
Distributed Negative Sampling for Word Embeddings

Stergios Stergiou
Yahoo Research

stergios@yahoo-inc.com

Zygimantas Straznickas
MIT

zygi@mit.edu

Rolina Wu
University of Waterloo

rolina.wu@uwaterloo.ca

Kostas Tsioutsiouliklis
Yahoo Research

kostas@yahoo-inc.com

Abstract

Word2Vec recently popularized dense vector word represen-
tations as fixed-length features for machine learning algo-
rithms and is in widespread use today. In this paper we in-
vestigate one of its core components, Negative Sampling, and
propose efficient distributed algorithms that allow us to scale
to vocabulary sizes of more than 1 billion unique words and
corpus sizes of more than 1 trillion words.

Introduction

Recently, Mikolov et al (Mikolov et al. 2013; Mikolov and
Dean 2013) introduced Word2Vec, a suite of algorithms
for unsupervised training of dense vector representations of
words on large corpora. Resulting embeddings have been
shown (Mikolov and Dean 2013) to capture semantic word
similarity as well as more complex semantic relationships
through linear vector manipulation, such as vec(“Madrid”)
- vec(“Spain”) + vec(“France”) ≈ vec(“Paris”). Word2Vec
achieved a significant performance increase over the state-
of-the-art while maintaining or even increasing quality of
the results in Natural Language Processing (NLP) applica-
tions.

More recently, novel applications of word2vec involv-
ing composite “words” and training corpora have been pro-
posed. The unique ideas empowering the word2vec mod-
els have been adopted by researchers from other fields to
tasks beyond NLP, including relational entities (Bordes et
al. 2013; Socher et al. 2013), general text-based attributes
(Kiros, Zemel, and Salakhutdinov 2014), descriptive text of
images (Kiros, Salakhutdinov, and Zemel 2014), nodes in
graph structure of networks (Perozzi, Al-Rfou, and Skiena
2014), queries (Grbovic et al. 2015) and online ads (Or-
dentlich et al. 2016). Although most NLP applications of
word2vec do not require training of large vocabularies,
many of the above-mentioned real-world applications do.
For example, the number of unique nodes in a social net-
work (Perozzi, Al-Rfou, and Skiena 2014), or the number of
unique queries in a search engine (Grbovic et al. 2015), can
easily reach few hundred million, a scale that is not achiev-
able using existing word2vec systems.
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Training for such large vocabularies presents several chal-
lenges. Word2Vec needs to maintain two d-dimensional vec-
tors of single-precision floating point numbers for each vo-
cabulary word. All vectors need to be kept in main memory
to achieve acceptable training latency, which is impractical
for contemporary commodity servers. As a concrete exam-
ple, Ordentlich et al. (Ordentlich et al. 2016) describe an
application in which they use word embeddings to match
search queries to online ads. Their dictionary comprises ≈
200 million composite words which implies a main mem-
ory requirement of ≈ 800 GB for d = 500. A complemen-
tary challenge is that corpora sizes themselves increase. The
largest reported dataset that has been used was 100 billion
words (Mikolov and Dean 2013) which required training
time in the order of days. Such training speeds are impracti-
cal for web-scale corpus sizes or for applications that require
frequent retraining in order to avoid staleness of the models.
Even for smaller corpora, reduced training times shorten it-
eration cycles and increase research agility.

Word2Vec is an umbrella term for a collection of word
embedding models. The focus of this work is on the Skip-
Grams with Negative Sampling (SGNS) model that has been
shown (Mikolov and Dean 2013) experimentally to perform
better, especially for larger corpora. The central component
of SGNS is Negative Sampling (NS). Our main contribu-
tions are: (1) a novel large-scale distributed SGNS train-
ing system developed on top of a custom graph process-
ing framework; (2) a collection of approximation algorithms
for NS that maintain the quality of single-node implemen-
tations while offering significant speedups; and (3) a novel
hierarchical distributed algorithm for sampling from a dis-
crete distribution. We obtain results on a corpus created from
the top 2 billion web pages of Yahoo Search, which in-
cludes 1.066 trillion words and a dictionary of 1.42 billion
words. Training time per epoch is 2 hours for typical hy-
perparameters. To the best of our knowledge, this is the first
work that has been shown to scale to corpora of more than 1
trillion words and out-of-memory dictionaries.

Related Work

Dense word embeddings have a rich history (Hinton, Mc-
clelland, and Rumelhart 1986; Elman 1990; Hinton, Rumel-
hart, and Williams 1985), with the first popular Neural Net-
work Language Model (NNLM) introduced in (Bengio et
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al. 2003). Mikolov introduced the concept of using word
vectors constructed with a simple hidden layer to train the
full NNLM (Mikolov 2008; Mikolov et al. 2009) and was
the first work to practically reduce the high dimensional-
ity of bag-of-words representations to dense, fixed-length
vector representations. This model later inspired Mikolov’s
Word2Vec system (Mikolov and Dean 2013) which has
since been implemented and improved by many researchers.

Single Node Implementations

The reference implementation of word2vec, later imple-
mented into (Gensim 2016), (TensorFlow 2016) and (Medal-
lia 2016), uses multithreading to increase training speed.
Gensim improves its word2vec implementation three-fold
by integrating BLAS primitives. Since SGNS word2vec
maintains two matrices of size Words x Dimensions, lim-
itations on main memory and single machine performance
make it impossible for single-node implementations to scale
up with dictionary and corpus size.

Distributed Implementations

Examples of distributed training systems that have been pre-
sented are (Deeplearning4j 2016), (MLLib 2016), Ji et al’s
(Ji et al. 2016) and Ordentlich et al’s (Ordentlich et al. 2016).
Deeplearning4j adopts GPUs to accelerate learning times.
Spark MLLib’s word2vec implementation uses an approach
that is similar to Ji et al’s (Ji et al. 2016). Both implemen-
tations replicate the word embeddings on multiple execu-
tors, which are then periodically synchronized among them-
selves. The input corpus is partitioned onto each executor
which independently updates its local copy of the embed-
dings. This technique reduces training time, yet the memory
required to store all vectors in all Spark executors makes
this approach unsuitable for large dictionaries, although it
addresses well the problem of large corpora.

Ordentlich et al. provide an alternative approach in (Or-
dentlich et al. 2016). Their implementation scales to large
vocabularies using a Parameter Server (PS) framework to
store the latest values of model parameters. The word em-
bedding matrices are distributed over a predefined number
k of worker nodes by assigning each node with 1/kth of
the columns (dimensions). The worker nodes then perform
partial inner product sum operations on their corresponding
segment, upon request by a separate computation node. This
parameter server approach enabled the models to be trained
over large vocabularies. Nevertheless, it is still hard to scale
up the system since the number of executors is limited to the
dimensionality of the word embeddings. In fact it only scales
up to 10-20 computing nodes for typical model parameters,
while the average throughput they obtained is 1.6·106 words
per second because of this limitation.

Continuous Skip-gram Model

For each skip-gram (wI , wO) and a set of negative samples
Wneg , Mikolov et al. (Mikolov and Dean 2013) define the
Skip-gram Negative Sampling loss function as:

E = − log σ(v′T
wO

vwI
)−

∑
wj∈Wneg

log σ(−v′T
wj

vwI
)

Algorithm 1 SGNS Word2Vec
1: function UPDATE(η)
2: for all skip-grams wI , wO do
3: Wneg ← {}
4: for i ∈ [1, N ] do
5: Wneg ← Wneg ∪ sample(Pn)

6: gwO
← (σ(v′T

wO
vwI

)− 1)vwI
� get gradients

7: gwI
← (σ(v′T

wO
vwI

)− 1)vwO

8: for all wj ∈ Wneg do

9: gwj
← σ(v′T

wj
vwI

)v′
wI

10: gwI
← gwI

+ σ(v′T
wj

vwI
)v′

wj

11: v′
wO

← v′
wO

− η · gwO
� update vectors

12: vwI
← vwI

− η · gwI

13: for all wj ∈ Wn do
14: v′

wj
← v′

wI
− η · gwj

where σ(x) = 1
1+e−x , and vw and v′

w are the “input” and
“output” vector representations for word w. Its gradients
with respect to the word vectors are:

∂E

∂v′
wO

= (σ(v′T
wO

vwI
)− 1)vwI

∂E

∂v′
wj

= σ(v′T
wj

vwI
)vwI

∂E

∂vwI

= (σ(v′T
wO

vwI
)− 1)vwO

+
∑

wj∈Wneg

σ(v′T
wj

vwI
)v′

wj

The loss function is then minimized using a variant of
stochastic gradient descent, yielding a simple learning algo-
rithm that iterates over all the skip-grams, calculates the gra-
dients of their loss functions and updates the values of their
respective vectors, as well as the vectors of negative sam-
ples chosen for each skip-gram. A summary of the model is
depicted in Algorithm 1.

Distributed Discrete Sampling

Central to SGNS is sampling from a noise distribution
Pn(w) : w ∈ W over the vocabulary W . Mikolov et al.
(Mikolov and Dean 2013) experimentally showed that the
unigram distribution U(w) raised to the 3/4-th power signif-
icantly outperformed both the U(w) and uniform distribu-
tions. Negative Sampling lies at the core of the performance
improvements obtained by Word2Vec as it allows for updat-
ing the loss function in O(kd) instead of O(|W |d), where k
is the number of noise samples per skip gram and d the di-
mensionality of the embedding. Nevertheless, it remains the
dominant time component of the algorithm.

It is desirable to be able to draw from the noise distribu-
tion in constant time. Word2Vec (Mikolov and Dean 2013)
achieves this by using the following algorithm. It creates an
array A (of size |A| � |W |) in which it places word identi-
fiers proportionally to their probability in Pn(w) and draws
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Algorithm 2 Alias Method
1: function BUILDALIAS(W,Pn(w))
2: ∀w ∈ W : S[w] = Pn(w) · |W |
3: ∀w ∈ W : A[w] = w
4: TL = {w|Pn(w) < 1/|W |}
5: TH = {w|Pn(w) > 1/|W |}
6: for j ∈ TL do
7: k ← POP (TH) � remove an element from TH

8: S[k] = S[k]− 1 + S[j]
9: A[j] = k

10: if S[k] < 1 then
11: TL = TL ∪ {k}
12: else if S[k] > 1 then
13: TH = TH ∪ {k}
14: TL = TL\{j}

return S,A

15: function SAMPLEALIAS(S,A)
16: u = Sample(U{0, |W |} � real sample ∈ [0, |W |)
17: if S[�u	] ≤ u− �u	 then
18: return A[�u	]
19: else
20: return �u	

uniformly from A. As a concrete example, assuming a vo-
cabulary W = {A,B,C,D} where Pn(A) = 0.5, Pn(B) =
0.25, Pn(C) = 0.15, Pn(D) = 0.1, array A might be:

[A,A,A,A,A,A,A,A,A,A,B,B,B,B,B,C,C,C,D,D].

This algorithm is approximate as probabilities in Pn(w) are
quantized to 1/|A| and also requires significant memory re-
sources for larger vocabularies (for instance, |A|/|W | >
100 in the reference implementation.) In the following sec-
tion we present an algorithm for drawing from Pn(w) in
constant time that only requires O(|W |) space and O(|W |)
pre-processing time.

Alias Method

Let Pn(w) : w = [0, .., |W | − 1] be a discrete distribution
over W . We construct two arrays S,A, where |S| = |A| =
|W |, initialized to S[i] = Pn(i) · |W | and A[i] = i. While
there exists j such that S[j] < 1, select an arbitrary k :
S[k] > 1 and set A[j] = k, S[k] = S[k]− 1 + S[j]. Entry j
is never examined thereafter. Such a selection for k is always
possible as

∑
w S[w] = |W |.

We will use arrays S,A to draw from Pn(w) in constant
time as follows: Let u ∈ [0, |W |) be a draw from the uni-
form continuous distribution U{0, |W |}, obtained in con-
stant time. Then

q =

{�u	 if S[�u	] > u− �u	
A[�u	] otherwise

is a draw from Pn(w), also obtained in constant time.
Let us examine the construction of arrays S,A for

Pn(A) = 0.5, Pn(B) = 0.25, Pn(C) = 0.15, Pn(D) = 0.1
from our previous example. Arrays S,A are initialized to:

S 2.0 1.0 0.6 0.4
A 0 1 2 3

Let us first pick j = 3 and k = 0 since S[3] < 1.0, S[0] >
1.0. The arrays are updated to:

S 1.4 1.0 0.6 0.4
A 0 1 2 0

Following, we select j = 2 and k = 0 since S[2] <
1.0, S[0] > 1.0. Notice that j = 3 is no longer a valid selec-
tion as it has already been examined. The arrays are updated
to:

S 1.0 1.0 0.6 0.4
A 0 1 0 0

To gain some insight on this algorithm, we observe that
for each word w, either S[w] = 1 or A[w] �= w, and that
Pn(w) = (S[w]+

∑
w′ �=w,A[w′]=w 1−S[w′])/|W |. We also

note that constructing the arrays S,A requires O(|W |) time:
Initially, all words are separated into three sets TH , TM , TL,
containing words with Pn(w) > 1/|W |, Pn(w) = 1/|W |
and Pn(w) < 1/|W | respectively, in O(|W |) time. The al-
gorithm iterates over set TL and “pairs” each word j ∈ TL

with a word k ∈ TH . If S[k] is reduced to less than 1.0 then k
is added to TL. The algorithm terminates when TL = ∅. The
alias method was studied in (Walker 1974; 1977; Vose 1991;
Marsaglia et al. 2004) and is presented in Algorithm 2.

Hierarchical Sampling

In a distributed context, where vocabulary W is (ideally)
equi-partitioned onto p computation nodes, even assigning
O(|W |) space for sampling on each node may be wasteful.
We present a hierarchical sampling algorithm that still al-
lows for drawing from Pn(w) in constant time, but only re-
quires O(p+ |W |/p) space per partition and O(p+ |W |/p)
preprocessing time. While the alias method is an improve-
ment over the sampling algorithm in (Mikolov and Dean
2013), it still requires O(|W |) memory, which as the dic-
tionary size increases, may become prohibitively large. For
instance, for a dictionary size of 1 billion words, an imple-
mentation of the alias method may require 16GB of mem-
ory on every computation node. In this section we propose a
two-stage sampling algorithm that still allows to draw from
Pn(w) in constant time. However each partition only main-
tains information about the subset of the vocabulary it is re-
sponsible for (in addition to some low overhead auxiliary
information.

Let W be the set of all words and Wi, 1 ≤ i ≤ p be its
p partitions such that

⋃
i Wi = W and Wi ∩ Wj = ∅ for

all 1 ≤ i �= j ≤ p. Let c(u) be some positive function of
the word u and T be a probability distribution of sampling a
word u from the whole set W :

T (u) =
c(u)∑

w∈W c(w)
(1)

For each partition i, let its word probability distribution
be:

Ti(u) =

{
c(u)∑

w∈Wi
c(w) if u ∈ Wi

0 otherwise
(2)

Consider a sampling process where first a partition k is
sampled from a probability distribution P , then a word is
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Algorithm 3 Hierarchical Sampling
1: function BUILDTABLES(c(u),Wi : i ∈ [1..p])

2: P (k) =
∑

w∈Wk
c(w)

∑
w∈W c(w)

3: [SP , AP ] =BUILDALIAS([1..p], P (k))
4: for j ∈ [1..p] do

5: Tj(u) =

{
c(u)∑

w∈Wj
c(w) if u ∈ Wj

0 otherwise
6: [Sj , Aj ] =BUILDALIAS(Wj , Tj(u))

7: function SAMPLE([SP , AP ], [Si, Ai] : i ∈ [1..p])
8: k =SAMPLEALIAS(SP , AP )
9: return SAMPLEALIAS(Sk, Ak)

sampled from the probability distribution Tk. Our goal is to
choose P such that the total distribution of sampling a word
using this process is equal to T .

Assume the word u is in partition k. Then the probability
of sampling it is:

N∑
i=1

P (i)Ti(u) = P (k)Tk(u) = P (k)
c(u)∑

w∈Wk
c(w)

We would like this to be equal to T . Then:

P (k)
c(u)∑

w∈Wk
c(w)

=
c(u)∑

w∈W c(w)

Therefore:

P (k) =

∑
w∈Wk

c(w)∑
w∈W c(w)

. (3)

We perform hierarchical sampling as follows. First, we
obtain an auxiliary probability distribution over the set of
all partitions, as defined in Eq. 3. This distribution is made
available to all computation nodes and is low-overhead as
p << |W |. We construct arrays SP , AP as per the Alias
method. For each partition i we additionally construct ar-
rays Si, Ai using the word distributions in Eq. 2. We can
now sample from distribution T (u) (Eq. 1) as follows: We
first draw a partition j from P (k) and subsequently draw a
word w from Tj(u). We observe that preprocessing is now
O(|Wi|+ p) for partition i while drawing from T (u) is still
a constant-time operation. The algorithm is summarized in
Algorithm 3.

Distributed SGNS

Preliminaries

We closely follow the reference SGNS implementation with
respect to the conversion from an input corpus to the set of
skip-grams. In particular, we reject input word wi with prob-
ability:

P (wi) = 1−
√

t

f(wi)

where t is a frequency cutoff, typically set to 10−5 and f(w)
are the unigram frequencies.

Each word w and its associated information is placed on
a specific partition M(h(w)), determined by h(w) which is
the 128-bit md5sum of w. During each epoch, the input is
subsampled and translated into a set of skip-grams (wi, wo).
All skip-grams related to the input word wi are then sent to
partition M(h(wi)). To support efficient subsampling, we
maintain all word identifiers with frequency > t on all par-
titions. This set of words is typically a very small subset of
the vocabulary.

Considering dictionary words as nodes in a graph G and
skip-grams as directed edges between them, SGNS can be
seen as a distributed computation over G. Following, we
provide a brief overview of our custom distributed graph
processing framework on which we developed the algo-
rithms presented in this work. We then present our three dis-
tributed algorithms for negative sampling, that differ only in
the approach with which they obtain the negative samples
and update the related word vectors. The learning phase of
the epoch varies according to the negative sampling algo-
rithm used and dominates the execution time.

Graph Processing Framework

Chronos is a proprietary in-memory / secondary-storage hy-
brid graph processing system, developed in C++11 on top
of Hadoop MapReduce. Word-related state is maintained in
memory, while the graph itself, specifically a serialization of
the skip grams information, can either be stored in memory
or on disk. Messages originating from a source process are
transparently buffered before being sent to target processes,
with buffering occurring separately for each target parti-
tion. Each message contains the related word embedding
as its payload. The framework can optionally [de]compress
buffers on-the-fly, transparently to the application. Commu-
nication is performed via a large clique of unidirectional
point-to-point message queues. The system builds on the
following low-level communication primitives: clique com-
munication for graph level computations; and one-to-all and
all-to-one communication for process-level computations.
It implements loading and storing of vertex information
through which it supports fault tolerance via check-pointing.
Each superstep is executed as a sequence of three primitives:
a one-to-all communication primitive that sends initializa-
tion parameters to all peers, a clique communication prim-
itive that transmits edge messages, and an all-to-one com-
munication primitive that gathers partition-level results from
the peers to the master process.

Baseline Negative Sampling

In Baseline Negative Sampling (BNS), each partition iter-
ates over the skip-grams it maintains. For each skip-gram
(wI , wO), it sends the input vector vwI

to partition p0 =
M(h(wO)), which is the partition that owns word wO. Upon
reception of vwI

, partition pO updates output vector v′
wO

and sends back gradient gwI
to the source partition for up-

dating vwI
. BNS draws N samples p1, .., pN from the par-

titions distribution. Subsequently, for each pi it sends vwI

to partition pi. Upon reception, partition pi draws a neg-
ative word wneg from its own word distribution, updates
v′
wneg

and sends back gradient gwI
to the source partition
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Algorithm 4 Baseline Negative Sampling
1: function PROCESSSKIPGRAM(wI , wO, η)
2: gwI

← GETREMOTE(M(h(wO)),vwI
, wO)

3: for all i ∈ [1, N ] do
4: p ←SAMPLEALIAS(SP , AP )
5: gwI

← gwI
+ GETNEGSAMPLE(p,vwI

)
6: vwI

← vwI
− η · gwI

7: function GETREMOTE(vwI
, wO)

8: gwO
← (σ(v′T

wO
vwI

)− 1)vwI

9: gwI
← (σ(v′T

wO
vwI

)− 1)v′
wO

10: v′
wO

← v′
wO

− η · gwO

11: return gwI

12: function GETNEGSAMPLE(vwI
)

13: wneg ← SAMPLEALIAS(Sk, Ak) � k is partition id
14: gwneg

← σ(v′T
wneg

vwI
)vwI

15: gwI
← gwI

+ σ(v′T
wneg

vwI
)v′

wneg

16: v′
wneg

← v′
wneg

− η · gwneg

17: return gwI

for updating vwI
. The communication across partitions is

depicted in Figure 1 while the algorithm is summarized in
Algorithm 4. We observe that, while BNS closely adheres to
the reference implementation, this comes at a cost of send-
ing 2(N + 1) vectors over the network, which may be pro-
hibitively expensive for large corpora.

Single Negative Sampling

A reasonable approximation to BNS is to restrict sampling
to pools of words whose frequencies still approximate the
original distribution while being faster to learn from. We
present the first such approximation, Single Negative Sam-
pling (SNS). SNS behaves similarly to BNS with respect to
the output word wO: it transfers input vector vwI

to partition
p0 = M(h(wO)), which subsequently updates output vec-
tor v′

wO
and sends back gradient gwI

to the source partition
for updating vwI

. However, it draws all negative samples
for a given skip-gram from a single partition drawn from the
partitions distribution. It is presented in Algorithm 5. We ob-
serve that SNS scales much better with N since it requires
communicating 4 vectors per skip-gram over the network, a
significant reduction from 2(N + 1).

Target Negative Sampling

Target Negative Sampling (TNS) aims to further reduce the
communication cost. We observe that, if negative samples
are drawn from partition p0 = M(h(wO)) for skip-gram

CPU 2x Intel Xeon E5-2620
Frequency 2.5GHz (max)

RAM 64GB
Memory Bandwidth 42.6 GB/s (max)

Network 10Gbps Ethernet

Table 1: Cluster Node Configuration

wI wO

w1

w2

w3

vwI

gwI

v
w
I

g
w
I

vwI

gwI

vw
I

gw
I

Figure 1: Baseline Negative Sampling Communication Pat-
tern during processing of skip-gram (wI , wO), for 3 negative
samples w1, w2, w3.

(wI , wO), the gradient update to vwI
that corresponds to the

negative samples can be added to the gradient that p0 is re-
turning to the source partition. This allows for a communi-
cation pattern of 2 vectors per processed skip-gram. TNS is
presented in Algorithm 6. Let us examine the set of skip-
grams with the same input word wI : {(wI , wOj

)}. The pos-
sible partitions from which TNS will be drawing negative
samples from is R = ∪j{M(h(wOj

))}. Considering that
the number of partitions is typically much smaller than the
dictionary size, R is likely a large subset of the set of all par-
titions RA. However, it is not necessary a true random sub-
set of RA, while additionally it remains fixed across epochs
(modulo any variation induced by subsampling.) Neverthe-
less, our experiments demonstrate that TNS performs well
in practice.

Experiments

We collect experimental results on a cluster of commodity
nodes whose configuration is depicted on Table 1.

We establish the quality of the embeddings obtained by

Model Accuracy [%]
Semantic Syntactic Total

SGNS (Reference) 74.27 69.35 71.58
SG-BNS 73.10 66.16 69.31
SG-SNS 73.48 68.08 70.53
SG-TNS 74.72 66.13 70.03

Table 2: Accuracy Results on Google Analogy Dataset for
Single-Epoch Trained Embeddings on the Composite Cor-
pus for d = 300, win = 5, neg = 5, t = 10−5,
min − count = 10 and threads = 20. 350 partitions are
used for BNS, SNS and TNS.
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Algorithm 5 Single Negative Sampling
1: function PROCESSSKIPGRAM(wI , wO, η)
2: gwI

← GETREMOTE(M(h(wO)), vwI
, wO)

3: p ←SAMPLEALIAS(SP , AP )
4: gwI

← gwI
+ GETNEGSAMPLES(p,vwI

)
5: vwI

← vwI
− η · gwI

%Statex
6: function GETREMOTE(vwI

, wO)
7: gwO

← (σ(v′T
wO

vwI
)− 1)vwI

8: gwI
← (σ(v′T

wO
vwI

)− 1)v′
wO

9: v′
wO

← v′
wO

− η · gwO

10: return gwI

11: function GETNEGSAMPLES(k,vwI
)

12: gwI
← 0

13: for j ∈ [1..N ] do
14: wj ←SAMPLEALIAS(Sk, Ak) � k is partition id
15: gwj ← σ(v′T

wj
vwI

)vwI

16: gwI
← gwI

+ σ(v′T
wj

vwI
)v′

wj
=

17: v′
wj

← v′
wj

− η · gwj

18: return gwI

Model Learning Time (sec) Speedup
SGNS (Reference) 11507 1 x

SG-BNS 4378 2.6 x
SG-SNS 1331 8.7 x
SG-TNS 570 20.2 x

Table 3: Single-Epoch Learning Times on the Composite
Corpus for d = 300, win = 5, neg = 5, t = 10−5,
min − count = 10 and threads = 20. 350 partitions are
used for BNS, SNS and TNS.

our algorithms on a composite corpus comprising two news
corpora12, the 1 Billion Word Language Model Benchmark3

(Chelba et al. 2013), the UMBC WebBase corpus4 (Han et
al. 2013) and Wikipedia5, as constructed by the open-source
reference word2vec implementation evaluation scripts.

We report quality results on the Google Analogy evalu-
ation dataset (Mikolov et al. 2013) for the BNS, SNS and
TNS algorithms, as well as the reference word2vec imple-
mentation, on Table 2. We observe that all three algorithms
perform similarly to each other, slightly trailing the refer-
ence implementation. On Table 3, we report single-epoch
learning times. Specifically, we report a 20X speedup over
the reference implementation. We then present scalability

1http://www.statmt.org/wmt14/training-monolingual-news-
crawl/news.2012.en.shuffled.gz

2http://www.statmt.org/wmt14/training-monolingual-news-
crawl/news.2013.en.shuffled.gz

3http://www.statmt.org/lm-benchmark/1-billion-word-
language-modeling-benchmark-r13output.tar.gz

4http://ebiquity.umbc.edu/redirect/to/resource/id/351/UMBC-
webbase-corpus

5http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-
pages-articles.xml.bz2

Algorithm 6 Target Negative Sampling
1: function PROCESSSKIPGRAM(wI , wO, η)
2: gwI

← GETREMOTE(M(h(wO)), vwI
, wO)

3: vwI
← vwI

− η · gwI

4: function GETREMOTE(k,vwI
, wO)

5: gwO
← (σ(v′T

wO
vwI

)− 1)vwI

6: gwI
← (σ(v′T

wO
vwI

)− 1)v′
wO

7: for j ∈ [1..N ] do
8: wj ←SAMPLEALIAS(Sk, Ak)
9: gwj

← σ(v′T
wj

vwI
)vwI

10: gwI
← gwI

+ σ(v′T
wj

vwI
)v′

wj

11: v′
wO

← v′
wO

− η · gwO

12: for all wj ∈ Wneg do
13: v′

wj
← v′

wj
− η · gwj

14: return gwI

Query-Ads Dataset Value
Dictionary Words 200 Million

Dataset Words 54.8 Billion
Dataset Size 411.5 GB

Partitions 1500
Learning Time 856 sec

Table 4: Query-Ads Dataset and Single-Epoch Learning
Runtime for d = 300, win = 5 and neg = 5, t = 10−5

results on two large datasets. The first dataset is obtained
from (Ordentlich et al. 2016) and is related to mapping web
queries to online ads. Results are shown on Table 4. The sec-
ond dataset is obtained from 2 billion web pages and com-
prises more than 1 trillion words and more than 1.4 billion
unique dictionary words. Results are shown on Table 5.

Conclusion

In this paper we proposed an efficient distributed algorithm
for sampling from a discrete distribution and used it to opti-
mize Negative Sampling for SGNS Word2Vec, allowing us
to scale to vocabulary sizes of more than 1 billion words and
corpus sizes of more than 1 trillion words. Specifically, our
system learns from a web corpus of 1.066 trillion words on
1.42 billion vocabulary words in 2 hours.

Web Dataset Value
Dictionary Words 1.42 Billion

Dataset Words 1.066 Trillion
Dataset Size 6021.6 GB

Partitions 3000
Learning Time 7344 sec

Table 5: Web Dataset and Single-Epoch Learning Runtime
for d = 300, win = 5, neg = 5 and t = 10−5
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