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Abstract

A major challenge in the training of recurrent neural networks
is the so-called vanishing or exploding gradient problem. The
use of a norm-preserving transition operator can address this
issue, but parametrization is challenging. In this work we
focus on unitary operators and describe a parametrization
using the Lie algebra u(n) associated with the Lie group
U(n) of n × n unitary matrices. The exponential map pro-
vides a correspondence between these spaces, and allows us
to define a unitary matrix using n2 real coefficients relative
to a basis of the Lie algebra. The parametrization is closed
under additive updates of these coefficients, and thus pro-
vides a simple space in which to do gradient descent. We
demonstrate the effectiveness of this parametrization on the
problem of learning arbitrary unitary operators, comparing
to several baselines and outperforming a recently-proposed
lower-dimensional parametrization. We additionally use our
parametrization to generalize a recently-proposed unitary re-
current neural network to arbitrary unitary matrices, using it
to solve standard long-memory tasks.

Introduction

While recurrent neural networks (RNNs) are seeing
widespread success across many tasks, the fundamental ar-
chitecture presents challenges to typical training algorithms.
In particular, the problem of ‘vanishing/exploding gradi-
ents’ (Hochreiter 1991) in gradient-based optimization per-
sists, where gradients either vanish or diverge as one goes
deeper into the network, resulting in slow training or numer-
ical instability. The long short-term memory (LSTM) net-
work (Hochreiter and Schmidhuber 1997) was designed to
overcome this issue. Recently, the use of norm-preserving
operators in the transition matrix - the matrix of weights
connecting subsequent internal states - of the RNN have
been explored (Arjovsky, Shah, and Bengio 2016; Mikolov
et al. 2015; Le, Jaitly, and Hinton 2015). Using operators
with bounded eigenvalue spectrum should, as demonstrated
by Arjovsky, Shah, and Bengio (2016), bound the norms of
the gradients in the network, assuming an appropriate non-
linearity is applied. Unitary matrices satisfy this requirement
and are the focus of this work.
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Imposing unitarity (or orthogonality) on this transition
matrix is however challenging for gradient-based optimiza-
tion methods, as additive updates typically do not preserve
unitarity. Solutions include re-unitarizing after each batch,
or using a parametrization of unitary matrices closed under
addition. In this work we propose a solution in the second
category, using results from the theory of Lie algebras and
Lie groups to define a general parametrization of unitary ma-
trices in terms of skew-Hermitian matrices (elements of the
Lie algebra associated to the Lie group of unitary matrices).
As explained in more detail below, elements of this Lie al-
gebra can be identified with unitary matrices, while the al-
gebra is closed under addition, forming a vector space over
real numbers.

While we are motivated by the issues of RNNs, and we
consider an application in RNNs, our primary focus here is
on a core question: how can unitary matrices be learned?
Assuming the choice of a unitary transition matrix is an ap-
propriate modelling choice, the gradients on this operator
should ultimately guide it towards unitarity, if it is possi-
ble under the parametrization or learning scheme used. It is
therefore useful to know which approach is best. We distil
the problem into its simplest form (a learning task described
in detail later), so that our findings cannot be confounded by
other factors specific to the RNN long-term memory task,
before demonstrating our parametrization in that setting.

Related work

We draw most inspiration from the recent work of Ar-
jovsky, Shah, and Bengio (2016), who proposed a spe-
cific parametrization of unitary matrices and demonstrated
its utility in standard long-term memory tasks for RNNs.
We describe their parametrization here, as we use it later.
Citing the difficulty of obtaining a general and efficient
parametrization of unitary matrices, they use the fact that the
unitary group is closed under matrix multiplication to form
a composite operator:

U = D3R2F−1D2ΠR1FD1 (1)

where each component is unitary and easily parametrized:
• D is a diagonal matrix with entries of the form eiα, α ∈ R

• R is a complex reflection operator; R = I − 2 vv†
‖v‖2 (†

denotes Hermitian conjugate)
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• F and F−1 are the Fourier and inverse Fourier transforms
(or, in practice, their discrete matrix representations)

• Π is a fixed permutation matrix

In total, this parametrization has 7n real learnable parame-
ters (2n for each reflection and n for each diagonal opera-
tor), so describes a subspace of unitary matrices (which have
n2 real parameters). Nonetheless, they find that an RNN us-
ing this operator as its transition matrix outperforms LSTMs
on the adding and memory tasks described first in Hochre-
iter and Schmidhuber (1997). This prompted us to consider
other parametrizations of unitary matrices which might be
more expressive or interpretable.

Mikolov et al. (2015) constrain a part of the transition ma-
trix to be close to the identity, acting as a form of long-term
memory store, while Le, Jaitly, and Hinton (2015) initial-
ize it to the identity, and then use ReLUs as non-linearities.
Henaff, Szlam, and LeCun (2016) study analytic solutions
to the long-term memory task, supporting observations and
intuitions that orthogonal (or unitary) matrices would be ap-
propriate as transition matrices for this task. They also study
initializations to orthogonal and identity matrices, and con-
sider experiments where an additional term in the loss func-
tion encourages an orthogonal solution to the transition ma-
trix, without using an explicit parametrization. Saxe, Mc-
Clelland, and Ganguli (2014) study exact solutions to learn-
ing dynamics in deep networks and find that orthogonal
weight initializations at each layer lead to depth-independent
learning (thus escaping the vanishing/exploding gradient
problem). Interestingly, they attribute this to the eigenvalue
spectrum of orthogonal matrices lying on the unit circle.
They compare with weights initialized to random, scaled
Gaussian values, which preserve norms in expectation (over
values of the random matrix) and find orthogonal matrices
superior. It therefore appears that preserving norms is not
sufficient to stabilize gradients over network depth, but that
the eigenvalue spectrum must also be strictly controlled.

In a related but separate vein, Krueger and Memise-
vic (2016) penalize the difference of difference of norms be-
tween subsequent hidden states in the network. This is not
equivalent to imposing orthogonality of the transition ma-
trix, as the norm of the hidden state may be influenced by
the inputs and non-linearities, and their method directly ad-
dresses this norm.

The theory of Lie groups and Lie algebras has seen most
application in machine learning for its use in capturing no-
tions of invariance. For example, Miao and Rao (2007),
learn infinitesimal Lie group generators (elements of the Lie
algebra) associated with affine transformations of images,
corresponding to visual perceptual invariances. This is dif-
ferent to our setting as our generators are already known
(we assume the Lie group U(n)) and wish to learn the co-
efficients of a given transformation relative to that basis set
of generators. However, our approach could be extended to
the case where the basis of u(n) is unknown, and must be
learned. As we find later (appendix B), the choice of basis
can impact performance, and so may be an important consid-
eration. Cohen and Welling (2014) learn commutative sub-
groups of SO(n) (known as toroidal subgroups), motivated

by learning the irreducible representations of the symmetry
group corresponding to invariant properties of images. Their
choice of group parametrization is equivalent to selecting a
particular basis of the corresponding Lie algebra, as they de-
scribe, but primarily exploit the algebra to understand prop-
erties of toroidal subgroups.

Tuzel, Porikli, and Meer (2008) perform motion estima-
tion by defining a regression function in terms of a function
on the Lie algebra of affine transformations, and then learn-
ing this. This is similar to our approach in the sense that
they do optimization in the Lie algebra, although as they
consider two-dimensional affine transformations only, their
parametrization of the Lie algebra is straight forward.

Finally, Hazan, Kale, and Warmuth (2016) describe an
online learning algorithm for orthogonal matrices – which
are the real-valued equivalent to unitary matrices. They also
claim that the approach is extends easily to unitary matrices.

Structure of this paper

We begin with an introduction to the relevant facts and def-
initions from the theory of Lie groups and Lie algebras, to
properly situate this work in its mathematical context. Fur-
ther exposition is beyond the scope of this paper, and we
refer the interested reader to any of the comprehensive in-
troductory texts on the matter.

We explain our parametrization in detail and describe a
method to calculate the derivative of the matrix exponential
- a quantity otherwise computationally intractable. Then, we
describe a simple but clear experiment designed to test our
core question of learning unitary matrices. We compare to an
approach using the parametrization of Arjovsky, Shah, and
Bengio (2016) and one using polar decomposition to ‘back-
project’ to the closest unitary matrix. We use this experimen-
tal set-up to probe aspects of our model, studying the impor-
tance of the choice of basis (appendix B), and the impact of
the restricted parameter set used by one of the alternate ap-
proaches. We additionally implement our parametrization in
a recurrent neural network as a ‘general unitary RNN’, and
evaluate its performance on standard long-memory tasks.

The Lie algebra u(n)
Basics of Lie groups and Lie algebras

A Lie group is a group which is also a differentiable man-
ifold, with elements of the group corresponding to points
on the manifold. The group operations (multiplication and
inversion) must be smooth maps (infinitely differentiable)
back to the group. In this work we consider the group U(n):
the set of n × n unitary matrices, with matrix multiplica-
tion. These are the complex-valued analogue to orthogonal
matrices, satisfying the property

U†U = UU† = I (2)

where † denotes the conjugate transpose (or Hermitian con-
jugate). Unitary matrices preserve matrix norms, and have
eigenvalues lying on the (complex) unit circle, which is the
desired property of the transition matrix in a RNN.

The differentiable manifold property of Lie groups opens
the door for the study of the Lie algebra. This object is the
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tangent space to the Lie group at the identity (the group must
have an identity element). Consider a curve through the Lie
group U(n) - a one-dimensional subspace parametrized by
a variable t, where U(t = 0) = I (this is a matrix U(t) in
U(n) parametrised by t, not a group). Consider the defin-
ing property of unitary matrices (Equation 2), and take the
derivative along this curve:

U(t)†U(t) = I → U̇(t)†U(t) + U †(t)U̇(t) = 0 (3)

Taking t → 0, U(t) → I, we have

U̇(0)†I+ I
†U̇(0) = 0 ⇒ U̇(0)† = −U̇(0) (4)

The elements U̇(0) belong to the Lie algebra. We refer to
this Lie algebra as u(n), and an arbitrary element as L. Then
Equation 4 defines the properites of these Lie algebra ele-
ments; they are n× n skew-Hermitian matrices: L† = −L.

As vector spaces, Lie algebras are closed under addition.
In particular u(n) is a vector space over R, so a real linear
combination of its elements is once again in u(n) (this is also
clear from the definition of skew-Hermitian). We exploit this
fact later.

Lie algebras are also endowed with an operation known as
the Lie bracket, which has many interesting properties, but is
beyond the scope of this work. Lie algebras are interesting
algebraic objects and have been studied deeply, but in this
work we use u(n) because of the exponential map.

Above, it was shown that elements of the algebra can be
derived from the group (considering infinitesimal steps away
from the identity). There is a reverse operation, allowing el-
ements of the group to be recovered from the algebra: this is
the exponential map. In the case of matrix groups, the expo-
nential map is simply the matrix exponential:

exp(L) =
∞∑
j=0

Lj

j!
(5)

Very simply, L ∈ u(n), then exp(L) ∈ U(n). While this
map is not in general surjective, it so happens that U(n) is
a compact, connected group and so exp is indeed surjective
(Tao 2011). That is, for any U ∈ U(n), there exists some
L ∈ u(n) such that exp(L) = U . Notably, while orthogonal
matrices also form a Lie group O(n), with associated Lie
algebra o(n) consisting of skew-symmetric matrices, O(n)
is not connected, and so the exponential map can only pro-
duce special orthogonal matrices - those with determinant
one - SO(n) being the component of O(n) containing the
identity.

Parametrization of U(n) in terms of u(n)

The dimension of u(n) as a real vector space is n2. This is
readily derived from noting that an arbitrary n× n complex
matrix has 2n2 free real parameters, and the requirement of
L† = −L imposes n2 constraints. So, a set of n2 linearly-
independent skew-Hermitian matrices defines a basis for the
space; {Tj}j={1,...,n2}. Then any element L can be written
as

L =

n2∑
j=1

λjTj (6)

where {λj}j=1,...,n2 are n2 real numbers; the coefficients of
L with respect to the basis. Using the exponential map,

U = exp(L) = exp

⎛
⎝ n2∑

j=1

λjTj

⎞
⎠ (7)

we see that these {λj}j=1,...,n2 suffice as parameters of U
(given the basis Tj). This is the parametrization we propose.
It has two attractive properties:

1. It is a fully general parametrization, as the exponential
map is surjective

2. Gradient updates on {λj}j=1,...,n2 preserve unitarity au-
tomatically, as the algebra is closed under addition

This parametrization means gradient steps are taken in the
vector space of u(n), rather than the manifold of U(n),
which may provide a flatter cost landscape - although con-
firming this intuition would require further analysis. This
work is intended to explore the use of this parametrization
for learning arbitrary unitary matrices.

There are many possible choices of basis for u(n). We
went for the following set of sparse matrices:

1. n diagonal, imaginary matrices: Ta is i on the a-th diago-
nal, else zero.

2. n(n−1)
2 symmetric, imaginary matrices with two non-zero

elements, e.g., for n = 2,
(
0 i
i 0

)

3. n(n−1)
2 anti-symmetric, real matrices with two non-zero

elements, e.g., for n = 2,
(

0 1
−1 0

)

We explore the effects of choice of basis in appendix B.

Derivatives of the matrix exponential

The matrix exponential appearing in Equation 7 poses an is-
sue for gradient calculations. In general, the derivative of the
matrix exponential does not have a closed-form expression,
so computing gradients is intractable.

In early stages of this work, we used the method of finite
differences to approximate gradients, which would prohibit
its use in larger-scale applications (such as RNNs). In the ap-
pendix we describe an investigation into using random pro-
jections to overcome this limitation, which while promising
turned out to yield minimal benefit.

We therefore sought mathematical solutions to this com-
plexity issue, which we describe here and in further detail in
the appendix. Exploiting the fact that L is skew-Hermitian,
we can derive an analytical expression for the derivative of
U with respect to each of its parameters, negating the need
for finite differences.

This expression takes the form:

∂U

∂λa
= WVaW

† (8)

where W is a unitary matrix of eigenvectors obtained in
the eigenvalue decomposition of U ; U = WDW †, (D =
diag(d1, . . . , dn2 ); di are the eigenvalues of U ).
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Each Va is a matrix defined component-wise

i = j :Vii = (W †TaW )iie
di (9)

i �= j :Vij = (W †TaW )ij

(
edi − edj

di − dj

)
(10)

Where Ta is the basis matrix of the Lie algebra in the a-th
direction.

We provide the derivation, based on work
from Kalbfleisch and Lawless (1985) and Jennrich and
Bright (1976) in Appendix A.

We can simplify the expression W †TaW for each Ta, de-
pending on the type of basis element. In these expressions,
wa refers to the a-th row of W.
1. Ta purely imaginary; W †TaW = i · outer(w∗a,wa)

2. Ta symmetric imaginary, nonzero in positions (r, s) and
(s, r): W †TrsW = i · (outer(w∗s ,wr)+outer(w∗r ,ws))

3. Ta antisymmetric real, nonzero in positions (r, s) and
(s, r): W †TrsW = outer(w∗r ,ws)− outer(w∗s ,wr)

These expressions follow from the sparsity of the basis and
are derived in appendix A. Thus, we reduce the calculation
of W †TaW from two matrix multplications to at most two
vector outer products.

Overall, we have reduced the cost of calculating gradi-
ents to a single eigenvalue decomposition, and for each pa-
rameter two matrix multiplications (equation 8), one or two
vector outer products, and element-wise multiplication of
two matrices (equations 9, 10). As we see in the RNN ex-
periments, this actually makes our approach faster than the
(restricted)uRNN of (Arjovsky, Shah, and Bengio 2016) for
roughly equivalent numbers of parameters.

Supervised Learning of Unitary Operators

We consider the supervised learning problem of learning the
unitary matrix U that generated a y from x; y = Ux, given
examples of such xs and ys. This is the core learning prob-
lem that needs to be solved for the state-transformation ma-
trix in RNNs. It is similar to the setting considered in Hazan,
Kale, and Warmuth (2016) (they consider an online learning
problem). We compare a number of methods for learning U
at different values of n. We further consider the case where
we have artificially restricted the number of learnable vari-
ables in our parametrization (for the sake of comparison),
and generate a pathological change of basis to demonstrate
the relevance of selecting a good basis (appendix B).

Task

The experimental setup is as follows: we create a n×n uni-
tary matrix U (the next section describes how this is done),
then sample vectors x ∈ C

n with normally-distributed coef-
ficients. We create yj = Uxj + εj where ε ∼ N (0, σ2). The
objective is to recover U from the {xj ,yj} pairs by min-
imizing the squared Euclidean distance between predicted
and true y values;

U = argmin
U

1

N

N∑
j

‖ŷj − yj‖2 = argmin
U

1

N

N∑
j

‖Uxj − yj‖2

(11)

While this problem is easily solved in the batch setting
using least-squares, we wish to learn U through mini-batch
stochastic gradient descent, to emulate a deep learning sce-
nario.

For each experimental run (a single U ), we generate one
million training {xj ,yj} pairs, divided into batches of size
20. The test and validation sets both contain 100, 000 ex-
amples. In practice we set σ2 = 0.01 and use a fixed
learning rate of 0.001. For larger dimensions, we run the
model through the data for multiple epochs, shuffling and
re-batching each time.

All experiments were implemented
in Python. The code is available here:
https://github.com/ratschlab/uRNN. For
the matrix exponential, we use the scipy builtin expm,
which uses Pade approximation (Al-Mohy and Higham
2009). We make use of the fact that iL is Hermitian to use
eigh (also in scipy) to perform eigenvalue decompositions.

Generating the ground-truth unitary matrix

The U we wish to recover is generated by one of three meth-
ods:

1. QR decomposition: we create a n × n complex matrix
with normally-distributed entries and then perform a QR
decomposition, producing a unitary matrix U and an up-
per triangular matrix (which is discarded). This approach
is also used to sample orthogonal matrices in Hazan, Kale,
and Warmuth (2016), noting a result from Stewart (1980)
demonstrating that this is equivalent to sampling from the
appropriate Haar measure.

2. Lie algebra: given the standard basis of u(n), we sam-
ple n2 normally-distributed real λj to produce U =

exp
(∑

j λjTj

)

3. Unitary composition: we compose parametrized unitary
operators as in Arjovsky, Shah, and Bengio (2016) (Equa-
tion 1). The parameters are sampled as follows: angles in
D come from U(−π, π). The complex reflection vectors

in R come from U(−s, s) where s =
√

6
2n .

We study the effects of this generation method on test-set
loss in a later section. While we find no significant associ-
ation between generation method and learning approach, in
our experiments we nonetheless average over an equal num-
ber of experiments using each method, to compensate for
possible unseen bias.

Approaches

We compare the following approaches for learning U :

1. projection: U is represented as an unconstrained
n × n complex matrix, but after each gradient update we
project it to the closest unitary matrix, using polar decom-
position (Keller 1975). This amounts to 2n2 real parame-
ters.

2. arjovsky: U is parametrized as in Equation 1, which
comes to 7n real parameters.
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3. lie algebra: (we refer to this as u(n)) U is
parametrized by its n2 real coefficients {λj} in the Lie
algebra, as in Equation 7.
As baselines we use the true matrix U , and a random

unitary matrix UR generated by the same method as U (in
that experimental run).

We also implemented the algorithm described in Hazan,
Kale, and Warmuth (2016) and considered both unitary and
orthogonal learning tasks (our parametrization contains or-
thogonal matrices as a special case) but found it too numer-
ically unstable and therefore excluded it from our analyses.

Comparison of Approaches

Table 1 shows the test-set loss for different values of n and
different approaches for learning U . We performed between
6 and 18 replicates of each experiment, and show bootstrap
estimates of means and standard errors over these replicates.
As we can see, the learning task becomes more challenging
as n increases, but our parametrization (u(n)) consistently
outperforms the other approaches.

Restricting to 7n parameters

As mentioned, arjovsky uses only 7n parameters. To
check if this difference accounts for the differences in
loss observed in Table 1, we ran experiments where we
fixed all but 7n (selected randomly) of the {λj} in the
lie algebra parametrization. The fixed parameters re-
tained their initial values throughout the experiment. We
observe that, as suspected, restricting to 7n parameters re-
sults in a performance degradation equivalent to that of
arjovsky.

Table 2 shows the results for n = 8, 14, 20. The fact
that the restricted case is consistently within error of the
arjovsky model supports our hypothesis that the differ-
ence in learnable parameters accounts for the difference in
performance. This suggests that generalising the model of
Arjovsky, Shah, and Bengio to allow for n2 parameters may
result in performance similar to our approach. However, how
to go about such a generalisation is unclear, as a naive ap-
proach would simply use a composition of n2 operators, and
this would likely become computationally intractable.

Method of generating U
As described, we used three methods to generate the true
U . One of these produces U in the subspace available to
the composition parametrization (Equation 1), so we were
curious to see if this parametrization performed better on
experiments using that method. We were also concerned that
generating U using the Lie algebra parametrization might
make the task too ‘easy’ for our approach, as its random
initialization could lie close to the true solution.

Figure 1 shows box-plots of the distribution of test losses
from these approaches for the three methods, comparing
our approach (u(n)) with that of Arjovsky, Shah, and Ben-
gio (2016), denoted arjovsky. To combine results from
experiments using different values of n, we first scaled test-
set losses by the performance of rand (the random uni-
tary matrix), so the y-axis ranges from 0 (perfect) to 1 (ran-
dom performance). The dotted line denotes the average (over

Figure 1: We ask whether the method used to generate U
influences performance for different approaches to learning
U . Error bars are bootstrap estimates of 95% confidence in-
tervals. To compare across different n’s, we normalise each
loss by the loss of rand for that n, and reporrt fractions.
The dotted line is the true loss, similarly normalised. the
choice of method to generate U does not appear to affect
test-set loss for the different approaches. Right: Finer reso-
lution on the u(n) result in left panel. We also include the
case where we restrict to 7n learnable parameters.

methods) of the test-set loss for true, similarly scaled. The
right panel in Figure 1 shows a zoomed-in version of the
u(n) result where the comparison with true is more mean-
ingful, and a comparison with the case where we have re-
stricted to 7n learnable parameters (see earlier).

We do not observe a difference (within error) between the
methods, which is consistent between u(n) and arjovsky.
Our concern that using the Lie algebra to generate U would
make the task ‘too easy’ for u(n) was seemingly unfounded.

Unitary Recurrent Neural Network for Long

Memory Tasks

To demonstrate that our approach is practical for use in deep
learning, we incorporate it into a recurrent neural network to
solve standard long-memory tasks. Specifically, we define a
general unitary RNN with recurrence relation

ht = f (βUht−1 + V xt + b) (12)

where f is a nonlinearity, β is a free scaling factor, U is our
unitary matrix parametrised as in equation 7, ht is the hidden
state of the RNN and xt is the input data at ‘time-point’ t.
We refer to this as a ‘general unitary RNN’ (guRNN), to
distinguish it from the restricted uRNN of Arjovsky, Shah,
and Bengio (2016).

We use the guRNN on two tasks: the ‘adding problem’
and the ‘memory problem’, first described in (Hochreiter
and Schmidhuber 1997). For the sake of brevity we refer
to (Arjovsky, Shah, and Bengio 2016) for specific exper-
imental details, as we use an identical experimental setup
(reproduced in TensorFlow; see above github link for code).
We compare our model (guRNN) with the restricted uRNN
(ruRNN) parametrised as in equation 1, a LSTM (Hochre-
iter and Schmidhuber 1997), and the IRNN of Le, Jaitly,
and Hinton (2015). Figure 2 shows the results for each
task where the sequence length or the memory duration is
T = 100.
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n true projection arjovsky lie algebra rand
3 6.004± 0.005× 10−4 8 ± 1 6.005± 0.003× 10−4 6.003± 0.003× 10−4 12.5± 0.4
6 ∼ 0.001 15± 1 0.09± 0.01 0.03± 0.01 24 ± 1
8 ∼ 0.002 14± 1 1.17± 0.06 0.014± 0.006 31.6± 0.6

14 ∼ 0.003 24± 4 10.8± 0.3 0.07± 0.02 52± 1
20 ∼ 0.004 38± 3 29.0± 0.5 0.47± 0.03 81± 2

Table 1: Loss (mean l2-norm between ŷi and yi) on the test set for the different approaches as the dimension of the unitary
matrix changes. true refers to the matrix used to generate the data, projection is the approach of ‘re-unitarizing’ using
a polar decomposition after gradient updates, arjovsky is the composition approach defined in Equation 1, u(n) is our
parametrization (Equation 7) and rand is a random unitary matrix generated in the same manner as true. Values in bold are
the best for that n (excluding true). The error for true is typically very small, so we omit it.

n arjovsky lie restricted lie unrestricted
8 1.2± 0.1 1.0± 0.2 0.04± 0.01

14 11.6± 0.3 12.6± 0.4 0.25± 0.03
20 27.8± 0.7 28.0± 0.6 0.19± 0.03

Table 2: We observe that restricting our approach to the same number of learnable parameters as that of (Arjovsky, Shah, and
Bengio 2016) causes a similar degradation in performance on the task. This indicates that the relatively superior performance
of our model is explained by its generality in capturing arbitrary unitary matrices.

While our model guarantees unitarity of U , this is not
sufficient to prevent gradients from vanishing. Consider the
norm of the gradient of the cost C with respect to the data at
time τ , and use submultiplicativity of the norm to write;∥∥∥∥ ∂C

∂xτ

∥∥∥∥ ≤
∥∥∥∥ ∂C

∂xT

∥∥∥∥
(

T−1∏
t=τ

‖f ′ (Uht + V xt + b) ‖‖U‖
)∥∥∥∥∂hτ

xτ

∥∥∥∥
where f ′ is a diagonal matrix giving the derivatives of the
nonlinearity. Using a unitary matrix fixes ‖U‖ = 1, but be-
yond further restrictions (on V and b) does nothing to con-
trol the norm of f ′, which is at most 1 for common nonlin-
earities. Designing a nonlinearity to better preserve gradient
norms is beyond the scope of this work, so we simply scaled
U by a constant multiplicative factor β to counteract the ten-
dency of the nonlinearity to shrink gradients. In Figure 2 we
denote this setup by guRNNβ . Confirming our intuition, this
simple modification greatly improves performance on both
tasks.

Perhaps owing to our efficient gradient calculation (ap-
pendix A) and simpler recurrence relation, our model runs
faster than that of (Arjovsky, Shah, and Bengio 2016) (in our
implementation), by a factor of 4.8 and 2.6 in the adding and
memory tasks shown in Figure 2 respectively. This amounts
to the guRNN processing 61.2 and 37.0 examples per second
in the two tasks, on a GeForce GTX 1080 GPU.

Discussion
Drawing from the rich theory of Lie groups and Lie algebras,
we have described a parametrization of unitary matrices ap-
propriate for use in deep learning. This parametrization ex-
ploits the Lie group-Lie algebra correspondence through the
exponential map to represent unitary matrices in terms of
real coefficients relative to a given basis of the Lie alge-
bra u(n). As this map from u(n) to U(n) is surjective, the
parametrization can describe any unitary matrix.

We have demonstrated that unitary matrices can be
learned with high accuracy using simple gradient de-

scent, and that this approach outperforms a recently-
proposed parametrization (from Arjovsky, Shah, and Ben-
gio (2016)) and significantly outperforms the approach of
‘re-unitarizing’ after gradient updates. This experimental de-
sign is quite simple, designed to probe a core problem, be-
fore considering the broader setting of RNNs.

Our experiments with general unitary RNNs using this
parametrization showed that this approach is practical for
deep learning. With a fraction of the parameters, our model
outperforms LSTMs on the standard ‘memory problem’ and
attains comparable (although inferior) performance on the
adding problem (Hochreiter and Schmidhuber 1997). Fur-
ther work is required to understand the difference in perfor-
mance between our approach and the ruRNN of (Arjovsky,
Shah, and Bengio 2016) - perhaps the 7n-dimensional sub-
space captured by their parametrization is serendipitously
beneficial for these RNN tasks - although we note that the
results presented here are not the fruit of exhaustive hyperpa-
rameter exploration. Of particular interest is the impressive
performance of both uRNNs on the memory task, where the
LSTM and IRNN appear to fail to learn.

While our RNN experiments have demonstrated the util-
ity of using a unitary operator for these tasks, we believe
that the role of the nonlinearity in the vanishing and ex-
ploding gradient problem must not be discounted. We have
shown that a simple scaling factor can help reduce the van-
ishing gradient problem induced by the choice of nonlinear-
ity. More analysis considering the combination of nonlinear-
ity and transition operator must be performed to better tackle
this problem.

The success of our parametrization for unitary operator
learning suggests that the approach of performing gradient
updates in the Lie algebra is particularly effective. As Lie
groups describe many naturally-occuring symmetries, the
Lie group-Lie algebra correspondence could be rich for fur-
ther exploitation to enhance performance in tasks beyond
our initial motivation of recurrent neural networks.
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Figure 2: We compare different RNN models on two stan-
dard long-memory learning tasks, described in (Hochreiter
and Schmidhuber 1997). The state size for all models was
n = 30, except for the ruRNN (Arjovsky, Shah, and Ben-
gio 2016), which had n = 512 and n = 128 for the adding
and memory tasks respectively; the optimal hyperparame-
ters reported in their work. For our model (guRNN), we use
f = relu and f = tanh for the nonlinearities in the adding
and memory tasks. We compare guRNN with (guRNNβ) or
without (guRNN1) a scaling factor β in front of U to com-
pensate for the tendency of the nonlinearity to shrink gradi-
ents. We used β = 1.4 and β = 1.05. That relu requires a
larger β is expected, as this nonlinearity discards more gra-
dient information. Gradient clipping to [−1, 1] was used for
the LSTM and IRNN (Le, Jaitly, and Hinton 2015). Dot-
ted lines denote random baselines. The learning rate was
set to α = 10−3 for all models except IRNN, which used
α = 10−4. We used RMSProp (Tieleman and Hinton 2012)
with decay 0.9 and no momentum. The batch size was 20.

Appendix A: Derivation of derivative of the

matrix exponential

This derivation draws elements from Kalbfleisch and Law-
less (1985) and Jennrich and Bright (1976).

We have U = exp(L), and seek dU . For what fol-
lows, we simply require that L be normal, so the results
are more general than the unitary case. In this case, L is
skew-Hermitian, which is normal and therefore diagonalis-
able by unitary matrices. Thus, there exist W ∈ U(n) and
D = diag(d1, . . . , dn) such that L = WDW †, and there-
fore

U = WD̃W † (13)

where D̃ = diag(ed1 , . . . , edn).

We assume we can calculate: dL, W , and D and seek an
expression for dU .

Then using 13:

dU = d(WD̃W †)

= dWD̃W † +WdD̃W † +WD̃dW † (14)

Pre-multiplying with W † and post-multiplying with W :

W †dUW = W †dWD̃ + dD̃ + D̃dW †W (15)

The last term can be simplified by differentiating both
sides of W †W = I (this follows from unitarity of W );

W †W +W †dW = 0 ⇒ dW †W = −W †dW (16)

and substituting back into 15 to get:

W †dUW = W †dWD̃ − D̃W †dW + dD̃ (17)

We can then say that dU = WVW † where

V = W †dWD̃ − D̃W †dW + dD̃ (18)

Similarly, dL = WAW † where (replacing D̃ with D)

A = W †dWD −DW †dW + dD (19)

and also A = W †dLW .

Calculating V

We use the convention that repeated indices denote summa-
tion over that index, unless otherwise stated.

Looking at the components of V ;

Vij = (W †dWD̃)ij − (D̃W †dW )ij + dD̃ij (20)

Diagonal case (i = j): (no summation over i)

Vii = W †
iadWabD̃bi − D̃iaW

†
abdWbi + dD̃ii (21)

Since D̃bi = δbid̃i, the first two terms cancel:

Vii =W †
iadWabδbid̃i − δaid̃iW

†
abdWbi + dD̃ii

=W †
iadWaid̃i − d̃iW

†
ibdWbi + dD̃ii

=dD̃ii

(22)

Using 19 we get Aii = dDii = (W †dLW )ii
Recall that the diagonal elements of D̃ are the exponenti-

ated versions of the diagonal elements of D, so D̃ii = edi .
Then

dD̃ii = d(di)e
di = dDiiD̃ii (23)

Inserting that into Equation 22:

Vii = dDiiD̃ii = (W †dLW )iiD̃ii = (W †dLW )iie
di

(24)
This produces Equation 9 in the main paper.
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Off-diagonal case (i �= j): (no summation over i, j) In
this case, the purely diagonal part vanishes. We get:

Vij =W †
iadWabδbj d̃j − δaid̃iW

†
abdWbj

=W †
iadWaj d̃j −W †

ibdWbj d̃i

= (W †dW )ij(d̃j − d̃i)

(25)

Similarly,
Aij = (W †dW )ij(dj − di) (26)

Remembering that this is all component-wise multiplication
(no summation over i and j), we can rearrange expressions
to get:

(W †dW )ij =
Aij

dj − di
=

(W †dLW )ij
dj − di

(27)

Combining this with 25 and remembering d̃a = eda , we
have, for i �= j:

Vij = (W †dLW )ij

(
edi − edj

di − dj

)
(28)

This is Equation 10 in the main paper.

Efficiently calculating W †dLW
This section is specific to our work, as it relies on the choice
of basis for u(n).

In our case, dL is simple. L is a linear combination of the
parameters λi;

L =

n2∑
i

λiTi (29)

Where Ti are the basis matrices of u(n).
Then

dLa =
∂L

∂λa
= Ta (30)

We need W †TaW for all a. Since the Tas are sparse, this
is cheaper than performing n2 full matrix multiplications, as
we demonstrate now.

In components;

(W †TaW )ij = W †
ikTaklWlj (31)

Cases:

Ta diagonal, purely imaginary Ta is zero except for a i
in the a-th position on the diagonal.

(W †TaW )ij = iW †
iaWaj = iW ∗

aiWaj

⇒ W †TaW = i · outer(w∗a,wa)
(32)

where wa is the a-th row of W .

Ta symmetric, purely imaginary Trs is zero except for i
in position (r, s) and (s, r).

(W †TrsW )ij = iW †
ik(δks,lr + δkr,ls)Wlj

= i(W †
isWrj +W †

irWsj) = i(W ∗
siWrj +W ∗

riWsj)

⇒ W †TrsW = i · (outer(w∗s ,wr) + outer(w∗r ,ws))

(33)

Ta antisymmetric, purely real Trs is zero except for 1 in
position (r, s) and −1 in position (s, r).

(W †TrsW )ij = W †
ik(δkr,sl − δks,rl)Wlj

= W †
irWsj −W †

isWrj = W ∗
riWsj −W ∗

siWrj

⇒ W †TrsW = outer(w∗r ,ws)− outer(w∗s ,wr)
(34)

These reproduce the expressions in the main paper. The
outer product of two n-dimensional vectors is an O(n2) op-
eration, and so this provides a (up to) factor n speed-up on
matrix multiplication.

Appendix B: Changing the basis of u(n)
The Lie group parametrization assumes a fixed basis of
u(n). Our intuition is that this makes some regions of U(n)
more ‘accessible’ to the optimization procedure, elements
whose coefficients are small given this basis. Learning a ma-
trix U which came from elsewhere in U(n) may therefore be
more challenging. We emulated this ‘change of basis‘ with-
out needing to explicitly construct a new basis by generating
a change of basis matrix, M . That is, if Vj is the j-th element
of the new basis, it is given by

Vj =
∑
k

MjkTk (35)

If {λ̃}a are the coefficients of L relative to the basis V , the
coefficients relative to the old basis T are given by:

λb =
∑
k

λ̃kMkb = λ̃T ·M (36)

A change of basis matrix must be full-rank. We generate one
by sampling a square, n2×n2 matrix from a continuous uni-
form distribution U(−c, c) (c is a constant we vary in exper-
iments, see Figure 3). This is very unlikely to be singular.
We choose the c range of the distribution such that M will
have ‘large’ values relative to the true matrix U , whose pa-
rameters λ (relative to T ) are drawn from N (0, 0.01).

Preliminary experiments suggested that the learning rate
must be adjusted to compensate for the change of scale -
evidence for this is visible in the first column of Figure 3,
where changing the basis without changing the learning rate
results in an unstable validation set trace. Poor performance
resulting from an inappropriate learning rate is not our fo-
cus here, so we performed experiments for different values
of the learning rate. Figure 3 shows a grid of validation set
losses as we vary the learning rate (columns) and the value
of c (rows).

Our intuition is that if the performance under the change
of basis is purely driven by the difference in scale, using an
appropriately-scaled learning rate should negate its affect.
Each parameter λj is scaled by a variable uniformly dis-
tributed between (−c, c). The expectation value of the ab-
solute value of this quantity is c2/2, so we consider learning
rates normalised by this factor.

As seen in Figure 3, the graphs on the diagonal are not
identical, suggesting that merely scaling the learning rate
does not account for the change of learning behavior given a
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Figure 3: We consider the effects on learning of changing
the basis (rows) and changing the learning rate (columns).
For this experiment, n = 6. The first row uses the original
basis. Other rows use change of basis matrices sampled from
U(−c, c) where c = {5, 10, 20}. The learning rates decrease
from the ‘default’ value of 0.001 used in the other experi-
ments. Subsequent values are given by 0.001

c2 for the above
values of c, in an attempt to rescale by the expected abso-
lute value of components of the change of basis matrix. If
the change of scale were solely responsible for the change
in learning behavior, we would therefore expect the graphs
on the diagonal to look the same.

new basis - at least in expectation. Nonetheless, it is reassur-
ing to observe that for all choices of c explored, there exists
a learning rate which facilitates learning, even if it markedly
slower than the ‘ideal’ case. While having a ‘misspecified’
basis does appear to negatively impact learning, it can be
largely overcome with choice of learning rate.
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