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Abstract

In standard machine learning and regression setting feature
values are used to predict some desired information. The pri-
vacy challenge considered here is to prevent an adversary
from using available feature values to predict confidential in-
formation that one wishes to keep secret. We show that this
can sometimes be achieved with almost no effect on the qual-
ity of predicting desired information. We describe two algo-
rithms aimed at providing such privacy when the predictors
have a linear operator in the first stage. The desired effect can
be achieved by zeroing out feature components in the approx-
imate null space of the linear operator.

Introduction

Consider a company that develops technology for predicting
desired information from raw data. As a trivial example the
raw data may be the height, weight, and sex of a child, with
the desired information being the child’s age. The company
may obtain the data from a client, use it to predict the desired
information, and send that information back to the client.

The privacy concern we address is the potential inappro-
priate use of the client data to predict confidential informa-
tion that the client does not wish to expose. In our trivial
example such information may be the child weight (which
is part of the data), or whether or not the child is obese.

It appears that the current approach in similar situations is
to encrypt the raw data sent to the company so that it requires
a secret password to be accessed. This, however, does not
provide significantly improved privacy. Someone who works
at the company and knows the password may still access
the data, and an adversary may still gain access to both the
encrypted data and the password.

Another possible solution is to provide the client with the
software that computes the desired information, so that the
raw data need not be sent to the company. This solution is
sometimes inappropriate because of the following two rea-
sons. First, the software may be too big and require special
hardware. Secondly, giving the program away may allow the
client to use it in cases not agreed upon by the company.
Similar arguments are made in (Tramèr et al. 2016).
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In this paper we propose a privacy mechanism to mini-
mize the exposure of confidential information that the client
may wish to keep private even from the company. We show
how to “clean” the data before sending it to the company in
such a way that allows its usage for predicting the desired in-
formation. At the same time the accuracy of predicting con-
fidential information from the cleaned data is significantly
reduced.

The main idea behind our approach can be easily under-
stood in terms of feature selection. Clearly, it makes no sense
to provide the company data that is not needed for predict-
ing the desired information. Unfortunately, if accurate pre-
diction of desired labels is necessary, the removal of an en-
tire feature may not be appropriate. Even “mostly irrelevant”
features may contribute “something” to the prediction. In-
stead, we show how to remove unnecessary feature compo-
nents.

Our idea is to use knowledge about the predictor of de-
sired information to help hide confidential information. In
particular, if the predictor has a linear operator in the first
stage then there is a transformation of the data that reveals
feature components not needed for the prediction. Specifi-
cally, combinations of features that lie in the operator null
space do not affect the prediction and need not be provided.
Removing this information is what we call cleaning.

Problem statement

The problem we consider involves three entities: the
cleaner, the ally, and the adversary. In the example dis-
cussed earlier the cleaner is the client and the ally is the
company. The cleaner has a single feature vector denoted by
x. In addition to x the cleaner has knowledge of the linear
operator of the predictor used by the ally. The cleaner cleans
x and produces x̃. We write the computation performed by
the cleaner as:

x̃ = clean(x) (1)

The ally has a predictor fd that can predict desired informa-
tion, denoted by yd, from the uncleaned data x. This can be
expressed as: yd = fd(x). The ally receives the cleaned fea-
ture vector x̃ from the cleaner without knowledge of whether
or not it was cleaned, or how it was cleaned. The computa-
tion performed by the ally is always the same, applying the
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predictor to the data:

ỹd = fd(x̃) (2)

The adversary attempts to predict confidential information
denoted by yc. It does not know x, but it knows everything
else. In particular it knows the cleaned feature vector x̃,
the method clean() which was used by the cleaner, and the
method fd() which was used by the ally. In addition, the
adversary may have training data in the form of (xi, yic), re-
lating uncleaned feature vectors to confidential information.
We assume that the training data is good enough to infer an
accurate predictor of the form: yc = fc(x). In order to dis-
cover the confidential information the adversary calculates a
predictor f̃ c and produces the following approximation:

ỹc = f̃ c(x̃) (3)

Evaluation criteria

We wish to obtain algorithms for “clean()” such that the vec-
tor x̃ produced by the cleaner satisfies:

fd(x̃) = ỹd ≈ yd, eutility = |ỹd − yd|2
f̃ c(x̃) = ỹc �≈ yc, eprivacy = |ỹc − yc|2

(4)

We say that the cleaning method has high utility if eutility is
guaranteed to be small, and that it has high privacy if eprivacy
is guaranteed to be large. We describe algorithms that pro-
vide a guarantee on utility but not for the worst case privacy.
Specifically, for any given ε and x the algorithms guarantee
cleaning that satisfies:

eutility = |ỹd − yd|2 ≤ ε (5)

In our model, the adversary knows everything except for the
feature vector x. It is impossible to guarantee privacy in the
worst case because of the following argument. If yc = yd
then the adversary can use the predictor fd to predict the
confidential information. Therefore, in this worst case high
utility would imply low privacy. Instead of considering the
worst case we attempt to maximize eprivacy while still sat-
isfying the constraint on eutility. We present two algorithms.
The first maximizes the “expected privacy error” that will
be defined later. The second attempts to learn the predictor
used by the adversary and maximize the privacy protection
against that particular predictor.

Our results

Our cleaning algorithms require that the predictor fd() starts
with a linear operator. This means that it can be written as:
fd(x) = f1(A

T
d x), where Ad is a matrix. (Extensions to the

nonlinear case are nontrivial.) Here are several examples of
commonly used predictors that can be expressed in this way.
1. Linear regression (e.g., (Miller 2002; Hastie, Tibshirani,

and Friedman 2009)).
2. Many approaches to multi-label classification start with

linear regression. The regression results are then fol-
lowed by thresholding or other classification schemes,
converting the real valued data to discrete values. See, e.g.
(Tsoumakas et al. 2011; Zhang and Zhou 2014).

3. Multi-layer neural nets start with a linear operator ap-
plied to the input data. (See, e.g., (Hastie, Tibshirani, and
Friedman 2009)).

4. Algorithms that use linear dimensionality reduction such
as PCA. See, e.g., (Jolliffe 1986).

We describe two cleaning algorithms that work intuitively
as follows. The algorithms take as input the feature vector x
and the matrix Ad (used by the ally in the initial linear step).
The cleaning of x is achieved by subtracting from it projec-
tions on the approximate null space of AT

d . These projec-
tions are irrelevant to the prediction of the desired informa-
tion. Both algorithms remove components in the exact null
space. They behave differently in identifying the approxi-
mate null space.

A toy example

To illustrate the main ideas behind our approach consider the
following toy example:

(x1, x2)
cleaned
(x1, x2)

yd yc

(3,1) (1,-1) 2 5
(4,2) (1,-1) 2 8
(5,1) (2,-2) 4 7
(6,5) (0.5,-0.5) 1 16

There are two features x1, x2, one desired label yd, and one
confidential label yc. Both yd and yc can be calculated ex-
actly from x1, x2:

yd = x1 − x2, yc = x1 + 2x2

Clearly, the desired information yd can be predicted exactly
from x1, x2 with zero error. However, yc is exposed. Here
the prediction model of yd is AT

d = (1,−1), with the vec-
tor (1, 1) in its null space. Thus, the vector (x1, x2) can be
cleaned by zeroing out projections on the direction (1, 1).
This amounts to subtracting the mean of x1 and x2 from
each coordinate.

After cleaning, the same linear model can still be used to
predict yd from the cleaned features. On the other hand there
is no predictor for computing yc exactly from the cleaned
features, since two different values of yc must be inferred
from two identical cleaned feature vectors (lines 1,2).

Relation to previous work

Adapting machine learning terminology of a learning and a
testing phase, our goal is protecting the privacy of informa-
tion during the testing phase. It is different from studies con-
cerned with the privacy of training data, such as differential
privacy e.g., (Dwork and Roth 2014; Sarwate and Chaudhuri
2013), where noise is added to blur the distinction between
individual items in the training data.

There are several studies that investigate feature selec-
tion as a tool for obtaining privacy of training data. See,
e.g., (Pattuk et al. 2015; Jafer, Matwin, and Sokolova 2015;
Banerjee and Chakravarty 2011). The idea is not to release
the entire information in the data, but only selected features.

Unlike these studies we consider the privacy of infor-
mation that can be extracted from a single feature vector.
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1. If Hj = 0 set αj = 1.
2. Sort the pairs (Gj , Hj) in decreasing order of Gj/Hj .

Let (j) be the location of (Gj , Hj) in this order.
3. Compute the index t such that:∑t

(j)=1 H(j) < ε,
∑t+1

j=1 H(j) ≥ ε

4. Set r = (ε−∑t
(j)=1 H(j))/H(t+1)

5. Set α(j) =

⎧⎪⎨
⎪⎩
1 1 ≤ (j) ≤ t

r (j) = t+ 1

0 otherwise

Figure 1: Solving the Fractional Knapsack

Clearly, to increase privacy we can add noise to the fea-
ture vector or use fewer features. However, with no distinc-
tion between desired and and confidential information the
increase in privacy would imply a decrease in accuracy.

Recent studies (Enev et al. 2012; Hamm 2015; White-
hill and Movellan 2012) consider a setting similar to ours.
They also make the distinction between desired and confi-
dential information. In (Hamm 2015), the ally (data aggre-
gator) and the user (data contributor) participate in the data
filtering. The goal is to prevent the adversary from predicting
the private information of user while maintaining the utility
of the data. The framework proposed in (Enev et al. 2012)
transforms the data in a way that the covariance between
the data and the desired information is increased, while the
covariance between the data and confidential information is
decreased. The most important difference between our ap-
proach and these approaches is in the treatment of the pre-
dictors. They make different (or no) assumptions about the
predictors, while we assume knowledge of these predictors,
which yields different algorithms.

Optimization tool

The algorithms we propose require an optimization tools
that is detailed in this section. The problem to be optimized
is a variation on the classical fractional Knapsack prob-
lem, originally discussed by Dantzig in (Dantzig 1957). See
also (Goodrich and Tamassia 2002).

The Fractional Knapsack

1. Input: G1, . . . , Gn, nonnegative H1, . . . , Hn, ε.
2. Output: α1, . . . , αn that solve the following problem:
3. Maximize

∑
j αjGj .

4. Subject to:
∑

j αjHj ≤ ε,
5. 0 ≤ αj ≤ 1.

The standard algorithm for the optimal solution to this prob-
lem is shown in Fig. 1. We need the following variation of
the fractional knapsack.

Augmented objective function and equality constraint.
Here both the objective function in line 3 and the equality
constraint in line 4 are replaced by:

3. Maximize
∑

j α
2
jGj .

Input: x: the feature vector to be cleaned,
Ad: the known predictor,
ε: the desired value of eutility.

Output: the cleaned feature vector x̃.
1. Compute eigenvectors/eigenvalues of Bd = AdA

T
d .

2. For each eigenvector/eigenvalue pair (vj , λj)
compute: aj = vTj x, δj = λja

2
j .

3. Solve the Augmented Fractional Knapsack problem
Gj = 1, Hj = δj , ε, to determine αj , j = 1, . . . , n.

4. Output x̃ = x−∑n
j=1 αjajvj .

Figure 2: Algorithm 1 for cleaning a feature vector x.

4. Subject to:
∑

j α
2
jHj ≤ ε.

The only change needed in the algorithm of Fig.1 is in line
4.

4. Set r =
√
(ε−∑t

(j)=1 H(j))/H(t+1)

Cleaning

In this section we describe the algorithms for cleaning the
feature components in the approximate null space of the lin-
ear predictor. As in the previous section we denote the fea-
ture vector by x, and the cleaned feature vector by x̃. To
simplify the discussion and the notation we assume that the
predictor fd is linear, so that fd(x) = AT

d x.

Algorithm 1

The first algorithm is shown in Fig. 2. It identifies t eigen-
vectors and a fraction αt+1 of another eigenvector that are
in the approximate null space of Ad. Zeroing out the projec-
tion of the feature vector x on these eigenvectors produces
the desired cleaned feature vector.

Theorem 1: Let x̃ be the result of cleaning x by Algo-
rithm 1. Set yd=AT

d x, ỹd=AT
d x̃, and eutility = |yd − ỹd|2.

Then eutility ≤ ε.

Proof: With the notation of Algorithm 1:

yd − ỹd = AT
d x−AT

d x̃ = AT
d (x− x̃) = AT

d

n∑
j=1

αjajvj

Therefore:

eutility = |yd − ỹd|2 = (

n∑
i=1

αiaiv
T
i )Bd(

n∑
j=1

αjajvj)

=

n∑
i=1

λiα
2
i a

2
i =

t∑
i=1

λia
2
i + λt+1a

2
t+1r

2 ≤ ε �

The last inequality follows from the promise of the Frac-
tional Knapsack.
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We proceed to analyze the privacy properties of Algorithm 1.
Ideally, an algorithm should be designed with the following
criterion:

maximize inf eprivacy

where the infimum is over all possible algorithms. While
this cannot be shown in our model, we can show that Al-
gorithm 1 maximizes the following related criterion:

maximize Exp {eprivacy} (6)

where the expectation is over the probability distribution de-
fined below. Suppose the adversary uses the linear model
Ac to predict the confidential labels from x. Let AX be the
set of all pairs that can be obtained from the pair (Ac, x)
by rotation. Specifically, the pair (A1, x1) belongs to AX if
there is an orthogonal matrix Q1 such that A1 = Q1Ac and
x1 = Q1x. The probability distribution in (6) is the uniform
distribution over the elements of AX . (Multiplication by an
orthogonal matrix can be viewed as a change of the coordi-
nate system.)

Lemma 1: Let v1, . . . , vn be an orthogonal basis of Rn,
and let (A, x) be a random variable in AX . Then:

Exp
{
xT viv

T
i AAT vjv

T
j x

}
is independent of i, j,

where the expectation is with respect to the uniform distri-
bution defined over the elements of AX .

Proof: For any orthogonal matrix Q we have:

Exp
{
xT viv

T
i AAT vjv

T
j x

}

=

∫
xT viv

T
i AAT vjv

T
j x prob((A, x))d((A, x))

=

∫
vTj xx

T viv
T
i AAT vj prob((A, x))d((A, x))

=

∫
vTj QxxTQT viv

T
i QAATQT vj prob((QA,Qx))

d((QA,Qx))

=

∫
vTj QxxTQT viv

T
i QAATQT vj prob((A, x))d((A, x))

= Exp
{
vTj QxxTQT viv

T
i QAATQT vj

}

= Exp
{
xTQT viv

T
i QAATQT vjv

T
j Qx

}
(7)

(The integrals are computed over AX .) To prove the
lemma for the case where i=j we need to show that
Exp

{
xT viv

T
i AAT viv

T
i x

}
= Exp

{
xT vkv

T
k AAT vkv

T
k x

}
for 1 ≤ k ≤ n. This follows immediately by apply-
ing Equation (7) with any orthonormal matrix Q satisfying
vk = QT vi.

For the case where i�=j we need to show that
Exp

{
xT viv

T
i AAT vjv

T
j x

}
= Exp

{
xT vkv

T
k AAT vlv

T
l x

}
for 1 ≤ k, l ≤ n, k �= l. This follows immediately by
applying Equation (7) with any orthonormal matrix Q sat-
isfying vk = QT vi, vl = QT vj . Such orthogonal matrix Q
always exists since there is always a “change-of-basis” or-
thogonal matrix that maps one basis of Rn to another. See,
e.g., (Golub and Van-Loan 2013). �

Input: x: the feature vector to be cleaned,
Ad: the known predictor,
ε: the desired value of eutility,
training data: (xi, yic).

Output: the cleaned feature vector x̃.
1. Use the training data to compute the predictor Ac

so that yic ≈ AT
c x

i.
2. For Bd = AdA

T
d , Bc = AcA

T
c , solve the

generalized eigenvalue problem: Bdv = γBcv.
The result is (v1, γ1), . . . , (vn, γn).

3. for j = 1, . . . , n: aj = vTj x,
λd
j=vTj Bdvj , δdj =λd

ja
2
j , λc

j=vTj Bcvj , δcj=λc
ja

2
j .

4. Solve the Augmented Fractional Knapsack for
Gj = δcj , Hj = δdj , ε, to determine αj , j = 1, . . . , n.

5. Output x̃ = x−∑n
j=1 αjajvj .

Figure 3: Algorithm 2 for cleaning a feature vector x.

Theorem 2: Suppose the predictor of confidential infor-
mation from x is linear, represented by the matrix Ac. Let
AX be the set of all rotations of the pair (Ac, x), and con-
sider a uniform probability distribution over the elements of
AX . Then the cleaned vector produced by Algorithm 1 max-
imizes the expected privacy error.

Proof: As in the proof of Theorem 1 we have:

eprivacy = |yc − ỹc|2

= xT (

n∑
i=1

αiviv
T
i )AcA

T
c (

n∑
j=1

αjvjv
T
j )x

=
∑
ij

αiαjx
T viv

T
i AcA

T
c vjv

T
j x

Taking expectations gives:

Exp {eprivacy} = b
∑
ij

αiαj = b(
∑
j

αj)
2

where b = Exp
{
xT viv

T
i AAT vjv

T
j x

}
which according

to Lemma 1 is independent of i, j. Therefore, maximizing
Exp {eprivacy} in terms of the αj requires solving the follow-
ing optimization problem:

Maximize
∑
j

αj s.t. 0 ≤ αj ≤ 1,
∑
j

α2
jδj ≤ ε

And this can be solved as the Augmented Fractional Knap-
sack. �

Algorithm 2

The second algorithm is shown in Fig. 3. The cleaner uses
its own training data to estimate a linear predictor Ac for
the confidential labels. It then proceeds similarly to Algo-
rithm 1, but the approximate null space is computed in terms
of generalized eigenvectors and eigenvalues.
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Theorem 3: Let x̃ be the result of cleaning x by Algo-
rithm 2. Set yd=AT

d x, ỹd=AT
d x̃, and eutility = |yd − ỹd|2.

Then eutility ≤ ε.

Proof: Identical to the proof of Theorem 1. �
We proceed to analyze the privacy properties of Algorithm 2.

Theorem 4: If the Adversary uses the linear predictor Ac

as computed by the cleaner then the cleaned vector produced
by Algorithm 1 maximizes the privacy error.

Proof: The generalized eigenvalues γj satisfy:

γj = λd
j/λ

c
j , where λd

j = vTj Bdvj , λ
c
j = vTj Bcvj

Following the same derivation as in Theorem 1 we have:

eutility =
n∑

j=1

α2
jδ

d
j

eprivacy =

n∑
j=1

α2
jδ

c
j

Therefore, the optimization problem that needs to be solved
to maximize the privacy error is:

Maximize
n∑

j=1

α2
jδ

c
j

s.t. 0 ≤ αj ≤ 1,
∑
j

α2
jδ

d
j ≤ ε

And this problem is solved by Algorithm 2 using the Aug-
mented Fractional Knapsack. �

Experimental results

We evaluated the proposed algorithms on benchmark
datasets from Mulan repository (Tsoumakas et al. 2011)
shown in Table 1. Experimental results are averaged over
10 runs. In each run 90% of the dataset is chosen randomly
to compute the model of the ally. The rest is used as test-
ing data, where each individual sample is evaluated indepen-
dently of the other samples. We ran three experiments with
each dataset, varying the number of desired and confidential
labels:
1) one desired label and all the rest are confidential labels.
2) randomly select half of the labels as desired and the other

half as confidential.
3) one confidential and all the rest are desired labels.
In the tables Nd and Nc denote the number of desired and
confidential labels respectively. The results are shown in
Fig 4. Observe that in almost all cases eutility is exactly ε and
eprivacy is much bigger than eutility. The special case happens
on dataset CAL500 when Nd is 1 and Nc is 173.

To provide further insight into the performance of the
cleaning mechanism we count the test cases for which
the cleaning achieves “complete privacy”. The criterion for
complete privacy is defined as follows.

name instances(m) features(n) labels(N )
scene 2407 294 6
wq 1060 16 14

oes97 334 263 16
CAL500 502 68 174

Table 1: Dataset description.

If the error of predicting yc using x̃ is greater than the
error of predicting yc from the mean feature vector,
then complete privacy has been achieved.

In Fig 4, Complete Privacy denotes the percentage of test
cases for which the cleaner achieves complete privacy. We
observe that in most of the cases the adversary would be no
more advantageous using the cleaned feature vector x̃ than
using the mean feature vector.

In some cases, Algorithm 1 and Algorithm 2 have the
same performance (e.g. dataset scene and oes97). In other
cases (e.g. dataset CAL500 and wq), the two algorithms per-
form differently. It is because both the algorithms will clean
feature vector x with the eigenvectors/generalized eigenvec-
tors in the nullspace first. These vectors are identical to the
two algorithms. After such cleaning eutility maintains 0. To
achieve the desired value of eutility, both the algorithms will
keep cleaning x with other vectors/generalized eigenvectors.
This is the procedure where Algorithm 1 and Algorithm 2 di-
verges. Algorithm 2 selects vectors obtained by taking into
consideration the predictor model Ac for confidential infor-
mation, while Algorithm 1 selects vectors obtained without
considering such information.

It is possible that the adversary uses a model other than
Ac which may be better suited for predicting confidential
labels. We discuss such a scenario next.

A Proposed Attack

We assume the adversary knows the cleaning algorithms.
Therefore, the adversary can acquire a dataset and obtain
cleaned features. With the information of confidential labels
and features after cleaning, a new model can be inferred for
predicting yc. Given a test example, the adversary would
apply the new model to make prediction. The procedure is
shown in Fig 5.

The experiments with the proposed attack show that eutility
is still exactly ε for both algorithms in almost all the cases.
Due to the limitation of table size, here eutility is not shown.
Other results are shown in Figure 6. In some cases the rate of
complete privacy decreases to 40%. That shows the cleaned
feature vector provides no more confidential information
than the mean feature vector for 40% of the test samples.
However, eprivacy is still considerably higher than eutility. It is
to be noted that for some datasets eprivacy becomes extremely
high (e.g. oes97) and for some datasets eprivacy is relatively
small. This is dependent on the dataset as well as the desired
and confidential labels. A higher privacy (at the expense of
utility) can be obtained by increasing the value of ε.
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Dataset Nd Nc
Algorithm 1 Algorithm 2

eutility eprivacy Complete Privacy eutility eprivacy Complete Privacy

scene
1 5 0.01 0.796 81.8% 0.01 0.796 81.8%
3 3 0.01 1.358 80.6% 0.01 1.296 80.7%
5 1 0.01 4.259 82.3% 0.01 3.659 82.3%

CAL500
1 173 0.009 0.845 85.7% 0.01 5.3E+10 100.0%
87 87 0.01 0.156 63.5% 0.01 1.741 79.9%
173 1 0.01 0.034 46.0% 0.01 2.188 59.6%

wq
1 13 0.01 2.654 52.6% 0.01 2.654 52.6%
7 7 0.01 2.172 58.8% 0.01 1.956 57.8%
13 1 0.01 2.265 74.8% 0.01 1.403 45.5%

oes97
1 15 0.01 5.11E+7 65.4% 0.01 5.11E+7 65.4%
8 8 0.01 4.23E+7 63.0% 0.01 4.23E+7 63.0%
15 1 0.01 6.02E+7 47.0% 0.01 6.02E+7 47.0%

Figure 4: Results with no attack, ε = 0.01, Almost all the cases eutility is exactly ε, and eprivacy is much bigger than eutility.
Complete Privacy denotes the percentage of test samples which achieve complete privacy.

Algorithm 3
Input: xt: a test example,

training data: (xi, yic).
Output: Attempted prediction of ytc from xt.

1. Repeat for each feature vector xi:
Apply the cleaning algorithm to get a cleaned feature
vector x̃i.

2. Use the cleaned training data to build a prediction
model.

3. Use the model created in step 2 to predict ytc from xt.

Figure 5: A proposed attack on the cleaning algorithms.

Nd Nc
Algorithm 1 Algorithm 2

eprivacy CP eprivacy CP
scene dataset (n = 294)

1 5 0.289 51.0% 0.289 51.0%
3 3 0.235 44.7% 0.233 44.5%
5 1 0.047 41.0% 0.043 41.8%

CAL500 dataset (n = 68)
1 173 0.230 48.6% 0.005 58.9%
87 87 0.081 56.9% 0.008 55.9%
173 1 0.068 44.0% 0.029 44.4%

wq dataset (n = 16)
1 13 0.308 48.9% 0.308 48.9%
7 7 0.132 39.2% 0.164 38.7%
13 1 0.092 31.9% 0.086 30.9%

oes97 dataset (n = 263)
1 15 4.67E+6 39.4% 4.67E+6 39.4%
8 8 7.48E+6 43.6% 7.48E+6 43.6%
15 1 1.16E+7 18.2% 1.16E+7 18.2%

Figure 6: Results with the proposed attack. ε = 0.01, CP is
the percentage of test cases that achieve complete privacy.
Still eprivacy is bigger than eutility in most of the cases.

Comparison with a Differential Privacy
Mechanism

The goal of differential privacy is protecting the individual
entry of a database while allowing accurate statistical analy-
sis of the entire database. A standard way to achieve differ-
ential privacy is the Laplace mechanism (Dwork and Roth
2014). Carefully adding noise drawn from a Laplace distri-
bution to the features would achieve differential privacy but
at the cost of utility. On the other hand if one adds noise to
the feature vector while attempting to keep eutility small, then
eprivacy would also remain very small, thus privacy is sacri-
ficed.

In the experiments, we adjust the Laplace noise parameter
mean and scale to produce the same eutility as Algorithm 1.
The results are shown in Fig. 7. Observe that even with the
proposed attack our approach achieves better complete pri-
vacy compared to the Laplace mechanism. Thus for the same
value of utility our approach provides much better privacy.

Concluding remarks

The problem considered in this paper is protecting the pri-
vacy of predictors. It is different from studies concerned
with the privacy of the training data, such as differential pri-
vacy. Recent studies about balancing utility and privacy pro-
pose similar models with different (or no) assumptions about
the predictors. By contrast, we assume partial knowledge of
these predictors, which may provide sharper results.

The proposed algorithms can be applied to models that
start with a linear operator. We observe that projections on
the null space of the predictors do not change the prediction
value. These projections give out information that is unnec-
essary for the prediction. Therefore, cleaning the data by ze-
roing out projections on the null-space will not affect the
prediction accuracy but will increase the privacy. The more
distortion in feature vectors, the higher privacy and the lower
utility. The trade-off between utility and privacy can be con-
trolled by adjusting the ε parameter.
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Dataset eutility
Laplace Mechanism Alg 1 with no attack Alg 1 with attack

eprivacy Complete Privacy eprivacy Complete Privacy eprivacy Complete Privacy

scene
0.01 0.009 31.5% 0.796 81.8% 0.289 51.0%
0.02 0.019 31.4% 0.772 81.8% 0.289 50.3%
0.03 0.027 31.3% 0.770 81.8% 0.289 51.1%

oes97
0.01 0.015 24.6% 4.23E+7 63.0% 7.48E+6 43.6%
0.10 0.162 24.6% 4.23E+7 63.0% 7.48E+6 43.6%
1.00 1.698 24.6% 4.23E+7 63.0% 7.48E+6 43.5%

Figure 7: Comparison with the Laplace Mechanism. For dataset scene, Nd is 1, Nc is 5. For dataset oes97, Nd is 8, Nc is 8.
Our approach provides much better privacy for the same value of utility.
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