
Dynamic Action Repetition
for Deep Reinforcement Learning

Aravind S. Lakshminarayanan,∗ Sahil Sharma,∗ Balaraman Ravindran
Indian Institute of Technology, Madras

Abstract

One of the long standing goals of Artificial Intelligence (AI)
is to build cognitive agents which can perform complex tasks
from raw sensory inputs without explicit supervision (Lake
et al. 2016). Recent progress in combining Reinforcement
Learning objective functions and Deep Learning architectures
has achieved promising results for such tasks. An important
aspect of such sequential decision making problems, which
has largely been neglected, is for the agent to decide on the
duration of time for which to commit to actions. Such action
repetition is important for computational efficiency, which
is necessary for the agent to respond in real-time to events
(in applications such as self-driving cars). Action Repetition
arises naturally in real life as well as simulated environments.
The time scale of executing an action enables an agent (both
humans and AI) to decide the granularity of control during
task execution. Current state of the art Deep Reinforcement
Learning models, whether they are off-policy (Mnih et al.
2015; Wang et al. 2015) or on-policy (Mnih et al. 2016), con-
sist of a framework with a static action repetition paradigm,
wherein the action decided by the agent is repeated for a fixed
number of time steps regardless of the contextual state while
executing the task. In this paper, we propose a new frame-
work - Dynamic Action Repetition which changes Action
Repetition Rate (the time scale of repeating an action) from a
hyper-parameter of an algorithm to a dynamically learnable
quantity. At every decision-making step, our models allow
the agent to commit to an action and the time scale of exe-
cuting the action. We show empirically that such a dynamic
time scale mechanism improves the performance on relatively
harder games in the Atari 2600 domain, independent of the
underlying Deep Reinforcement Learning algorithm used.

Introduction
There has been a growing interest both in creating AI agents
which can play computer games well (Mnih et al. 2015;
Hausknecht and Stone 2016; Mnih et al. 2016), as well as
creating Human-like AI agents against which human oppo-
nents can enjoy playing (Hingston 2010; Ortega et al. 2013;
Van Hoorn et al. 2009). Indeed, both the problems are re-
lated. A solution to the former is necessary, but not suffi-
cient for a solution to the later. This is because agents which

∗Authors contributed equally, listed in alphabetical order
Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

can play the game well automatically lead to AI opponents
against which humans might enjoy playing computer games.
Hence, any advancement in the former domain leads to an
advancement in the latter. We present one such advancement
in Reinforcement Learning (RL)-based game playing.

Video game domains such as Mario (Togelius,
Karakovskiy, and Baumgarten 2010), Atari 2600 (Bellemare
et al. 2013) and Half Field Offensive (Hausknecht et al.
2016) have served as a test bed to measure performance of
learning algorithms in AI-based game playing. Such games
present unique challenges to an AI agent since performing
well in them requires being able to understand the current
state of the game (involves pattern recognition) as well as
being able to choose actions after considering long term
implications of choosing those actions (involves planning).
Recent applications of Deep Reinforcement Learning
(DRL) to these domains has resulted in state-of-the-art
performance, when the policies have to be learnt directly
from pixels in a model-free RL setting (Mnih et al. 2015;
2016; Hausknecht and Stone 2016).

Game playing AI should be real-time for it to appear
plausible to humans and for it to have real world appli-
cations. This is one of the motivations behind the evolu-
tion of Deep Learning (DL)-based AI agents as a replace-
ment for simulation based AI. However, DRL agents in-
volve significant computation in the form of convolutional
neural networks and recurrent neural networks. One way to
reduce such computation is to introduce a hyper-parameter
in DRL algorithms called the action repetition rate (ARR)
which denotes the number of times an action selected by
the agent is to be repeated. If the ARR is low, the de-
cision making frequency of the agent is high. This leads
to policies which evolve rapidly in space and time. On
the other hand, a high ARR causes infrequent decisions,
which reduces the time to train at the cost of losing fine-
grained control. A higher ARR also leads to the agent learn-
ing human-like policies for game play. This is because the
policies learnt with a higher ARR have fewer action se-
quences which exhibit super-human reflexes as compared to
an agent which plays with a low ARR ((Mnih et al. 2015;
2016) use an ARR of 4). A reduction in decision making fre-
quency gives the agent the advantage of not having to learn
the control policy in the intermediate states given that a per-
sistent action from the current state can lead to an advanta-

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

2133

geous next state. Such skills would be useful for the agent
in games where good policies require some level of tempo-
ral abstraction. An example of this situation in Seaquest (an
Atari 2600 game) is when the agent has to continually shoot
at multiple enemies arriving together and at the same depth,
one behind another. In the case of Space Invaders (Atari
2600 game), the lasers are not visible in every fourth frame,
as noted by (Mnih et al. 2015). Hence, a higher action repe-
tition could help the agent avoid the confusion of having to
decide an action in such peculiar intermediate states, where
the lasers are not visible.

Having said all of that, there are also situations where
agents have to take actions which require quick reflexes to
perform well with an example from Seaquest being states
in which multiple enemies attack simultaneously and are
placed at varying depths. The agent is then expected to ma-
noeuvre skillfully to avoid or kill the enemies. Similarly, in
Space Invaders the agent needs to avoid multiple lasers being
shot simultaneously by enemies that are progressively mov-
ing closer to the agent. Such situations merit a finer granular-
ity of control. Therefore, a high but static ARR is probably
not a solution for better game playing strategies in spite of
the temporal abstractions it provides to the agent. As a small
step in the direction of temporal abstractions in the policy
space (in the form of temporally elongated actions), we pro-
pose a dynamic action repetition paradigm of game-playing.
The paradigm is generic enough that it can be combined with
any off-the-shelf discrete action space DRL algorithm. The
proposed paradigm presents a more structured policy frame-
work, wherein the policy consists of the action probabilities
(or state-action values) along with the number of times the
corresponding action is to be repeated, each time a decision
is to be made. This is on the lines of (Hausknecht and Stone
2016), in which an Actor Critic setup is used in the Half
Field Offense domain(Hausknecht et al. 2016), to learn poli-
cies that contain both the probabilities of selecting actions as
well as their associated parameters. Policies learnt under this
paradigm guide the agent in deciding whether it is beneficial
to exert super-human-reflexes, or not. In the case of longer
temporal persistence of the chosen action, the optimal level
of persistence would help the agent to get to most advan-
tageous (in terms of expected cumulative discounted future
reward) temporally distant state.

One of the major drawbacks of the current DRL game
playing algorithms (Mnih et al. 2015; 2016; Wang et
al. 2015) is that the action repetition rate is a static
hyper-parameter which has to be tuned using usual hyper-
parameter tuning techniques. We demonstrate that this in-
ability to decide the granularity of control deeply inhibits the
kind of control policies that are learnt by the algorithms. We
show the efficacy of the policies learnt using our paradigm
over those learnt using the existing algorithms by empiri-
cally establishing the fact that dynamic action repetition is
an important way in which an AI agent’s capabilities can
be extended. This is done by combining existing DRL algo-
rithms with our paradigm. To demonstrate that this paradigm
(Dynamic Action Repetition) can be combined with any
Deep Reinforcement Learning algorithm, we perform exper-
iments in off-policy (Mnih et al. 2015) as well as on-policy

(Mnih et al. 2016) setting. Thereby we make the claim that
there is a need to explore and experiment with structured
parametrized policies for finding temporal abstractions us-
ing an Actor Critic setup in the Deep Reinforcement Learn-
ing based Game Playing domain.

Related work
One of the first efforts which pushed the state of the art sig-
nificantly in the domain of game playing based on raw sen-
sory inputs was (Mnih et al. 2015). Their architecture, DQN,
motivated the use of convolutional neural networks for play-
ing games in the Atari 2600 domain.

(Braylan et al. 2015) is a work that focuses on the power
of the frame skip rate hyper-parameter (it is the hyper-
parameter in ALE which directly controls the action repeti-
tion rate) with experiments in the Atari 2600 domain. Their
learning framework is a variant of Enforced Sub-Populations
(ESP) (Gomez and Miikkulainen 1997), a neuroevolution
approach which has been successfully trained for complex
control tasks such as controlling robots and playing games.
They show empirically that the frame skip parameter is an
important factor deciding the performance of their agent
in the Atari domain. They demonstrate for example that
Seaquest achieves best performance when an ARR of 180
frames is used. This is equivalent to the agent pausing (con-
tinuing the same action) for three seconds between decisions
since the ALE emulator runs at 60 frames per second. They
argue that a higher value of action repetition allows the agent
to not learn action selection for the states that are skipped
and hence develop associations between states that are tem-
porally distant. However, they experiment only with a static
action repetition setup. The key way in which our work dif-
fers from both the ESP and the DQN approaches is that we
make action repetition a dynamic learnable parameter.

The idea of dynamic-length temporal abstractions in the
policy space on Atari Domain has been explored by (Vafa-
dost 2013). They use a Monte Carlo Tree Search (MCTS)
planner with macro-actions that are composed of the same
action repeated k times, for different k. The way in which
our approach differs from (Vafadost 2013) is in terms of us-
ing a Deep Neural Network to build non-linear Q-function
approximators instead of making use of search techniques
that cannot generalize across unseen states. We also learn to
pick the suitable repetition extent for a state through deep
networks instead of searching through rollouts for the opti-
mal repetition extent k.

The utility of repetitive macro-actions has been pointed
out by (Ortega et al. 2013) in designing high level actions to
imitate human-like play in Mario such as Walk, Run, Right
Small Jump, Right High Jump and Avoid enemy, which are
composed of varying length repetitive key presses. For in-
stance, Right High Jump involves pressing the Jump and
Right keys together for 10 frames, while Right Small Jump
requires the same for 2 frames.

Background
The following four sub-sections introduce standard Rein-
forcement learning algorithms and their deep counterparts.

2134

Q-Learning algorithm
One of the approaches for solving the sequential decision
making problem is to estimate the optimal value of every
state-action pair - Q(s, a). The optimal value of an action
a in a state s is defined as the expected cumulative sum of
future rewards on taking a in s and following the optimal
policy thereafter. Q(s, a) is a measure of the long-term re-
ward obtained by taking action a in state s. Computing ap-
proximations for the Q-function enables the agent to select
the optimal action a in a state s. Hence, one way for the
agent to learn optimal policies is to estimate Q(s, a) for the
given task. Q-learning (Watkins and Dayan 1992) is an off-
policy Temporal Difference (TD) learning algorithm which
does exactly that. The Q-values are updated iteratively us-
ing the Bellman optimality equation (Sutton and Barto 1998)
with the rewards obtained from the game as below:

Qt+1(s, a) = E[r + γmaxa′Qt(s
′, a′)|s, a]

Here t denotes the time-step during the episode. During
training, the behavioral policy is ε- greedy with respect to
Q(s, a) to ensure sufficient exploration.

Deep Q Network (DQN)
In high dimensional state spaces, it is infeasible to com-
pute optimal Q-values for all possible state-action pairs ex-
plicitly. One way to address this problem is to approxi-
mate Q(s, a) using a parametrized function approximator
Q(s, a; θ), thereby gaining the power to generalize over un-
seen states by operating on low level features (Sutton and
Barto 1998). Recent advances in representation learning us-
ing deep neural networks (LeCun, Bengio, and Hinton 2015)
provide an efficient mechanism to learn hierarchical fea-
tures across large state spaces and avoid feature engineering.
DQN (Mnih et al. 2015) combines the representation learn-
ing power of deep neural networks with the Q-Learning ob-
jective to approximate the Q-value function for a given state
and action. The loss function used for learning a Deep Q
Network is :

L(θ) = Es,a,r,s′ [(y
DQN −Q(s, a; θ))2],

with
yDQN = (r + γmaxa′Q(s′, a′, θ−))

Here, L represents the expected TD error corresponding to
current parameter estimate θ. θ− represents the parameters
of a separate target network, while θ represents the parame-
ters of the online network. The usage of a target network is
to improve the stability of the learning updates. The gradient
descent step is as follows:

∇θL(θ) = Es,a,r,s′ [(y
DQN −Q(s, a; θ))∇θQ(s, a)]

The off-policy nature of the algorithm ensures that DQN
is able to avoid correlated updates, which are likely, when
learning on temporally correlated transitions that the online
network simulates. This is facilitated through an experience
replay memory (Lin 1993) D (of fixed maximum capacity)
where the state transitions and rewards experienced by the
agent are pooled in a First-In-First-Out (FIFO) fashion.

Advantage Actor-Critic Algorithm
The Q-learning algorithm described in the previous subsec-
tions computes only the value function associated with state-
action pairs. Explicit policies are not learnt by the agent
during Q-Learning. Rather, the policy of the agent is in-
duced implicitly (by picking the action with the maximum
Q-value) along with low-probability exploration based on
an ε-greedy approach (Sutton and Barto 1998). In contrast,
Actor-Critic methods (Konda and Tsitsiklis 2003) explicitly
model the policy that is executed by the agent along with a
value function component updated using Temporal Differ-
ence (TD) learning methods. Hence, they have two distinct
components: an actor and a critic. We describe the paramet-
ric version of Actor Critic below.

The actor proposes a parametrized policy π(at|st; θa)
while the critic provides the basis for improvement in the
policy estimation by approximating the optimal value func-
tion V ∗(s) using a parametrized estimate; V (st|θc). We
describe a parametric critic as a general setup applica-
ble to high dimensional state spaces. In principle a non-
parametric critic could also be learnt, using table look
ups. The state value function computed by the critic is
used for obtaining the Temporal Difference (TD)-error term
(r + γV (s′) − V (s)) required for computing the updates
to the actor parameters θa. The updates on the actor pa-
rameters θa are based on policy gradient methods with the
critic term providing the sign and weight for the updates
(Sutton et al. 1999). The ideal unbiased policy gradient
for updating the parameters of the probability of execu-
tion of action at in state st is ∇θa log π(at|st; θa)E[Rt].
Here Rt is the return obtained from state st after execut-
ing action at. Naturally, based on how Q(st, at) is defined,
∇θa log π(at|st; θa)Q(st, at) provides a biased estimate for
the same but with lower variance when compared to using
a point estimate of Rt as proxy for E[Rt]. The variance of
the former estimator can be improved even further without
adding to the bias by using∇θa log π(at|st; θa)(Q(st, at)−
b(st)) where b(st) is a baseline term that’s independent of
the entity on whose decision the gradient is computed (at
here). The baseline could however be state-dependent. Of-
ten, the baseline used is the value function estimate of state
st: V (st|θc).

The proxy function for the utility Rt is hence Q(st, at)−
V (st). This is defined as the Advantage Function A(st, at).
Since this instantiation of Actor Critic uses the Advantage
Function as the proxy utility, this method is referred to as
Advantage Actor Critic. The efficacy of this method relies
on the critic approximating the optimal value function V (st)
since the Advantage Function A(st, at) is estimated using
the one step TD error, as described below. The target value
for Q(st, at) from the Bellman optimality criterion (Sutton
and Barto 1998) is r+γmaxa′Q(st+1, a

′) = r+γV (st+1).
Therefore, A(st, at) is estimated as (r+γV (st+1))−V (st),
which is just the one-step TD error in estimating V (st).

Asynchronous Advantage Actor Critic
On-policy Actor Critic algorithms are non-trivial to model
with Deep Neural Networks. This is because the on-policy

2135

Figure 1: DQN’s architecture under the proposed Paradigm.
The upper part of the final layer corresponds to Q-values for
actions that operate at action repetition rate r1 and lower part
corresponds to same actions which operate at action repeti-
tion rate of r2.

nature of the learning leads to correlated updates by vio-
lating an important assumption made by popular stochas-
tic gradient descent-based parameter update algorithms that
the input data points are independently and identically
distributed. Asynchronous Advantage Actor Critic (A3C)
(Mnih et al. 2016) overcomes this problem by running mul-
tiple actor threads which explore different parts of the state
space in parallel. The updates from the multiple threads are
synchronized with respect to the global policy network pa-
rameters θa. This ensures that the updates made to the global
policy parameters are reasonably uncorrelated. Due to mul-
tiple actor learner threads operating at different parts of the
state space and pooling in gradient updates in an Advantage
Actor Critic paradigm, this method is referred to as Asyn-
chronous Advantage Actor Critic.

Dynamic Action Repetition For Deep
Reinforcement Learning

The key motivation behind the Dynamic Action Repeti-
tion paradigm is the observation that when humans execute
tasks (such as playing games), the actions tend to be tem-
porally correlated and elongated, almost always. Such be-
havior occurs because expectancy for upcoming action re-
quirements is a fundamental prerequisite for human action
control (Gilbert and Wilson 2007; Thomaschke and Dreis-
bach 2013). For certain states of the game, we play long
sequences of the same action whereas for some states, we
switch the actions performed quickly. We base these deci-
sions on what we expect from the temporally distant future,
as a result of these actions. For example, in Seaquest, if the
agent is low on oxygen and deep inside the sea, we would
want the agent to resurface and fill up oxygen using a long
sequence of up actions.

Although the framework we propose is generic enough to
be combined with any discrete-action space DRL algorithm,
we take the example of DQN to explain the Dynamic Ac-
tion repetition scheme. To demonstrate the generality of the

paradigm, experiments are performed with DQN as well as
A3C. The paradigm, explained with the help of DQN is as
follows:

Let A = {a1, · · · , a|A|} denote the set of all legal actions
for a game (for SeaquestA = {0, 1, · · · , 17}). We introduce
|A| new actions {a|A|+1, · · · , a2|A|}. Figure 1 depicts this
scheme using a diagram.

The semantics associated with the actions are as follows:
action ak results in the same basis action being played in the
ALE as the action a(k%|A|). The difference is in terms of the
number of times the basis action is repeated by the ALE em-
ulator. DQN as well A3C operate with a static action repeti-
tion hyper-parameter which is equal to 4. Hence any selected
action is repeated 4 times by ALE. In our model, action ak
is repeated r1 number of times if k < |A| and r2 number of
times if k ≥ |A|. One can think about each ak as represent-
ing a temporally repeated action or in RL terms as a macro-
action. This scheme is implemented by doubling the number
of neurons in the final layer of the DQN architecture. For a
given state s, the augmented model (with double the number
of output neurons as DQN) thus outputs the discrete set of
value function approximations {Q(s, a1), · · · , Q(s, a2|A|)}.
Q(s, ak) representing an approximation to the return the
agent would get on taking action ak in state s and following
the optimal policy thereafter. In the case of the augmented
A3C model, the output would be a probability distribu-
tion over all the actions {a1, · · · , a2|A|}. These new macro-
actions can lead to more-frequent and larger rewards, and
thus significantly impact the value functions learnt by the
augmented model. Note that r1 and r2 are hyper-parameters
in this model and must be chosen before the learning begins.
This paradigm presents the agent with 2 discrete levels of
control, as far as action repetition is concerned, regardless
of the underlying Reinforcement Learning algorithm. It is
ideal to learn policies in a parametrized action space where
the agent outputs an action ak and a parameter r where r
denotes the number of times that the agent wants to repeat
action ak consecutively. Such a framework would have the
representative power to select the optimal number of times
an action is to be executed. But, it would also be proportion-
ately complex and as a result difficult to train. Our paradigm
seeks to provide an approximation to this richer model and
favors simplicity over optimality of game play, which would
come at the cost of a more complicated learning procedure.
We leave it to future work, to explore the learning of poli-
cies paramaterized by the ARR in the Game Playing domain,
learnt with the help of an actor-critic algorithm.

Experimental Setup and Results
To demonstrate the generality of our framework, experi-
ments were conducted with 2 DRL algorithms: DQN and
A3C. The following sub-sections document the respective
experimental setup and the results.

Augmented DQN
General game-playing evaluation was performed on 4 Atari
2600 domain games: Seaquest, Space Invaders, Alien and
Enduro. A single algorithm and architecture, with a fixed

2136

set of hyper-parameters was used to play all 4 games. The
combination of DQN with our paradigm results in a model
(Augmented DQN) which has the same low-level convolu-
tional structure and input preprocessing of DQN (Mnih et
al. 2015). Due to the partially observable nature of the Atari
2600 domain games, the last 4 frames are combined and
given as a 84 × 84 × 4 multi-channel input to the model.
This is followed by 3 convolutional layers, which are in turn
followed by 2 fully-connected layers.

Since the augmented model has double the number of out-
put neurons as a static action-repetition model, we wanted to
give more representational power to it, for being able to de-
cide from a larger set of actions. Therefore, the augmented
model has 1024 units in the pre-output hidden layer as com-
pared to 512 units used in the DQN architecture (Mnih et al.
2015).

S.No. Game HLS ARR Arch AS
1 Seaquest 1024 4 DQN 5450
2 Seaquest 1024 20 DQN 1707
3 Seaquest 1024 D DFDQN 10458
4 Seaquest 512 4 DQN 5860
5 SI 1024 4 DQN 1189
6 SI 1024 D DFDQN 2796
7 SI 512 4 DQN 1692
8 Alien 1024 4 DQN 2085
9 Alien 1024 D DFDQN 3114
10 Alien 512 4 DQN 1620
11 Enduro 1024 4 DQN 707
12 Enduro 512 4 DQN 729
13 Enduro 1024 D DFDQN 1002
14 Enduro 1024 20 DQN 124

Table 1: Experimental results for DQN architectures. AS de-
notes the average score in the best testing epoch. SI is the
game of Space Invaders. HLS denotes the pre-final layer hid-
den layer size.

The values of r1, r2 (defined in the previous section) are
kept the same for all three games and are equal to 4 and
20 respectively. To ensure sufficient exploration (given that
the augmented model has double the number of actions), the
exploration probability ε is annealed from 1 to 0.1 over 2
million steps as against 1 million steps used in DQN.

We claim that the improvement in performance is not just
due to the increase in the representational power by having
double the number of pre-final hidden layer neurons. to vali-
date this hypothesis, we run DQN baselines with 1024 units
in the pre-final layer for all three games. We also report the
scores obtained from original DQN architecture with 512
pre-final hidden layer neurons from a recent usage of DQN
in (Wang et al. 2015), where DQN is reported as baseline
for the Duelling DQN model. A training epoch consists of
250000 steps (action selections). This is followed by a test-
ing epoch which consists of 125000 steps. The score of a
single episode is defined to be the sum of the rewards re-
ceived from the ALE (Bellemare et al. 2013) emulator in that
episode. The score of a testing epoch is defined to be the av-

erage of the scores obtained in all of the complete episodes
played during that testing epoch. The scores reported in
this section are for the testing epoch with the highest av-
erage episode score (known as the best score for a game).
Table 1 presents the experimental results. Since the hyper-
parameter for action repetition is known as Frame Skip in the
ALE, the augmented model is referred to as DFDQN (Dy-
namic Frameskip DQN). HLS denotes the pre-final hidden
layer size. SI stands for Space Invaders. ARR stands for the
action-repetition rate used. A value of D for ARR represents
that the action repetition rate is dynamic. Arch. denotes the
architecture used. AS denotes the best average testing epoch
score as defined above.

In each of plots in Fig 2, one epoch consists of 125000
steps (decisions). DQN-a-b refers to DQN architecture that
has b units in the pre-output layer and operates with an ARR
of a. DFDQN-b is the Dynamic Action Repetition variant of
Deep Q-Network architecture with b units in pre-final layer.

An interesting characteristic of all the graphs is that Aug-
mented Model’s scores-graph has a large slope even at the
end of 200 epochs. This means that there is still scope for
the performance to improve on further training beyond 200
epochs. To verify our claim that temporally extended actions
can lead to better policies, we did an analysis of the percent-
age of times the longer sequence of basis actions was se-
lected. Using the network which yielded the best score (no-
tion of best score defined in the previous section), we ran
a testing epoch of 10000 decision-making steps, which re-
sulted in 17 episodes for Seaquest, 18 episodes for Space
Invaders, 18 episodes for Alien and 17 episodes for Enduro.
We recorded the actions executed at each decision-step.

S.No. Game Percentage
1 Seaquest 69.99
2 Space Invaders 78.87
3 Alien 71.31
4 Enduro 67.84

Table 2: Longer action selection percentages for

The table above shows that the augmented model is able
to make good use of the longer actions most of the times,
but does not ignore the temporally shorter actions either.
The agent has learnt through repeated exploration-feedback
cycles to prefer the extended actions but still exercises the
fast reflexes when the situation needs it to do so. We can
safely claim that the addition of these higher action repeti-
tion options has been an important contributing factor to the
improvement in performance. To strengthen our claim that
there is a need for dynamic action repetition, we show re-
sults on two of the games (Seaquest and Enduro) in which
the DQN operates with just the higher but static ARR of 20.
Not surprisingly, it scores poorly during gameplay. Videos
of some of the learned policies for Space Invaders, Seaquest
and Alien are available at https://goo.gl/VTsen0, https://goo.
gl/D7twZc and https://goo.gl/aCcLb7) respectively.

2137

(a) Seaquest Training Comparison (b) Space Invaders Training Comparison (c) Alien Training Comparison

Figure 2: DQN vs DFDQN comparison for Seaquest, Space Invaders and Alien

Augmented A3C
To demonstrate that the proposed paradigm is not specific to
the DQN algorithm but rather works across different types
of DRL Algorithms for game playing, we conducted similar
game-playing experiments using the Asynchronous Advan-
tage Actor Critic (Mnih et al. 2016) model as well. Unlike in
the case of Augmented DQN, all the hyper-parameters were
kept exactly the same as that in the case of A3C. This rep-
resents an adversarial setting for the augmented A3C case
since deciding the optimal ARR could possibly benefit from
having a larger state-representation as well as changes in
other hyper-parameters. We used the LSTM-controller and
the best-performing open source implementation of A3C al-
gorithm. The baseline A3C models as well as the augmented
A3C models were trained for 100 million decision steps.

Evaluation was performed by sampling from the proba-
bility distribution representing the final policy and averaging
the scores over 100 episodes. The results are presented in ta-
ble 3. A3C denotes the implementation of A3C used by us.
DFA3C denotes the A3C model Augmented with Dynamic
Action Repetition. A3CP denotes the scores of the published
A3C models (Mnih et al. 2016), which have been included
for the sake of completeness. A note of caution is to not
compare the scores obtained in this work with the published
scores in (Mnih et al. 2016) since they use a very different
evaluation strategy called human starts, which is impossi-
ble to replicate exactly in the absence of human testers. We
clearly see that when compared to A3C, DFA3C leads to
improved metrics on all 5 tasks with the improvement on
Enduro being as high as 645 times better.

Conclusion and Future Work
In this paper, we introduce a novel paradigm to strengthen
existing Deep Reinforcement Learning agents by providing
them the ability to decide the time scale of executing an ac-
tion in addition to deciding the specific action to execute.
This scheme enables AI agents to dynamically decide how
long a chosen action in the current state is to be repeated.
The ability to decide dynamically, the extent of the repeti-
tion of an action can be seen as a skill in the direction of

S.No. Game Arch AS
1 Seaquest A3C 1769.12
2 Seaquest DFA3C 2047.74
3 Seaquest A3CP 1326.1
4 SI A3C 603.04
5 SI DFA3C 2220.18
6 SI A3CP 23846.0
7 Alien A3C 1440.82
8 Alien DFA3C 2722.19
9 Alien A3CP 945.3
10 Enduro A3C 0.77
11 Enduro DFA3C 497.29
12 Enduro A3CP -82.5
13 Q*bert A3C 21184.75
14 Q*bert DFA3C 21405.35
15 Q*bert A3CP 21307.5

Table 3: Experimental results for A3C architectures. AS de-
notes the average score in the final testing epoch. SI is the
game of Space Invaders.

looking ahead (planning). Our scheme allows the agent to
exert quick reflexes when required and to continue perform-
ing the same action as long as the chosen macro-action leads
the agent to an advantageous (valuable) next state. Through
this paradigm, we present an elegant way to introduce tem-
poral structure in discrete-action space policies with the ex-
tent of repetition of the chosen action being decided based
on the current state. We show empirically that this setup
leads to significant improvement in performance, regardless
of the underlying Deep Reinforcement Learning algorithm
used, and regardless of the nature of the algorithm (off-
policy or on-policy), with results on five relatively harder
Atari 2600 domain games: Seaquest, Space Invaders, Alien,
Enduro and Q*Bert. The improvement in performance has
been achieved without much tuning of the DQN (Mnih et al.
2015) network parameters. In the case of Augmented A3C,
no tuning of hyperparameters was performed. The dynamic
time scale mechanism can be incorporated into any existing

2138

deep reinforcement learning methods (both value and policy
based) and an exhaustive analysis on its utility for different
methods is an interesting direction for future work

Our work naturally leads to a parametrized policy setup,
where each action has an associated parameter: its Action
Repetition Rate (ARR). An Actor Critic setup similar to
(Hausknecht and Stone 2016) to learn such structured poli-
cies with multiple time scales for both discrete and continu-
ous action spaces is a compelling future direction. The struc-
ture in the policy naturally introduces temporal abstractions
through macro-actions composed of the same action being
repeated, with different lengths. Another direction to deal
with action space explosion when consdiering more time
scales is to investigate the use of action embeddings for
value-based methods. In our setup, we do not consider the
ability to stop executing a macro-action that the agent has
committed to. However, this is a necessary skill in the event
of unexpected changes in the environment while executing a
chosen macro-action. Thus, stop and start actions for exiting
and committing to plans can be augmented with the dynamic
time scale setup for more robust planning.

Acknowledgements:
We would like to thank the anonymous AAAI reviewers for
insightful feedback. We would also like to thank Karthik
Narasimhan and Sherjil Ozair for useful comments.

References
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research 253–279.
Braylan, A.; Hollenbeck, M.; Meyerson, E.; and Miikku-
lainen, R. 2015. Frame skip is a powerful parameter for
learning to play atari. AAAI workshop.
Gilbert, D. T., and Wilson, T. D. 2007. Prospection: Expe-
riencing the future. Science 317(5843):1351–1354.
Gomez, F., and Miikkulainen, R. 1997. Incremental evolu-
tion of complex general behavior. Adaptive Behavior 5(3-
4):317–342.
Hausknecht, M., and Stone, P. 2016. Deep reinforcement
learning in parametrized action space. 4th International
Conference on Learning Representations.
Hausknecht, M.; Mupparaju, P.; Subramanian, S.;
Kalyanakrishnan, S.; and Stone, P. 2016. Half field
offense: An environment for multiagent learning and ad hoc
teamwork. In AAMAS Adaptive Learning Agents (ALA)
Workshop.
Hingston, P. 2010. A new design for a turing test for bots.
IEEE Conference on Computational Intelligence and Games
(CIG).
Konda, V. R., and Tsitsiklis, J. N. 2003. On actor-critic
algorithms. SIAM journal on Control and Optimization
42(4):1143–1166.
Lake, B. M.; Ullman, T. D.; Tenenbaum, J. B.; and Gersh-
man, S. J. 2016. Building machines that learn and think like
people. arXiv preprint arXiv:1604.00289.

LeCun, Y.; Bengio, Y.; and Hinton, G. 2015. Deep learning.
Nature 521(7553):436–444.
Lin, L.-J. 1993. Reinforcement learning for robots using
neural networks. Technical Report, DTIC Document.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nature.
Mnih, V.; enech Badia, A. P.; Mirza, M.; Graves, A.; Harley,
T.; Lillicrap, T. P.; Silver, D.; and Kavukcuoglu, K. 2016.
Asynchronous methods for deep reinforcement learning.
arXiv preprint arXiv:1602.01783.
Ortega, J.; Shaker, N.; Togelius, J.; and Yannakakis, G. N.
2013. Imitating human playing styles in Super Mario Bros.
Entertainment Computing, Elsevier 4:93–104.
Sutton, R. S., and Barto, A. G. 1998. Introduction to rein-
forcement learning. MIT Press.
Sutton, R. S.; McAllester, D. A.; Singh, S. P.; Mansour, Y.;
et al. 1999. Policy gradient methods for reinforcement learn-
ing with function approximation. In Conference on Neural
Information Processing Systems, volume 99, 1057–1063.
Thomaschke, R., and Dreisbach, G. 2013. Temporal pre-
dictability facilitates action, not perception. Psychological
science 24(7):1335–1340.
Togelius, J.; Karakovskiy, S.; and Baumgarten, R. 2010. The
2009 mario ai competition. In IEEE Congress on Evolution-
ary Computation, 1–8. IEEE.
Vafadost, M. 2013. Temporal abstraction in monte carlo tree
search. Masters thesis, Department of Computer Science,
University of Alberta.
Van Hoorn, N.; Togelius, J.; Wierstra, D.; and Schmidhuber,
J. 2009. Robust player imitation using multiobjective evolu-
tion. In 2009 IEEE Congress on Evolutionary Computation,
652–659. IEEE.
Wang, Z.; Schaul; Hessel, M.; van Hasselt, H.; Lanctot,
M.; and de Freitas, N. 2015. Dueling network archi-
tectures for deep reinforcement learning. arXiv preprint
arXiv:1511.06581.
Watkins, C. J. C. H., and Dayan, P. 1992. Technical note:
Q-learning. Mach. Learn. 8(3-4):279–292.

2139

