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Abstract

We perform online interactive recommendation via a
factorization-based bandit algorithm. Low-rank matrix com-
pletion is performed over an incrementally constructed user-
item preference matrix, where an upper confidence bound
based item selection strategy is developed to balance the ex-
ploit/explore trade-off during online learning. Observable con-
textual features and dependency among users (e.g., social
influence) are leveraged to improve the algorithm’s conver-
gence rate and help conquer cold-start in recommendation. A
high probability sublinear upper regret bound is proved for
the developed algorithm, where considerable regret reduction
is achieved on both user and item sides. Extensive experi-
mentations on both simulations and large-scale real-world
datasets confirmed the advantages of the proposed algorithm
compared with several state-of-the-art factorization-based and
bandit-based collaborative filtering methods.

Introduction

Matrix factorization based collaborative filtering has become
a standard practice in recommender systems (Koren, Bell,
and Volinsky 2009; Koren 2008; Su and Khoshgoftaar 2009).
The basic idea of such solutions is to characterize both
recommendation items and users by vectors of latent fac-
tors inferred from historical user-item preference patterns
via low-rank matrix completion (Candes and Recht 2009;
Candes and Tao 2010), with an assumption that only a few
factors contribute to an individual’s choice (Koren, Bell, and
Volinsky 2009).

Despite a few recent advances in specific factorization
techniques (Agarwal and Chen 2009; Rendle 2012), recom-
mendation remains a challenging problem for at least two
reasons. First, a modern recommender system faces emerg-
ing new users and ever changing pools of recommendation
candidates. The classical offline training and online testing
paradigm for factorization models becomes incompetent to
handle the dynamics of users’ preferences, known as cold-
start (Schein et al. 2002). Second, it is nutritiously difficult
to perform online interactive recommendation, because the
need to focus on items that raise users’ interest and, simulta-
neously, the need to explore new items for improving users’
satisfaction in the long run create an explore-exploit dilemma.

Copyright (© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2695

Periodically repeating model estimation to update latent fac-
tors is inept to handle the interactions between a system and
its users on the fly, because not only does it overly exploit
the learnt model that is biased towards previously frequently
recommended items, but it is also prohibitively expensive to
afford in terms of computational complexity.

Some preliminary attempts have been made to perform
online matrix factorization for collaborative filtering. Ba-
sically, multi-armed bandit algorithms (Auer et al. 1995;
Auer 2002) are employed to control the exploration of cur-
rently less promising recommendations for user feedback,
and factorization is applied over the incrementally con-
structed user-item matrix on the fly. However, these two
components are integrated in an ad-hoc manner: both contex-
tual and context-free bandits have been explored on top of
various factorization methods (Zhao, Zhang, and Wang 2013;
Nakamura 2014; Kawale et al. 2015), given they only pro-
vide an index of candidate items for feedback acquisition.
As a result, little is known about whether such combinations
would lead to a converging recommendation performance
nor would it ensure long-term optimality in theory, i.e., regret
bound analysis.

We address the aforementioned challenges via performing
online interactive recommendation by placing a factorization-
based bandit algorithm on each user in the system. Low-rank
matrix completion is performed over an incrementally con-
structed user-item preference matrix, where an upper confi-
dence bound (UCB) based item selection strategy is devel-
oped to balance the exploit/explore trade-off during online
learning. To better conquer cold-start in recommendation,
two special treatments are devised. First, observable contex-
tual features are integrated with the estimated latent factors
during matrix factorization. This improves recommendation
when the number of candidate items is large, but the payoffs
are interrelated, i.e., context-aware. Second, the dependence
among users (e.g., social influence) is introduced to our ban-
dit algorithm through a collaborative reward generation as-
sumption (Wu et al. 2016). It enables information sharing
among the neighboring users in online learning, so as to help
reduce the overall regret.

More importantly, we rigorously prove that with high prob-
ability the developed algorithm achieves a sublinear upper
regret bound for interactive recommendation, i.e., the average
number of suboptimal recommendations made in our algo-



rithm over time rapidly vanishes with high probability. And
considerable regret reduction is achieved on both user and
item sides because of our explicit modeling of observable
contextual features and dependence among users. Extensive
experimentations on both simulations and large-scale real-
world datasets confirmed the advantages of the proposed al-
gorithm compared with several state-of-the-art bandit-based
factorization methods.

Related work

There are some recent developments that focus on online col-
laborative filtering with multi-armed bandit algorithms, a ref-
erence solution for explore-exploit trade-off (Auer et al. 1995;
Auer 2002; Li et al. 2010). (Zhao, Zhang, and Wang 2013)
studies interactive collaborative filtering via probabilistic
matrix factorization. Both context-free and contextual ban-
dit algorithms are introduced to perform online item selec-
tion based on the factorization results. (Kawale et al. 2015)
performs online low-rank matrix completion, where the ex-
plore/exploit balance is achieved via Thompson sampling.
(Nakamura 2014) introduces a UCB-like strategy to perform
interactive collaborative filtering. The algorithm deterministi-
cally selects feedback user-item pairs using an index which
depends on the covariance matrices of the posterior distribu-
tions of both latent user and item vectors. (Li, Karatzoglou,
and Gentile 2016) performs co-clustering on users and items
for collaborative filtering, where confidence bound on re-
ward estimation is used to decide the clustering structures.
However, because of the ad-hoc combinations of collabo-
rative filtering methods and bandit methods in the afore-
mentioned studies, limited theoretical understanding is avail-
able in those solutions. In this work, we provide a rigorous
regret bound analysis of the developed factorization-based
bandit algorithm, and demonstrate the algorithm’s conver-
gence property under different conditions. Moreover, our
online factorization solution is general enough to incorporate
several recent advances in factorization techniques, such as
feature-based latent factor models (Agarwal and Chen 2009;
Rendle 2012) and modeling mutual dependence among users
(Ma et al. 2011; 2008), which further improve the proposed
algorithm’s convergence rate during interactive online learn-
ing with users.

Methodology
A Bandit Solution for Interactive Recommendation

Matrix factorization based collaborative filtering solutions
map both users U = {uy, ua, ..., ux } and recommendation
items A = {a1, ag, ..., aps } to a joint latent factor space. The
expected reward of an item with respect to a given user is as-
sumed to be an inner product of the latent item factor v,, € R/
and the latent user factor 8,, € R!. Hence, the reward genera-
tion process can be formalized as 7, ., = v/} 0, + 1, where
the random variable 7 is drawn from a Gaussian distribution
N(0,0?) to capture the noise in observations. Regularized
quadratic loss over a given set of user-item feedback pairs is
usually employed to estimate the latent factors. Formally,
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where K is a set of user-item pairs with known reward (e.g.,
the offline training set), A; and \q are the trade-off parame-
ters. The key research challenge in interactive matrix factor-
ization is how to select the next feedback user-item pair for
model update. Current practice exploits the trained model to
collect user feedback, which unfortunately reinforces the bias
in a currently inaccurate model. Therefore, properly explore
some currently less promising items for model correction
becomes necessary for long-term optimality.

Upper Confidence Bound (UCB) has been proved to
be an effective strategy to balance exploitation and explo-
ration in multi-armed bandit problems. A UCB-style ban-
dit algorithm uses its estimation confidence of the pre-
dicted reward on the candidate items for exploration: the
item with the highest expected reward within a selected
confidence set will be chosen for feedback (Auer 2002;
Auer, Cesa-Bianchi, and Fischer 2002). Under the context of
matrix factorization based collaborative filtering, the uncer-
tainty of reward prediction comes from two sources: 1) the es-

timation error of latent user factors at trial ¢, i.e., ||0Au7t —0:|,

where OAu_,t is the current estimate of latent factors for user u,
and @} is the ground-truth factors; and 2) the estimation error
of latent item factors at trial ¢, i.e., ||V, — v}||. Because
of the regularized quadratic loss employed in Eq (1), the
confidence sets of 6,, and v, estimation can be analytically
computed (Abbasi-yadkori, Pal, and Szepesvari 2011), and
thus readily be integrated to assemble a UCB-style bandit
algorithm for interactive matrix factorization as follows,

(at, <éu,ta ‘A’a,t>) = arg max lea

(a,(Ou,va>) EDt Xct—l

2

where D is the set of candidate items for recommendation at
trial ¢, and C;_1 is the confidence set for latent user and item
factors (0., v,) constructed at last trial.

However, such a straightforward combination of bandit
algorithm with matrix factorization cannot effectively solve
the cold-start problem, as the estimation uncertainty of the
latent factors for new users and new items is at the maxi-
mum. This inevitably requires more explorations on the new
users and new items, and hence leads to a decreased conver-
gence rate of online learning and reduced user satisfaction in
practice. We propose to solve these limitations by introduc-
ing observed contextual features (Agarwal and Chen 2009;
Rendle et al. 2011) and user dependence (Ma et al. 2011;
Wu et al. 2016) into online factorization. Both of these two
techniques have been proved to be effective in offline matrix
factorization, but little is known about their utility in an on-
line setting. In particular, we explicitly incorporate these two
components into our bandit algorithm’s reward generation
assumption, to make it a unified framework for interactive
matrix factorization.

First, to reduce the reward prediction uncertainty on new
items, we introduce observable contextual features into the es-
timation of latent item factors. Typical item-level contextual



features include topic categories for news recommendation
(Li et al. 2010; Agarwal and Chen 2009) and genre for music
recommendation (Cesa-Bianchi, Gentile, and Zappella 2013).
Formally, we denote the observed contextual features for an
item a as x, € R? and keep using v, € R! for its latent
part (with || (x4, va)||2 < L). Accordingly, on the user side
we redefine 0, = (6%,0Y) € Rt (with [|0,]]2 < S), in
which % € R4 corresponds to the context feature x, and
0Y € R! corresponds to the latent item factor v,. These ex-
tended user and item factors now determine the rewards in
recommendation.

Second, we incorporate mutual influence among users to
reduce the reward prediction uncertainty on new users. Dis-
tinct from existing solutions, where the dependency among
users (such as social network) is introduced as graph-based
regularization over the latent user factors (Ma et al. 2011;
Cesa-Bianchi, Gentile, and Zappella 2013), we encode such
dependency directly into our reward generation assumption
for matrix factorization. We assume the observed reward
from each user is determined by a mixture of neighboring
users (Wu et al. 2016). Formally, instead of assuming NV inde-
pendent users for factorization, we place them on a weighted
graph G = (V, E), which encodes the affinity relation among
users, to perform the estimation across them simultaneously.
Each node V,, in G is parameterized by the latent user factor
6, for user u; and each edge in E represents the influence
across users in reward generation. We encode this graph as
an N x N stochastic matrix W, in which each element w;;;
is nonnegative and proportional to the influence that user j
has on user ¢ in determining the reward of different items.

W is column-wise normalized such that Zjvzl w;; = 1 for

i € {1,...,N}, and we assume W is time-invariant and
known to the algorithm beforehand.

Based on the introduced contextual features and user re-
lational graph G, we define a (d + 1) x N matrix ©® =
(61, ...,0N), which consists of latent user factors from all
N users in graph G, and define X, = (Xq4,,1, .- Xq,,~) and
Va, = (Va, 1,..., Vg, ) for the observable contextual fea-
tures and latent item factors of the items to be presented to the
N users respectively. To simplify the notations for discussion,
we decompose © into two sub-matrices, @* = (65, ...,0%)
and @V = (67, ..., 0% ), corresponding to the observed con-
text features and latent factors for items. As a result, we
enhance our reward generation assumption as follows,

Tapu = (Xa,,Vat)TGWu—H?t = xLG"wu—l—vaTt @ku—igﬁ
Intuitively, in Eq (3) not only the observed contextual fea-
tures, but also the estimated latent factors will be propagated
through the user graph to determine the expected reward of
items across users. Later we prove such information shar-
ing greatly reduces sample complexity in learning the latent
factors for both users and items.

Plugging the enhanced reward generation assumption de-
fined in Eq (3) into the regularized quadratic loss function
in Eq (1), we can easily derive the closed-form solutions
for ® and v, after trial ¢ via the alternating least square
(ALS) method as vec((:)t) = At_lbt and v, ¢ = C;%dmt,
where the detailed computation of (A, by, Cy4,d,,) can
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be found in Algorithm 1. vec(-) is the vectorization opera-
tion, and I; and I, are identity matrices with dimensions of
(d+ )N x (d+ )N and I x I respectively. We define X,
as a special case of X,,: only the column corresponding to
user u is set to X, ,, and all the other columns are zero; and

the same notation applies to Vat.

One potential issue with this closed-form solution is its
computational complexity: matrix inverse has to be per-
formed on A; and C,, ; at every trial. First, because rank one
update is performed on these two matrices (11th and 14th step
in Algorithm 1), quadratic computational complexity is pos-
sible via applying the Sherman-Morrison formula. Second,
we can update these two matrices in a mini-batch manner to
further reduce computation, with some extra penalty in regret.
We will leave this as our future research.

Under our enhanced reward generation assumption defined
in Eq (3), the confidence set of (8, v,) estimation can be
analytically computed by the following lemma.

Lemma 1 With proper initialization of ALS, the Hessian
matrix of Eq (1) is positive definite at the optimizer ©®* and
v¥, such that for any e > 0, 2 > 0, and § € (0,1), with
probability at least 1 — 6, the estimation error of latent user
and item factors satisfies,

lvec(©;) — vec(®™)||a, < {/In (7036;5\‘?0) +VA1S @
L2 (ate)d=(a+a))
V1 1—(q1+e)
9 = villow. < y/in (4T 1 v )
2 (gzte)l-(g2+e))
Vz 1—(g2+¢€2)

in which ¢; € (0,1) and 2 € (0,1).

In Lemma 1, €¢; and ey are the precision parameters for
ALS, and ¢; and ¢» can be explicitly estimated as described in
(Uschmajew 2012). The key assumption behind this lemma
is the noise distribution in reward generation defined in Eq
(3) is stationary. As a result, this lemma gives us a reasonable
construction of the confidence sets for ® and v, estimation,
which can be easily transformed to the estimation uncertainty
of payoff rg, .. The proof sketch of this lemma can be found
in the supplementary material.

Based on Lemma 1, we define o} and of as the upper
bound of ||vec(®;) — vec(©*)||a, and ||V, — vile,., re-
spectively. By applying the UCB principle, the item selection
strategy for our bandit algorithm can be derived as step 9 in
Algorithm 1. In particular, the first term in our item selec-
tion strategy is an online prediction of the expected reward
based on the current estimation of latent user factors and
item factors. It reflects the tendency of exploiting the cur-
rent estimates. The second and third terms are related to
the estimation uncertainty of v, and ®. They reflect the
tendency of exploring currently less promising but highly
uncertain items. It is easy to verify that the exploration terms
shrink when more observations become available, such that
the exploit/explore trade-off is balanced dynamically. Later
on we prove that because of the explicit modeling of user



Algorithm 1 FactorUCB

1: Inputs: A\i, A2 € (0,+00),l € ZT
Initialize: A; < \I1, by < 0U9TDN yec(@,) « AT'by
for t =1toT do

Receive user u;

Observe feature vectors, x, € RY

if item a is new then

initialize Cy; < AoI, das <+ 0%, V4 « O
end if
Select item by a; = argmax, _4 ((xa7 Vai) Orwy, +

D A

a?\/vec((fiat,\i/at)WT)A;lvec(()D(a“\i’a,,)WT)T) +
0[;l \/((;)twut)c;i (ézWut )T

10: Observe reward 74, ., from user u;

11: A . = A, +
vee((Xay, Va )W vee((Xag, Va, )WT)T

12: biy1 < by + vec(()oiat,vat)WT)rat,ut

13: vec(Or41) A b

14: Cq,t+1 ¢ Cayt + (@qu,)(éz’wut)T

15: daf,,H—l — dat,t + (gywut)(ratqut - Xl—t (é?ww))

16: Vag,t+1 ¢ C;tl,t+ldat1t+1

17: Project ®;1 and ¥, ¢+1 with respect to the constraints
[0u]2 < Sand [[(Xa, va)llo < L

18: end for

dependency (i.e., Eq (3)), the exploration term also uniformly
shrinks for new users and new items, which lead to consid-
erable regret reduction over all users. We name the resulting
bandit algorithm as FactorUCB, and illustrate the detailed
procedure of it in Algorithm 1.

Regret Analysis

To quantify the performance of factorUCB, we consider the
cumulated (pseudo) regret defined as the expected difference
between the optimal reward obtained by the oracle item selec-
tion strategy and the reward received following the algorithm
over 1’ trials,

T T

R(T) =Y Ri=> (Ta;u —Ta,u,) (6)

t=1 t=1

in which a; is the best item to be presented to the current
user u; according to the oracle and a; is the item selected by
the algorithm, and R, is the one-step regret at trial £.

Based on Lemma 1 and the developed item selection strat-
egy, we have the following theorem about the upper regret
bound of our FactorUCB algorithm.

Theorem 1 Under proper initialization of ALS in Algorithm
1, with probability at least 1 — §, the cumulated regret of

FactorUCB algorithm satisfies,

L? 23:1 Z;V wit,j )
oA (d+ )N

a 52 ZtT:1 Z;V wit j
+2aT\/2lT1n (1+ 3% )

(g2 + 62)(1 — (g2 + 62)T)
1— (g2 + €2)
in which ¢ and €5 are the same as those defined in Lemma 1,

ot and a4 are the upper bound of |[vec(©,) — vec(©*)||a,
and ||V, — villc,, overall t € {1,...,T} respectively,
and ¢ is also encoded in o} and af. as shown in Eq (4)
and (5). Though required by the theorem that A; and Ao
have to be sufficiently large, in our empirical evaluations
the algorithm’s performance is not sensitive to this setting.
The specific form of af and af and the proof sketch of
this theorem are provided in the supplementary material. As
highlighted in the proof, because the confidence interval is
shrinking via exploration, a sublinear regret is achieved after
T trials of interactions; otherwise without proper exploration,
such as in the conventional offline training and online testing
paradigm of matrix factorization, a linear regret is inevitable.
Some other ad-hoc exploration strategies have been proposed
in literature (Zhao, Zhang, and Wang 2013; Nakamura 2014),
but little is known about their regret bound, or analysis is
only provided for overly simplified situations (e.g., the user-
item matrix is one rank one and all the latent factors can be
properly discretized beforehand (Kawale et al. 2015)). For
an online learning algorithm, a sublinear upper regret bound
is vital, as it indicates the average number of suboptimal
recommendations a system makes vanishes rapidly over time
(a linear regret bound means the algorithm makes constant
errors).

Moreover, the resulting regret bound of factorUCB has
the following important theoretical properties under different
conditions.

First, the dependency structure among users plays an im-
portant role in reducing the regret on both user side and
item side. Consider the following two extreme cases. In
the first case, when W is an identity matrix, i.e., no de-
pendency among users, the first term of the upper regret
bound in Eq (7) degenerates to O (N (d+1)v'T In L), which
roots in the reward prediction uncertainty from the esti-
mated latent user factors. And the second term degener-
ates to O(l\/f InT ) which corresponds to the estimated
latent item factors. In the second case, when users are ho-
mogenous and have uniform influence among each other,
ie, Vi, j,w;; = % the first term in the regret bound de-

creases to O(N(d + 1)VT In -5 ) and the second decreases
to O (l\/T In %) As a result, via modeling user dependency,
FactorUCB achieves an O (N (d + 1)v/T In N) regret reduc-
tion on the user side and an O (l VTIn N ) regret reduction
on the item side. The best known upper regret bound for a lin-

ear bandit algorithm is O (v/T'dlog(Td)) (Abbasi-yadkori,
Pal, and Szepesvari 2011), which increases linearly with re-
spect to the number of users in a recommender system. In

R(T) §2a%\/2(d +1)NTIn (1 +

+ 2a7 O]
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Figure 1: Analysis of regret, hidden feature dimension and parameter tuning.

factorUCB, our worst case upper regret bound matches that
known bound, but its average regret per user is decreasing as
more users interact with the system to provide feedback. The
same analogy also applies to the number of recommendation
candidates. This is an advantageous property for a practical
system to provide satisfactory recommendations rapidly in
an online setting.

Second, as denoted in Eq (7), the user arrival sequence is
recorded in the summation term of 32, Z;VZI w;, , which
is bounded by T from above, no matter how users arrive to
the system (as w,, is a stochastic vector). Therefore, the upper
regret bound of factorUCB stays in O (N (d+1)vTIn %) in
the worse case scenario, such as users arrive in an adversarial
way — the least connected users come first and most often.

Third, following our enhanced reward generation assump-
tion specified in Eq (3), the estimation quality of latent user
factors in factorUCB satisfies the following inequality (sim-
ilar result applies to the estimation quality of latent item
factors as well),

In (M) _A'_\/XS

lvec(®,) —vee(®)][a, < s

®

2 s X
+ \/TTl ;Hvat/,u - Vat/,uHQ
If the dimension of latent factors matches the ground-
truth, based on the proved convergence property of ALS
in (Uschmajew 2012), the estimation of ® and v, is ¢-
linearly convergent to the optimum (©*, v}), which is the
conclusion in Lemma 1. But if the dimension is not cor-
rectly set and those latent factors are independent from each
other, the third term in Eq (8) will not converge. It makes

o linearly increase over time as «y is the upper bound of

[vec(©;) — vec(©*)]|a,. This leads to a linear regret in
factorUCB at the worst case. Admittedly, determining the
correct dimension of latent factors is always a bottleneck of
factorization-based methods in practice. But by introducing
the observable contextual features, especially those strongly
correlated with the expected rewards, the reward prediction
uncertainty can be reduced as the latent factors only need
to fit the residual of reward prediction from the observed
features (as shown in the estimation of v, in Algorithm 1).
This leads to reasonable performance of factorUCB in our
empirical evaluations.
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Experiment

We performed extensive empirical evaluations of our pro-
posed factorUCB algorithm against several state-of-the-art
factorization-based and bandit-based collaborative filtering
methods, including: 1) Alternating Least Square (ALS) with
e-greedy (Zhao, Zhang, and Wang 2013), which applies
context-free e-greedy algorithm based on both observed fea-
tures and latent factors, but cannot utilize the user relational
graph; 2) Particle Thompson Sampling for matrix factoriza-
tion (PTS) (Kawale et al. 2015), which combines Thomp-
son sampling with probabilistic matrix factorization based
on Rao-Blackwellized particle filter, and it cannot utilize
observed features and user relational graph; 3) GOB.Lin
(Cesa-Bianchi, Gentile, and Zappella 2013), which models
the dependency among a set of contextual bandits over users
via a graph Laplacian based model regularization, but it can-
not estimate the latent factors; 4) CLUB (Gentile, Li, and
Zappella 2014), which clusters users during online learning
to enable model sharing; but it only works with contextual
features; 5) CoLin (Wu et al. 2016), which imposes a similar
collaborative reward generation assumption over the user rela-
tional graph as that in our algorithm, but it does not model the
latent item factors; 6) factorUCB w/o W, which is factorUCB
with an identity W matrix, i.e., the dependency among users
is not considered; it demonstrates of utility of modeling user
dependency in interactive recommendation.

Experiments on synthetic dataset

In simulation, we generated a size- K item pool A, in which
each item a is associated with a (d + [)-dimension feature
vector (X, v, ). Each dimension is drawn from a set of zero-
mean Gaussian distributions with variances sampled from a
uniform distribution U (0, 1). Principle Component Analysis
(PCA) was performed to make all the dimensions orthogonal
to each other. To simulate the reward generation defined in
Eq (3), we used all the (d + [)-dimension features to compute
the true reward for each item, but only revealed the first
d dimensions (i.e., X,) to an algorithm. We simulated N
users, each of who is associated with a (d + [)-dimension
preference vector 6;. Each dimension of 8 is drawn from
a uniform distribution U (0, 1). 8}, is treated as the ground-
truth latent user factor in reward generation, and is unknown
to the algorithms. We then constructed the golden relational
stochastic matrix W for the dependency graph of users by
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Figure 2: Experimental comparisons on real-world datasets.

defining w;; o< (07, 67), and normalize each column of W
by its L1 norm. The resulting W was disclosed to all the
algorithms. To increase the learning complexity, at each trial
t, our simulator only disclosed a subset of items in A to the
learners for selection, e.g., randomly selected 10 items from
A without replacement. At each trial ¢, the same set of items
were presented to all the algorithms; and the Gaussian noise
1 in Eq (3) was sampled once for all those items at each trial.
We fixed the dimension d of observable features to 20, the
dimension [ of latent item factors to 5, user size /N to 100,
the standard derivation o of Gaussian noise to 0.1, and the
item pool size K to 1000 in our simulation.

Cumulated regret defined in Eq (6) was used to evaluate
the performance of different algorithms in Figure 1 (a), where
we set the dimension for latent factors in PTS to 10 (which
gave us the best performance) and 5 in ALS e-greedy and
factorUCB. We observed that PTS took much longer time to
converge, because PTS cannot utilize the observed context
features for reward prediction, so that it requires much more
observations to improve the accuracy of latent factor estima-
tion. Instead, ALS e-greedy and factorUCB leveraged the
context features to quickly reduce the reward prediction un-
certainty (i.e., less exploration). Two contextual bandits, i.e.,
GOB.Lin and CoLin, suffered from linear regret, since they
do not model the latent item factors. In addition, factorUCB
converged much faster than factorUCB w/o W, which con-
firmed our theoretical analysis about the regret reduction from
user dependency modeling. Because factorUCB requires the
dimension of latent factor as input, we test its sensitivity to the
setting of latent dimension /. To investigate the importance
of correct setup of latent factor dimension in factorUCB, we
tested two different ways of latent factor construction in our
simulator: 1) we chose the top 5 dimensions with the largest
eigenvalue from PCA’s result as latent item factors, i.e., we
hid the top 5 most informative factors in reward generation
from the learners; 2) we hid the bottom 5 most informative
factors. And on the algorithm side, we varied the dimension
of latent factors used in factorUCB from 1 to 7. From the
results shown in Figure 1 (b), we can reach three conclusions.
First, when the latent factors were the most informative ones,
we obtained much worse regret than that in the case of the
least informative factors were hidden. Second, the large dif-
ference between the regret of a bandit algorithm that does
not model the latent factors (such as GOB.Lin) and the one
that models latent factors (factorUCB, even with wrong di-
mensions) emphasizes the necessity of latent factor learning
in online recommendation. Third, although our theoretical
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analysis predicts a linear regret if the latent factor dimension
was not accurately set, the actual performance was much
more promising. One reason is that our theoretical analysis is
for the worst case scenario (upper regret bound), which does
not preclude a sub-linear converging regret in practice.

In addition, we also investigated the effect of exploration
parameter o} and af in factorUCB, compared with fac-
torUCB w/o W. In Figure 1 (c), each column illustrates a
combination of o} and o used in factorUCB and factorUCB
w/o W. The last column indexed by (o}, af) represents the
theoretical values of those two parameters computed from
the algorithm’s corresponding regret analysis. As shown in
the results, the empirically tuned (a*, o) yielded compara-
ble performance to the theoretical values, and made online
computation more efficient. As a result, in all our following
experiments we will use the manually set o} and a'.

Experiments on real-world datasets

Yahoo dataset: This data set contains 10-days clickstream
logs from Yahoo! Today Module collected in May 2009, to-
talling 45,811,883 user visits (Li et al. 2010). In each logged
event, both the user and each of the 10 candidate articles are
associated with a feature vector of 6 dimensions. However,
this data set does not contain any user identity due to pri-
vacy concern. To associate the observations with individual
users, we first clustered all users into user groups by apply-
ing a k-means algorithm on the given user features. Each
logged event was assigned to its closest user group as its
user ID. The adjacency matrix W was estimated by the dot
product between the centroids from k-means’ output, i.e.,
w;j o< (u;,u;). We set the dimension of latent factors in
FactorUCB and ALS e-greedy to 5, and that in PTS to 10.
Click-Through-Rate (CTR) was used as the performance
metric. Average CTR was computed in every 2000 observa-
tions (not the cumulated CTR) for each algorithm based on
the unbiased offline evaluation protocol developed in (Li et
al. 2011; 2010), and normalized by the corresponding logged
random strategy’s CTR. We reported the normalized CTR re-
sults from different algorithms over 160 derived user groups
in Figure 2 (a) (similar relative improvement was obtained
with different number of derived user groups), where we
had several important observations. First, comparing to the
conventional contextual bandits (i.e., GOB.Lin, CoLin and
CLUB), which do not model the latent factors, factorUCB
demonstrated significant improvement in recommendation
quality. This proves the benefit of learning latent factors to
enhance reward prediction, especially when the given context
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features are not informative. Second, factorUCB improved
more rapidly than PTS and factorUCB w/o W at the early
stage. This confirms the value of user dependency modeling
for addressing cold-start in online recommendation. But these
two factorization-based baselines caught up in the later stage,
as more observations became available for them to accurately
estimate the latent factors and our approximated user depen-
dency graph might introduce unnecessary bias that prevented
factorUCB from accurately recovering the latent factors. This
also indicates the importance of accurate user dependency
modeling in factorUCB, and we plan to explore W learning
in factorUCB as our future work. Third, the performance im-
provement in ALS e-greedy was much slower compared with
factorUCB (and factorUCB w/o W), while they are using the
same information and mechanism for latent factor learning.
This further proves the advantage of estimation confidence
based exploration strategy over the simple context-free ran-
dom exploration in interactive recommendation.

LastFM dataset: This dataset is extracted from the online
music streaming service Last.fm (http://www.last.fm). It con-
tains 1,892 users, 17,632 items (artists), and the users’ social
network graph. Following the same settings as used in (Cesa-
Bianchi, Gentile, and Zappella 2013), we pre-processed the
dataset to fit it into an online recommendation setting. The
dimension of context features was set to 25 by applying PCA
over the text descriptions of each item, and the dimension of
latent factors in factorUCB and ALS e-greedy was fixed to 5,
and 10 in PTS.

We normalized the cumulated reward from different al-
gorithms by that from a random algorithm, and reported
the results in Figure 2 (b). We can clearly notice that PTS
performed the worst, while two contextual bandits (i.e.,
GOB.Lin and CoLin) achieved much better performance than
it. This indicates the observed context features in this dataset
were sufficiently informative for the algorithms to make accu-
rate recommendations. A purely factorization-based method
got penalized by not utilizing such information. On the other
hand, we also noticed that factorUCB converged much faster
than factorUCB w/o W, which again demonstrates the utility
of user dependency modeling for addressing cold-start in
recommendation.

To further investigate the effect of modeling context fea-
tures and user dependency in alleviating cold-start in recom-
mendation, we designed a set of controlled experiments. We
first split users into two groups using a max-cut algorithm on
the constructed user relational graph to maximize the connec-
tivity between these two groups. Observations in the first user
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group are called “learning group” and those in the second
group are called “testing group.” To simulate cold-start, we
only executed algorithms on the testing group. Correspond-
ingly, we simulated warm-start by first running algorithms
on the learning group to pre-estimate the models, and then
continued executing them on the testing group. Since users in
the testing group were isolated from the learning group, their
model parameters could only be initialized by the propagated
information via the user relational graph, if an algorithm
explicitly modeled that.

We measured the differences in average CTR on Yahoo
and differences in cumulated rewards on LastFM between
warm-start and cold-start in Figure 2 (c) and (d). On the Ya-
hoo dataset, factorization-based algorithms (i.e., factorUCB,
PTS and ALS e-greedy) benefit the most from the collabora-
tion in latent factor estimation: latent item factors estimated
in the learning group helped them better estimate user prefer-
ences in testing group. On the LastFM dataset, considerable
improvement was achieved in algorithms explicitly modeling
user dependency, i.e., factorUCB, GOB.Lin and CoLin. We
should note Figure 2 (c) and (d) demonstrated the relative per-
formance improvement from warm-start to cold-start, so that
it does not represent the algorithm’s final recommendation
quality in these experiments. In the final results, factorUCB
achieved the best performance in both warm-start and cold-
start on Yahoo dataset, and cold-start on LastFM dataset
(factorUCB w/o W was best in warm-start in this data set).

We performed both item-based and user-based analysis
to understand where the improved recommendations were
achieved. On the item side, we computed the precision and
recall of the recommendations made by different algorithms
on both datasets (because of the offline evaluation protocol
used in Yahoo dataset, recall is undefined there) and summa-
rized the results in Figure 3 (a)-(c). In the reported results,
we ranked the items based on their popularity in the corre-
sponding datasets. As we can notice that factorUCB achieved
encouraging precision over the less popular items in Yahoo
dataset, and best recall on popular items in LastFM dataset.
In the user side analysis, we investigated how soon a user
would receive improved recommendations during the interac-
tive process. We defined an improved user as the user who is
served with improved recommendations from a target recom-
mendation algorithm than those from the purely factorization-
based algorithm PTS. The design behind this experiment is
that because the PTS algorithm cannot utilize observable
contextual features nor user dependency relation, it serves as
a good basis to assess the value of contextual features and



user dependency for online recommendation. In addition, to
understand the specific contribution of context feature mod-
eling and user dependency modeling in factorUCB, we also
included factorUCB w/o W and CoLin in this analysis, where
the CoLin baseline can be considered as factorUCB w/o V.
We applied the same evaluation setting as previously used in
warm-start and cold-start comparison, and reported the per-
centage of improved users in the first 1%, 2%, 3%, 5%, and
10% observations during the interactive recommendation in
Figure 3 (d). The results clearly demonstrated that combining
both components gave us the most advantage in providing
users with improved recommendations in the early stage (first
3% recommendations), and it becomes more beneficial in the
warm-start setting, where information was prorogated from
the users and items in learning group to those in the testing

group.

Conclusions

In this work, we studied the problem of online interactive
recommendation via a factorization-based bandit algorithm.
Observable contextual features and dependency among users
are leveraged to improve the algorithm’s convergence rate
and help conquer cold-start in recommendation. A high prob-
ability sublinear upper regret bound is proved, where con-
siderable regret reduction is achieved on both user and item
sides. Our current solution assumes the knowledge of ground-
truth user dependency and hidden feature dimension. It is
important to explore how to determine the user dependency
structure and dimension of hidden features during online
learning. In addition, our regret analysis is based on the as-
sumption of proper initialization of alternating least square. It
is necessary to explore other techniques in matrix analysis or
optimization procedures for model parameter estimation and
derive the corresponding provable arm selection strategies.
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