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Abstract

Stochastic gradient descent (SGD) and its variants have at-
tracted much attention in machine learning due to their ef-
ficiency and effectiveness for optimization. To handle large-
scale problems, researchers have recently proposed several
lock-free strategy based parallel SGD (LF-PSGD) methods
for multi-core systems. However, existing works have only
proved the convergence of these LF-PSGD methods for con-
vex problems. To the best of our knowledge, no work has
proved the convergence of the LF-PSGD methods for non-
convex problems. In this paper, we provide the theoretical
proof about the convergence of two representative LF-PSGD
methods, Hogwild! and AsySVRG, for non-convex prob-
lems. Empirical results also show that both Hogwild! and
AsySVRG are convergent on non-convex problems, which
successfully verifies our theoretical results.

Introduction

Many machine learning models can be formulated as the fol-
lowing optimization problem:

min
w

1

n

n∑
i=1

fi(w), (1)

where w is the parameter to learn (optimize), n is the num-
ber of training instances, fi(w) is the loss defined on in-
stance i. For example, assuming we are given a set of la-
beled instances {(xi, yi)|i = 1, 2, . . . , n}, where xi ∈ R

d is
the feature vector and yi ∈ {1,−1} is the label of xi, fi(w)

can be log(1 + e−yix
T
i w) + λ

2 ‖w‖2 which is known as the
regularized loss in logistic regression (LR). We can also take
fi(w) to be max{0, 1− yix

T
i w}+ λ

2 ‖w‖2 which is known
as the regularized loss in support vector machine (SVM).
Here, λ is the regularization hyper-parameter. Moreover,
many other machine learning models, including neural net-
works (Krizhevsky, Sutskever, and Hinton 2012), matrix fac-
torization (Koren, Bell, and Volinsky 2009), and principal
component analysis (PCA) (Shamir 2015) and so on, can
also be formulated as that in (1).

When the problem in (1) is large-scale, i.e., n is large,
researchers have recently proposed stochastic gradient de-
scent (SGD) and its variants like SVRG (Johnson and
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Zhang 2013) to solve it. Many works (Roux, Schmidt,
and Bach 2012; Shalev-Shwartz and Zhang 2013; John-
son and Zhang 2013) have found that SGD-based meth-
ods can achieve promising performance in large-scale learn-
ing problems. According to the implementation platforms or
systems, existing SGD-based methods can be divided into
three categories: sequential SGD (SSGD) methods, paral-
lel SGD (PSGD) methods, and distributed SGD (DSGD)
methods. SSGD methods are designed for a single thread
on a single machine, PSGD methods are designed for multi-
core (multi-thread) on a single machine with a shared mem-
ory1, and DSGD methods are designed for multiple ma-
chines.

When the problem in (1) is convex, the SGD meth-
ods, including SSGD (Roux, Schmidt, and Bach 2012;
Shalev-Shwartz and Zhang 2013; Johnson and Zhang 2013),
PSGD (Recht et al. 2011) and DSGD (Jaggi et al. 2014; Li et
al. 2014; Xing et al. 2015; Zhang, Zheng, and Kwok 2016),
have achieved very promising empirical performance. Fur-
thermore, good theoretical results about the convergence of
the SGD methods are also provided by these existing works.

In many real applications, the problems to optimize can
be non-convex. For example, the problems for the neu-
ral networks are typically non-convex. Because many re-
searchers (Li et al. 2014; Xing et al. 2015) find that the SGD
methods can also achieve good empirical results for non-
convex problems, theoretical proof about the convergence
of SGD methods for non-convex problems has recently at-
tracted much attention. Some progress has been achieved.
For example, the works in (Ghadimi and Lan 2013; Reddi
et al. 2016; Li et al. 2016; Allen-Zhu and Hazan 2016;
Allen-Zhu and Yuan 2016) have proved the convergence of
the sequential SGD and its variants for non-convex prob-
lems. There are also some other theoretical results for some
particular non-convex problems, like PCA (Shamir 2015;
2016a; 2016b) and matrix factorization (Sa, Re, and Oluko-
tun 2015). But all these works are only for SSGD methods.

There have appeared only two works (Lian et al. 2015;
Huo and Huang 2016) which propose PSGD methods for
non-convex problems with theoretical proof of convergence.

1In some literatures, PSGD refers to the methods implemented
on both multi-core and multi-machine systems. In this paper,
PSGD only refers to the methods implemented on multi-core sys-
tems with a shared memory.
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However, the PSGD methods in (Lian et al. 2015) need
write-lock or atomic operation for the memory to prove
the convergence 2. Similarly, the work in (Huo and Huang
2016) also does not prove the convergence for the lock-
free case in our paper. Recent works (Recht et al. 2011;
Chaturapruek, Duchi, and Ré 2015; J. Reddi et al. 2015;
Zhao and Li 2016) find that lock-free strategy based parallel
SGD (LF-PSGD) methods can empirically outperform lock-
based PSGD methods for multi-core systems. Although
some existing works (Chaturapruek, Duchi, and Ré 2015;
Zhao and Li 2016) have proved the convergence of these LF-
PSGD methods for convex problems, no work has proved
the convergence of the LF-PSGD methods for non-convex
problems.

In this paper, we provide the theoretical proof about the
convergence of two representative LF-PSGD methods, Hog-
wild! (Recht et al. 2011; Chaturapruek, Duchi, and Ré 2015)
and AsySVRG (Zhao and Li 2016), for non-convex prob-
lems. The contribution of this work can be outlined as fol-
lows:

• Theoretical results show that both Hogwild! and
AsySVRG can converge with lock-free strategy for non-
convex problems.

• Hogwild! gets a convergence rate of O(1/
√
T̃ ) for non-

convex problems, where T̃ = p × T is the total iteration
number of p threads.

• AsySVRG gets a convergence rate of O(1/T̃ ) for non-
convex problems.

• To get an ε-local optimal solution for AsySVRG, the
computation complexity by all threads is O(n

2
3 /ε), or

equivalently the computation complexity of each thread

is O(n
2
3

pε ). This is faster than traditional parallel gradient
decent methods whose computation complexity is O( n

pε )

for each thread.

• Empirical results also show that both Hogwild! and
AsySVRG are convergent on non-convex problems,
which successfully verifies our theoretical results.

Preliminary

We use f(w) to denote the objective function in (1), which
means f(w) = 1

n

∑n
i=1 fi(w). And we use ‖ · ‖ to denote

the L2-norm ‖ · ‖2.

Assumption 1. The function fi(·) in (1) is smooth, which
means that there exists a constant L > 0, ∀a,b,

fi(b) ≤ fi(a) +∇fi(a)
T (b− a) +

L

2
‖b− a‖2,

or equivalently

‖∇fi(b)−∇fi(a)‖ ≤ L‖b− a‖.
2Although the implementation of AsySG-incon in (Lian et al.

2015) is lock-free, the theoretical analysis about the convergence
of AsySG-incon is based on an assumption that no over-writing
happens, i.e., the theoretical analysis is not for the lock-free case.

This is a common assumption for the convergence analy-
sis of most existing gradient-based methods.

Since we focus on non-convex problems in this paper, it
is difficult to get the global solution of (1) based on the gra-
dient methods. Hence, we use ‖∇f(w)‖2 to measure the
convergence instead of f(w)−min

w
f(w).

Here, we give a Lemma which is useful in the conver-
gence analysis of Hogwild! and AsySVRG.

Lemma 1. Assume B is a positive semi-definite matrix with
the largest eigenvalue less than or equal to 1 and the mini-
mum eigenvalue α > 0, we have: ∀x,y,

−∇f(x)TB∇f(y) ≤ L2

2
‖x− y‖2 − α

2
‖∇f(x)‖2 .

Proof.

α

2
‖∇f(x)‖2 −∇f(x)TB∇f(y)

≤1

2

∥∥∥B 1
2∇f(x)

∥∥∥2 −∇f(x)TB∇f(y)

≤1

2

∥∥∥B 1
2∇f(x)

∥∥∥2 −∇f(x)TB∇f(y) +
1

2

∥∥∥B 1
2∇f(y)

∥∥∥2

=
1

2

∥∥∥B 1
2 (∇f(x)−∇f(y))

∥∥∥2

≤L2

2
‖x− y‖2 .

Hogwild! for Non-Convex Problems

The Hogwild! method (Recht et al. 2011) is listed in Algo-
rithm 1. Each thread reads w from the shared memory, com-
putes a stochastic gradient and updates the w in the shared
memory. Please note that Hogwild! in (Recht et al. 2011) has
several variants with locks or lock-free. Here, we only focus
on the lock-free variant of Hogwild!, which means that we
do not use any locks, either read-lock or write-lock, for all
threads.

Algorithm 1 Hogwild!
Initialization: p threads, initialize w0, η;
For each thread, do:
for l = 0, 1, 2, ..., T − 1 do

Read current w in the shared memory, denoted as ŵ;
Randomly pick up an i from {1, . . . , n} and compute the gra-
dient ∇fi(ŵ);
w ← w − η∇fi(ŵ);

end for

As in (Zhao and Li 2016), we can construct an equivalent
write sequence {wt}:

wt+1 = wt − ηBt∇fit(ŵt), (2)

where 0 ≤ t ≤ p×T , Bt is a random diagonal matrix whose
diagonal entries are 0 or 1. The Bt is used to denote whether
over-writing happens. If the kth diagonal entry of Bt is 0, it
means that the kth element in the gradient vector ∇fit(ŵt)
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is overwritten by other threads. Otherwise, that element is
not overwritten.
ŵt is read by the thread who computes ∇fit(ŵt) and has

the following format:

ŵt = wa(t) − η

t−1∑
j=a(t)

Pt,j−a(t)∇fij (ŵj), (3)

where a(t) means that some old stochastic gradients have
been completely written on the w in the shared memory.
Pt,j−a(t) is a diagonal matrix whose diagonal entries are 0
or 1, which means ŵt might include parts of new stochastic
gradients.

In the lock-free strategy, we need the following assump-
tions to guarantee convergence:

Assumption 2. a(t) is bounded by: 0 ≤ t− a(t) ≤ τ

It means that the old stochastic gradients
∇fi0 , . . . ,∇fit−τ−1 have been completely written on
w in the shared memory.

Assumption 3. We consider the matrix Bt as a random ma-
trix and E[Bt|wt, ŵt] = B � 0 with the minimum eigen-
value α > 0.

According to the definition of Bt, it is easy to find Bt,B
are positive semi-definite matrices and the largest eigenvalue
of B is less than or equal to 1. Assumption 3 means that the
probability that over-writing happens is at most 1 − α < 1
for each write step.

Assumption 4. Bt and it are independent.

Since it is the random index selected by each thread while
Bt is highly affected by the hardware, the independence as-
sumption is reasonable.

For Hogwild!, the following assumption is also necessary:

Assumption 5. There exists a constant V , ‖∇fi(w)‖ ≤
V, i = 1, . . . , n.

For convenience, in this section, we denote

q(x) =
1

n

n∑
i=1

‖fi(x)‖2.

It is easy to find that Eq(ŵt) = E[‖∇fit(ŵt)‖2] and note
that when x is close to some stationary point, q(x) may still
be far away from 0. Hence, it is not a variance reduction
method and we need to control the variance of the stochastic
gradient.

The difficulty of the analysis is wt �= ŵt. Here, we give
the following Lemmas 3:

Lemma 2. In Hogwild!, we have Eq(ŵt) ≤ ρEq(ŵt+1) if
ρ, η satisfy

1

1− η − 9η(τ+1)L2(ρτ+1−1)
ρ−1

≤ ρ.

3The proof of some Lemmas can be found in the supplementary
material, which can be downloaded from http://cs.nju.edu.cn/lwj/
paper/LFnonConvex sup.pdf.

Lemma 3. With the condition about ρ, η in Lemma 2, we
have

E‖wt − ŵt‖2 ≤ 4η2τρ(ρτ − 1)

ρ− 1
Eq(ŵt) (4)

Combining with Assumption 5, we can find that the gap
of the write sequence and read sequence can always be
bounded by a constant 4η2V 2τρ(ρτ−1)

ρ−1 .

Theorem 1. Let A = 2f(w0)
α and B = 2V 2( 2τL

2ηρ(ρτ−1)
α(ρ−1) +

L
2α ). If we take the stepsize η =

√
A
T̃B

, where T̃ = p × T ,
we can get the following result:

1

T̃

T̃−1∑
t=0

E‖∇f(wt)‖2 ≤
√

AB

T̃
.

Proof. According to Assumption 1, we have

E[f(wt+1)|wt, ŵt]

≤f(wt)− ηE[∇f(wt)
TBt∇fit(ŵt)|wt, ŵt]

+
Lη2

2
E[‖∇fit(ŵt)‖2|wt, ŵt]

=f(wt)− η∇f(wt)
TB∇f(ŵt)

+
Lη2

2
E[‖∇fit(ŵt)‖2|wt, ŵt]

≤f(wt)− αη

2
‖∇f(wt)‖2 + L2η

2
‖wt − ŵt‖2

+
Lη2

2
E[‖∇fit(ŵt)‖2|wt, ŵt],

where the first equality uses Assumption 4, the second in-
equality uses Lemma 1. Taking expectation on the above in-
equality, we obtain

Ef(wt+1)

≤Ef(wt)− αη

2
E‖∇f(wt)‖2 + L2η

2
E‖wt − ŵt‖2

+
Lη2V 2

2

≤Ef(wt)− αη

2
E‖∇f(wt)‖2

+ η2V 2(
2τL2ηρ(ρτ − 1)

ρ− 1
+

L

2
),

where the first inequality uses Assumption 5 and second in-
equality uses Lemma 3. Summing the above inequality from
t = 0 to T̃ − 1, we get

T̃−1∑
t=0

E‖∇f(wt)‖2

≤ 2

αη
f(w0) + 2ηT̃V 2(

2τL2ηρ(ρτ − 1)

α(ρ− 1)
+

L

2α
).

For convenience, let A = 2f(w0)
α and B =

2V 2( 2τL
2ηρ(ρτ−1)
α(ρ−1) + L

2α ), which are two bounded constants.
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If we take the stepsize η =
√

A
T̃B

, we get

1

T̃

T̃−1∑
t=0

E‖∇f(wt)‖2 ≤
√

AB

T̃
.

Hence, our theoretical result shows that Hogwild! with
lock-free strategy gets a convergence rate of O(1/

√
T̃ ) for

non-convex problems, where T̃ = p×T is the total iteration
number of p threads.

AsySVRG for Non-Convex Problems

The AsySVRG method (Zhao and Li 2016) is listed in Algo-
rithm 2. AsySVRG provides a lock-free parallel strategy for
the original sequential SVRG (Johnson and Zhang 2013).
Compared with Hogwild!, AsySVRG includes the full gra-
dient to get a variance reduced stochastic gradient, which
has been proved to have linear convergence rate on strongly
convex problems (Zhao and Li 2016). In this section, we
will prove that AsySVRG is also convergent for non-convex
problems, and has faster convergence rate than Hogwild! on
non-convex problems.

Algorithm 2 AsySVRG
Initialization: p threads, initialize w0, η;
for t = 0, 1, 2, ...T − 1 do

u0 = wt;
All threads parallelly compute the full gradient ∇f(u0) =
1
n

∑n
i=1 ∇fi(u0);

u = wt;
For each thread, do:
for j = 0 to M − 1 do

Read current value of u, denoted as û, from the shared
memory. And randomly pick up an i from {1, . . . , n};
Compute the update vector: v̂ = ∇fi(û) − ∇fi(u0) +
∇f(u0);
u ← u− ηv̂;

end for
Take wt+1 to be the current value of u in the shared memory;

end for

Similar to the analysis in the last section, we construct an
equivalent write sequence {ut,m} for the tth outer-loop:

ut,0 = wt,

ut,m+1 = ut,m − ηBt,mv̂t,m, (5)

where v̂t,m = ∇fit,m(ût,m) − ∇fit,m(ut,0) + ∇f(ut,0).
Bt,m is a diagonal matrix whose diagonal entries are 0 or 1.
And ût,m is read by the thread who computes v̂t,m. It has
the following format:

ût,m = ut,a(m) − η

m−1∑
j=a(m)

P
(t)
m,j−a(m)v̂t,j ,

where P
(t)
m,j−a(m) is a diagonal matrix whose diagonal en-

tries are 0 or 1. Note that according to (5), ut,M̃ = wt+1

since all the stochastic gradients have been written on w at
the end of the tth outer-loop. Here, we also need the assump-
tions: 0 ≤ m − a(m) ≤ τ ; E[Bt,m|ut,m, ût,m] = B � 0
with the minimum eigenvalue α > 0; Bt,m and it,m are
independent. These assumptions are similar to those in the
previous section.

For convenience, let pi(x) = ∇fi(x) − ∇fi(ut,0) +
∇f(ut,0), and in this section, we denote

q(x) =
1

n

n∑
i=1

‖pi(x)‖2.

It easy to find that Eq(ût,m) = E[‖v̂t,m‖2].
The difference between Hogwild! and AsySVRG is the

stochastic gradient and we have the following Lemmas
which lead to fast convergence rate of AsySVRG:
Lemma 4. ∀x, we have

q(x) ≤ 2L2‖x− ut,0‖2 + 2‖∇f(x)‖2.
Proof.

q(x) =
1

n

n∑
i=1

‖∇fi(x)−∇fi(ut,0) +∇f(ut,0)‖2

≤ 2

n

n∑
i=1

‖∇fi(x)−∇fi(ut,0) +∇f(ut,0)−∇f(x)‖2

+ 2‖∇f(x)‖2

≤ 2

n

n∑
i=1

‖∇fi(x)−∇fi(ut,0)‖2 + 2‖∇f(x)‖2

≤2L2‖x− ut,0‖2 + 2‖∇f(x)‖2.

According to Lemma 4, we can find that AsySVRG is
a variance reduction method for non-convex problems, be-
cause when ût,m,ut,0 get close to some stationary point,
q(ût,m) gets close to 0. And hence we do not need the
bounded gradient assumption for the convergence proof.

Since ut,m �= ût,m, the difficulty of convergence analy-
sis lies in the gap between ut,m and ût,m, and the relation
between q(ût,m) and q(ut,m).
Lemma 5. In AsySVRG, we have Eq(ût,m) < ρEq(ût,m+1)
if we choose ρ and η to satisfy that

1

1− η − 9η(τ+1)L2(ρτ+1−1)
ρ−1

≤ ρ.

Lemma 6. With the condition about ρ, η in Lemma 5, we
have

E‖ut,m − ût,m‖2 ≤ 4η2τρ(ρτ − 1)

ρ− 1
Eq(ût,m). (6)

Lemma 7. With the condition about ρ, η in Lemma 5, we
have Eq(ût,m) < ρEq(ut,m).

Combining Lemma 6 and Lemma 7, we can directly ob-
tain:

E ‖ût,m − ut,m‖2 ≤ 4η2τρ2(ρτ − 1)

ρ− 1
Eq(ut,m). (7)
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Theorem 2. We define cm = cm+1(1+βη)+ 2L2η2hm+1,
hm = (ηL

2

2 + 2cmη
β ) 4τρ

2(ρτ−1)
ρ−1 +(cmρ+Lρ

2 ) with c0, β > 0.
Furthermore, we choose c0, η, β such that γ = min αη

2 −
2cm+1η

β − 2η2hm+1 > 0 and cM̃ = 0, where M̃ = M × p.
Then we have

1

TM̃

T−1∑
t=0

M̃−1∑
m=0

E‖∇f(ut,m)‖2 ≤ Ef(w0)− Ef(wT )

TM̃γ
.

Proof. In the tth outer-loop, similar to (Reddi et al. 2016),
we define Rt,m as follows

Rt,m = f(ut,m) + cm‖ut,m − ut,0‖2.

Then ∀β > 0,

E[‖ut,m+1 − ut,0‖2|ut,m, ût,m]

≤E‖ut,m+1 − ut,m‖2 + ‖ut,m − ut,0‖2
− 2η(EBt,mv̂t,m)T (ut,m − ut,0)

≤η2E‖v̂t,m‖2 + (1 + βη)‖ut,m − ut,0‖2

+
η

β
‖∇f(ût,m)‖2

≤η2E‖v̂t,m‖2 + (1 + βη)‖ut,m − ut,0‖2

+
2η

β
(‖∇f(ut,m)‖+ ‖∇f(ût,m)−∇f(ut,m)‖2)

≤η2E‖v̂t,m‖2 + (1 + βη)‖ut,m − ut,0‖2

+
2η

β
(‖∇f(ut,m)‖2

+ L2‖ût,m − ut,m‖2), (8)

where the second inequality uses the fact 2ab ≤ βa2 + 1
β b

2.
Since the objective function is L-smooth, we have

E[f(ut,m+1)|ut,m, ût,m]

≤− ηE[∇f(ut,m)TBt,m∇fit,m(ût,m)|ut,m, ût,m]

+ f(ut,m) +
Lη2

2
E[‖v̂t,m‖2|ut,m, ût,m]

=f(ut,m)− η∇f(ut,m)TB∇f(ût,m)

+
Lη2

2
E[‖v̂t,m‖2|ut,m, ût,m]

≤f(ut,m)− αη

2
‖∇f(ut,m)‖2

+
ηL2

2
‖ut,m − ût,m‖2

+
Lη2

2
E[‖v̂t,m‖2|ut,m, ût,m], (9)

where the first equality uses the independence of Bt,m, it,m,
the second inequality uses Lemma 1. Combining (8) and (9),

we have

ERt,m+1

=Ef(ut,m+1) + cm+1‖ut,m+1 − ut,0‖2

≤Ef(ut,m)− (
αη

2
− 2cm+1η

β
)E‖∇f(ut,m)‖2

+ (
ηL2

2
+

2cm+1η

β
)E‖ut,m − ût,m‖2

+ cm+1(1 + βη)E‖ut,m − ut,0‖2

+ η2(cm+1 +
L

2
)E‖v̂t,m‖2

≤Ef(ut,m)− (
αη

2
− 2cm+1η

β
)E‖∇f(ut,m)‖2

+ (
ηL2

2
+

2cm+1η

β
)
4τη2ρ2(ρτ − 1)

ρ− 1
Eq(ut,m)

+ cm+1(1 + βη)E‖ut,m − ut,0‖2

+ η2(cm+1 +
L

2
)E‖v̂t,m‖2,

where the last inequality uses equation (7).
For convenience, we use hm = (ηL

2

2 +
2cmη
β ) 4τρ

2(ρτ−1)
ρ−1 + ρ(cm + L

2 ). Since E[‖v̂t,m‖2] =

Eq(ût,m) ≤ ρEq(ut,m), we have

ERt,m+1

≤Ef(ut,m)− (
αη

2
− 2cm+1η

β
)E‖∇f(ut,m)‖2

+ cm+1(1 + βη)E‖ut,m − ut,0‖2 + η2hm+1Eq(ut,m)

≤Ef(ut,m)

+ [cm+1(1 + βη) + 2L2η2hm+1]E‖ut,m − ut,0‖2

− (
αη

2
− 2cm+1η

β
− 2η2hm+1)E‖∇f(ut,m)‖2,

where the second inequality uses Lemma 4. Then we can
obtain:

(
αη

2
− 2cm+1η

β
− 2η2hm+1)E‖∇f(um)‖2

≤ ERm − ERm+1,

where cm = cm+1(1 + βη) + 2L2η2hm+1.
We set c0 > 0. It is easy to see that cm > cm+1. We can

choose c0, η, β to make cM̃ = 0. Then we have:

M̃−1∑
m=0

E‖∇f(ut,m)‖2

≤ ER0 − ERM̃

γ
=

Ef(wt)− Ef(wt+1)

γ
,

which is equivalent to

1

TM̃

T−1∑
t=0

M̃−1∑
m=0

E‖∇f(ut,m)‖2 ≤ Ef(w0)− Ef(wT )

TM̃γ
.
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Computation Complexity

In Theorem 2, we construct a sequence {cm} and need
γ > 0. According to the definition of hm, we can write
hm as hm = gcm + f , where g = 2η

β
4τρ2(ρτ−1)

ρ−1 + ρ, f =
ηL2

2
4τρ2(ρτ−1)

ρ−1 + Lρ
2 are constants.

First, we choose β > η, then both g, f are bounded posi-
tive constants. We have

cm = cm+1(1 + βη + 2L2η2g) + 2L2η2f.

Let a = βη + 2L2η2g. Because cM̃ = 0, it is easy to get

c0 = 2L2η2f
(1 + a)M̃ − 1

a
.

We take M̃ = 	 1
a
 ≤ 1

a , then we have c0 ≤ 4L2η2f
a and

γ =
α

2
(η − 4c0η

αβ
− 4gc0

α
η2 − 4f

α
η2).

As recommended in (Reddi et al. 2016), we can take η =
μ/n2/3, β = v/n1/3 with η < β (assuming n is large). Then
we can get f = O(1), g = O(1), a = O(1/n). By choosing
μ, v to satisfy 16L2fμ

αv2 < 1 such that 4c0
αβ < 1, it is easy to

find that γ = O(1/n2/3) > 0, M̃ = O(n). Hence, to get
an ε-local optimal solution, the computation complexity by
all p threads is O(n

2
3 /ε), and the computation complexity of

each thread is O(n
2
3

pε ).

Experiment

To verify our theoretical results about Hogwild! and
AsySVRG, we use a fully-connected neural network to con-
struct a non-convex function. The neural network has one
hidden layer with 100 nodes and the sigmoid function is
used for the activation function. We use the soft-max out-
put and a L2 regularization for training. The loss function
is:

f(w,b) = − 1

n

n∑
i=1

K∑
k=1

1{yi = k} log o(k)i +
λ

2
‖w‖2,

where w is the weights of the neural network, b is the bias,
yi is the label of instance xi, o

(k)
i is the output corresponding

to xi, K is the total number of class labels.
We use two datasets: connect-4 and MNIST4 to do

experiments and λ = 10−3. We initialize w by ran-
domly sampling from a Gaussian distribution with mean
being 0 and variance being 0.01, and initialize b =
0. During training, we use a fixed stepsize for both
Hogwild! and AsySVRG. The stepsize is chosen from
{0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}, and the best
is reported. For the iteration number of the inner-loop of
AsySVRG, we set M = n/p, where p is the number of
threads. The experiments are conducted on a server with 12
Intel cores and 64G memory.

4https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

Figure 1 illustrates the convergence property of both Hog-
wild! and AsySVRG. The x-axis denotes the CPU time,
where we set the CPU time that Hogwild! passes through
the whole dataset once with one thread as 1 unit. The y-
axis denotes the training loss. In this experiment, we run
Hogwild! and AsySVRG with 10 threads. Hogwild!-10 and
AsySVRG-10 denote the corresponding methods with 10
threads. It is easy to see that both Hogwild! and AsySVRG
are convergent. Furthermore, AsySVRG is faster than Hog-
wild!. This is consistent with our theoretical results in this
paper.

0 5 10 15
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

CPU Time

Tr
ai

ni
ng

 lo
ss

MNIST

 

 

Hogwild!-10
AsySVRG-10

(a) MNIST

0 20 40 60 80 100 120
0.65

0.7

0.75

0.8

0.85

0.9

CPU Time

Tr
ai

ni
ng

 lo
ss

connect-4

 

 

Hogwild!-10
AsySVRG-10

(b) connect-4

Figure 1: Hogwild! vs AsySVRG

Figure 2 reports the results of Hogwild! and AsySVRG
with different numbers of threads, where the number of
threads p = 1, 4, 10. We can find that in most cases the two
methods will become faster with the increase of threads. The
only outlier is the case for Hogwild! on dateset connect-4,
Hogwild! using 4 threads is slower than using 1 thread. One
possible reason is that we have two CPUs in our server, with
6 cores for each CPU. In the 4-thread case, different threads
may be allocated on different CPUs, which will cause extra
cost.
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(a) Hogwild! on MNIST
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(c) Hogwild! on connect-4
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Figure 2: Comparison between different numbers of threads.
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Conclusion

In this paper, we have provided theoretical proof about the
convergence of two representative lock-free strategy based
parallel SGD methods, Hogwild! and AsySVRG, for non-
convex problems. Empirical results also show that both Hog-
wild! and AsySVRG are convergent on non-convex prob-
lems, which successfully verifies our theoretical results. To
the best of our knowledge, this is the first work to prove the
convergence of lock-free strategy based parallel SGD meth-
ods for non-convex problems.
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