greedy have similar performance. It is consistent with the
previous findings that the change in context induces some
exploration (Chapelle and Li 2011).

Method TS (0.5) TS(1) Exploit
Reward (S = 3) 0.0862 0.0861 0.0846
Reward (S = 5) 0.0249 0.0246 0.0244

Method Random ε-greedy (0.02) ε-greedy (0.01)
Reward (S = 3) 0.0538 0.0849 0.0845
Reward (S = 5) 0.0144 0.0243 0.0244

Table 1: Average rewards on Yahoo! Webscope datasets.

In order to demonstrate the practicability and scalability
of our algorithm, we report run-time numbers as follows.
The experiments are ran on a Linux server [Intel(R) Xeon(R)
CPU X5650 2.67GHz, 8G memory]. The average running
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time of each LP is below 0.01s (per impression). In order
to further test the scalability, we set the number of positions
to M=20, which is enough in web applications. The average
running time is below 0.05s. The delay for model refresh
under Thompson sampling after every 10 minutes is around
9s. We emphasize that the goal of the experiments is not to
claim the superiority of Thompson sampling, but to demon-
strate our ability to optimize whole-page representation be-
yond ranking.

Conclusion

In this paper, we extend the traditional multi-armed bandit
problems to a more general ordered combinatorial setting.
This is motivated by many web applications with whole-
page recommendation. By the adaptation of a min-cost max-
flow network, a practical algorithm based on Thompson
sampling is derived for (contextual) combinatorial semi-
bandits, which does not resort to an oracle to provide ap-
proximation solutions. Our method has the ability to work
with general layout information where the number of posi-
tions can be larger than the subset of arms selected and thus
can optimize whole-page representation. Due to the unique
properties of Thompson sampling, the system update is en-
capsulated in the chosen probabilistic models. This provides
easy incorporation of any probabilistic (user click) models
in our proposed framework. We demonstrate the algorithms’
performance on synthetic Gaussian process problems and
on news article recommendation dataset from Yahoo! Front
Page Today Module.
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