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Abstract

We study the problem of structured prediction under test-time
budget constraints. We propose a novel approach based on
selectively acquiring computationally costly features during
test-time in order to reduce the computational cost of pre-
diction with minimal performance degradation. We formu-
late a novel empirical risk minimization (ERM) for policy
learning. We show that policy learning can be reduced to a
series of structured learning problems, resulting in efficient
training using existing structured learning algorithms. This
framework provides theoretical justification for several ex-
isting heuristic approaches found in literature. We evaluate
our proposed adaptive system on two structured prediction
tasks, optical character recognition and dependency parsing
and show significant reduction in the feature costs without
degrading accuracy.

Introduction

Structured prediction is a powerful and flexible framework
for making a joint prediction over mutually dependent out-
put variables. It has been successfully applied to a wide
range of computer vision and natural language processing
tasks ranging from text classification to human detection.
However, the superior performance and flexibility of struc-
tured predictors come at the cost of increased computational
cost. In order to construct computationally efficient algo-
rithms, a trade-off must be made between the expressiveness
and speed of structured models.

The cost of inference in structured prediction can be bro-
ken down into three parts: acquiring the features, evaluating
the part responses, and solving a combinatorial optimization
problem to make a prediction based on part responses. Much
of the past research has focused on efficient inference algo-
rithms for specific structures (e.g., Viterbi and CKY pars-
ing algorithms) and general structures (e.g., variational in-
ference (Jordan et al. 1999)). However, these methods over-
look feature acquisition and part response, which are bottle-
necks when the underlying structure is relatively simple or
can be efficiently solved.

Consider the dependency parsing task, where the goal is
to create a directed tree that describes semantic relations be-
tween words in a sentence. The task can be formulated as
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a structured prediction problem, where inference concerns
finding the maximum spanning trees (MSTs) in a directed
graph (McDonald et al. 2005). Each node in the graph rep-
resents a word and a directed edge (xi, xj) represents how
likely xj is to depend on xi. Fig. 1 shows an example of our
selective feature acquisition scheme for this task. Intuitively,
our goal is to learn a system that identifies the parts in each
example that are incorrectly parsed using “cheap” features.
Acquiring “expensive” features for these parts yields large
reduction in error over the entire structure due to improved
distinguishability and relationships to other parts.

We consider two forms of the budgeted structured learn-
ing problem, prediction under expected budget constraints
and anytime prediction. For both cases, we consider the
streaming test-time scenario where the system operates on
each test example without observation or interaction of other
test examples. For both settings, we propose a novel ERM
formulation to learn the policy function and reduce this
problem to a weighted structured learning problem.

Our proposed approach is general and can be applied to
any structured prediction task. Given a structured prediction
model, we demonstrate that our approach yields state-of-the-
art speedup while maintaining predictive power. We summa-
rize our contributions as follows:
• Novel ERM formulation of structured prediction under

expected budget constraints and anytime prediction.
• Reduction of the ERM problem for both these settings to

conventional structured prediction problems.
• State of the art speedup of existing structured prediction

models on two real-world data sets.
Implementation details and proofs are at https://arxiv.org/
abs/1602.08761.

Budgeted Structured Learning

In this section we formulate the problem of budgeted struc-
tured prediction for the expected and anytime budget set-
tings. We describe each approach in more detail in the fol-
lowing sections.

Structured Prediction: The goal in structured prediction
is to learn a function, F , that maps from an input space, X ,
to a structure space, Y . In contrast to multi-class classifi-
cation, the space of outputs Y is not simply categorical but
instead is assumed to be some exponential space of outputs
(often of varying size dependent on the feature space) con-
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Root I saw a friend today

Figure 1: When predicting the dependency tree, some de-
pendencies (e.g., the dashed edges) are easily resolved, and
there is less need for expressive features in making a pre-
diction. Our goal is to learn a system that identifies these
dependencies to reduce the test-time costs.

taining some underlying structure, generally represented by
multiple parts and relationships between parts. For example,
in dependency parsing, x ∈ X are features representing a
sentence (e.g., words, pos tags), and y ∈ Y is a parse tree.

In a structured prediction model, the mapping function
F is often modeled as F ≡ maxy∈Y Ψ(x, y), where Ψ :
(X,Y ) → R is a scoring function. We assume the score
can be broken up into sub-scores across components C,
Ψ(x, y) =

∑
c∈C ψc(x, yc), where yc is the output assign-

ment associated with the component c. The number of sub-
components, |C|, varies across examples. For the depen-
dency parsing example, each c is an edge in the directed
graphs, and yc is an indicator variable for whether the edge
is in the parse tree. The score of a parse tree consists of the
scores ψc(x, yc) of all its edges.

Structured Prediction Under an Expected Budget

Our goal is to reduce the cost of prediction during test-
time (representing computational time, energy consumption,
etc.). We consider the case where a variety of scoring func-
tions are available to be used for each component. Addition-
ally, associated with each scoring function is an evaluation
cost (such as the time or energy consumption required to ex-
tract the features for the scoring function).

For each example, we define a state S ∈ S , where the
space of states is defined S = {0, 1}K×|C|, representing
which of the K features is used for the |C| components dur-
ing prediction. In a state, the element S(k, c) = 1 indicates
that the kth feature will be used during prediction for com-
ponent c. For any state S, we define the evaluation cost:
c(S) =

∑
c∈C

∑
k∈K S(k, c)δk, where δk is the (known)

cost of evaluating the kth feature for a single part.
We assume that we are given a structured prediction

model F : X × S → Y that maps from a set of features
X ∈ X and a state S ∈ S to a structured label prediction
Ŷ ∈ Y . For a predicted label, we have a loss L : Y×Y → �

that maps from a predicted and true structured label, Ŷ and
Y , respectively, to an error cost such as Hamming error,
L(Ŷ , Y ) =

∑k
i=1 �Ŷ (i)�=Y (i). For an example (X,Y ) and

state S. We define a policy π : X → S that maps from the
feature space X and the initial state S0 to a new state. For
ease of reference, we refer to this policy as the feature se-
lection policy. Our goal is to learn a policy π chosen from a
family of functions Π that minimzes the expected loss sub-
ject to a budget constraint:

min
π∈Π

EX [L (F (X,π(X)), Y )] , s.t. EX [C(π(X))] ≤ B,

where B is a user specified test time budget. Rather an solv-
ing this constrained minimization, we define the modified
loss

C(X,Y, S) = L (F (X,S), Y ) + λc(S) (1)
that represents the error induced by predicting a label from
X using the sensors in S combined with the cost of ac-
quiring the sensors in S, where λ is a trade-off pattern
adjusted according to the budget B1. A small value of λ
encourages correct classification at the expense of feature
cost, whereas a large value of λ penalizes use of costly fea-
tures, enforcing a tighter budget constraint. We tune this pa-
rameter in the training for the target budget B. Our goal
is to learn a policy with minimal expected modified loss,
π∗ = argminπ∈Π�D [C (X,Y, π (X))] . In practice, D de-
notes a set of I.I.D training examples:

π∗ = argminπ∈Π

∑n

i=1
C (Xi, Yi, π (Xi)) . (2)

Note that the objective of the minimization can be
expanded with respect to the space of states, allow-
ing the optimization problem in (2) to be expressed
π∗ = argminπ∈Π

∑n
i=1

∑
S∈S C (Xi, Yi, S)�π(Xi)=S .

From this, we can reformulate the problem of learning a pol-
icy as a structured learning problem.
Theorem 1. The minimization in (2) is equivalent to the
structured learning problem:

argmin
π∈Π

n∑
i=1

∑
S∈S

(
max
S̃∈S

C(Xi, Yi, S̃)− C (Xi, Yi, S)
)
�π(Xi)�=S .

Proofs can be found in Suppl. Material. Theorem 1 maps
the policy learning problem in (2) to a weighted structured
learning problem. For each example Xi, an example/label
pair is created for each state S with an importance weight
representing the savings lost by not choosing the state S.

Unfortunately, the expansion of the cost function over the
space of states introduces the summation over the combina-
torial space of states. To avoid this, we instead introduce an
approximation to the objective in (2). Using a single indica-
tor function, we formulate the approximate policy

π̂ = argminπ∈Π

∑n

i=1

[
W (Xi, Yi)�π(Xi)�=S∗(Xi,Yi)

+ C (Xi, Yi, S
∗(Xi, Yi))

]
, (3)

where the pseudo-label is defined:

S∗(Xi, Yi) = argminS∈S C (Xi, Yi, S) (4)

and the example weight is defined as W (Xi, Yi) =
maxS′∈S C (Xi, Yi, S

′)− C (Xi, Yi, S
∗(Xi, Yi)).

This formulation reduces the objective from a summation
over the combinatorial set of states to a single indicator func-
tion for each example and represents an upper-bound on the
original risk.
Theorem 2. The objective in (3) is an upper-bound on the
objective in (2).

1Our framework does not restrict the type of modified loss,
C(X,Y, S), or the state cost, C(S) and extends to general losses
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Note that the second term (3) is not dependent on π. Thus,
Theorem 2 leads to an efficient algorithm for learning a pol-
icy function π by solving an importance-weighted structured
learning problem:

π̂ = argminπ∈Π

∑n

i=1
W (Xi, Yi)�π(Xi)�=S∗(Xi,Yi), (5)

where each example Xi having a pseudo-label S∗(Xi, Yi)
and importance weight W (Xi, Yi).
Combinatorial Search Space: Finding the psuedo-label in
Eqn. (4) involves searching over the combinatorially large
space of states, S, which is computationally intractable.
Note that in limited cases, one can apply greedy approaches
as in (Samdani and Roth 2012) for an exact solution. Instead,
we present trajectory-based and parsimonious pseudo-labels
for approximating S∗.
Trajectory Search: The trajectory-based pseudo-label is a
greedy approximation to the optimization in Eqn. (4). To
this end, define St

i as the 1-stage feasible transitions: St
i =

{S | d(S, Ŝt−1
i ) ≤ 1, S ∧ Ŝt−1

i = Ŝt−1
i }, where d is the

Hamming distance. We define a trajectory of states Ŝt
i where

Ŝt
i = argminS∈St

i
C(Xi, Yi, S). The initial state is assumed

to be Ŝ0
i = 0K×|C| where none of the K features are eval-

uated for the C components. For each example i, we obtain
a trajectory Ŝ0

i , Ŝ
1
i , . . . , Ŝ

T
i , where the terminal state ŜT

i is
the all-one state. We choose the pseudo-label from the tra-
jectory: Ŝ∗

i = argminS∈{Ŝ0
i ,...,Ŝ

T
i } C(Xi, Yi, S). Note that

by restricting the search space of states differing by a sin-
gle component, the approximation needs to only perform a
polynomial search over states as opposed to the exhaustive
combinatorial search in Eqn. (4). Observe that the modified
loss is not strictly decreasing, as the cost of adding features
may outweigh the reduction in loss at any time. Empirically,
this approach is computationally tractable and is shown to
produce strong results.
Parsimonious Search: Rather than a trajectory search, which
requires an inference update as we acquire more features,
we consider an alternative one stage update here. The idea
is to look for 1-step transitions that can potentially im-
prove the cost. We then simultaneously update all the fea-
tures that produce improvement. This obviates the need for
a trajectory search. In addition we can incorporate a guaran-
teed loss improvement for our parsimonious search. S+

i ∈
argminS∈St

i
1{C(Xi,Yi,S

t−1
i )≥C(Xi,Yi,S)+τ}. Note that the

potential candidate transitions can be non-unique and thus
we generate a collection of potential state transitions, S+

i .
To obtain the final state we take the union over these transi-
tions, namely, Ŝ∗ =

∨
S∈S+

i
S. Suppose we set the margin

τ = 0, replace the cost-function with the loss function then
this optimization is relatively simple (assuming that acquir-
ing more features does not increase the loss). This is be-
cause the new state is simply the collection of transitions
where the sub-components are incorrect. Finding the parsi-
nomious pseudo-label is computationally efficient and em-
pirically shows similar performance to the trajectory-based
pseudo-label.

Choosing the pseudo-label requires knowledge of the
budget B to set the cost trade-off parameter λ. If the bud-

get is unspecified or varies over time, a system capable of
adapting to changing budget demands is necessary. To han-
dle this scenario, we propose an anytime system in the next
section.

Anytime Structured Prediction

In many applications, the budget constraint is unknown a
priori or varies from example to example due to changing
resource availability, and an expected budget system as in
the previous section is not feasible. We instead consider the
problem of learning an anytime system (Grubb and Bagnell
2012). In this setting, a single system is designed such that
when a new example arrives during test-time, features are
acquired until an arbitrary budget constraint (that may vary
over different examples) is met for the particular example.
Note that an anytime system is a special case of the expected
budget constrained system. Instead of an expected budget,
a hard per-example budget is specified in test-time. A sin-
gle system is applied to all feasible budgets, as opposed to
learning unique systems for each budget constraint.

We model the anytime learning problem as sequential
state selection. The goal is to select a trajectory of states,
starting from an initial state S0 = 0k×|C| where all compo-
nents use features with negligible cost. To select this trajec-
tory of states, we define policy functions π1, . . . , πT , where
πt : X × S → S is a function that maps from a set of struc-
tured features X and current state S to a new state S′.

The sequential selection system is then defined
by the policy functions π1, . . . , πT . For an exam-
ple X , the policy functions produce a trajectory
of states S1(X) . . . , ST (X) defined as follows:
St(X) = πt(X,St−1(X)), S0(X) = S0.

Our goal is to learn a system with small expected loss at
any time t ∈ [0, T ]. Formally, we define this as the average
modified loss of the system over the trajectory of states:

π∗
1 , ...,π

∗
T = argmin

π1,...,πT∈Π

1

T
�D

[
T∑

t=1

C
(
X,Y, St(X)

)]
(6)

where Π is a user-specified family of functions. The prob-
lem of learning the policy functions is highly coupled due
to the dependence of the state trajectory on all policy func-
tions. We propose a greedy approximation to the policy
learning problem by sequentially learning policy functions
π1, . . . , πT that minimize the modified loss:

πt = argminπ∈Π�D
[
C
(
X,Y, St(X)

)]
(7)

for t ∈ {1, . . . , T}. Note that the πt selected in (7) does not
take into account the future effect on the loss in (6). We con-
sider πt in (7) to be a greedy approximation as it is instead
chosen to minimize the immediate loss at time t.

As in Thm. 1, the problem of learning the sequence of
policy functions π1, . . . , πT can be viewed as a weighted
structured learning problem.
Theorem 3. The optimization problem in (7) is equivalent to solv-
ing an importance weighted structured learning problem using an
indicator risk of the form:

argmin
π∈Π

n∑
i=1

∑
s∈S(St−1(Xi))

W (Xi, Yi, s)�π(Xi,St−1(Xi)) �=s,
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Algorithm 1 Anytime Policy Learning

input Training set, {Xi, Yi}i=1,...,n

set S0
i = 0 ∀i = 1, ..., n, t = 1

while t ≤ T do
Train πt according to Thm. 3
for i ∈ [n] do

Update states: St
i = πt(Xi, S

t−1
i )

t ← t+ 1
return π = {π1, . . . , πT }

Algorithm 2 Anytime Structured Prediction

input Policy: π1, ..., πT , Example: X , Budget: B
set S0 = 0, t = 0
while t ≤ T and c(St) < B do

St+1 = πt(X,St), t ← t+ 1

return y = F (X,St)

where the weight is defined:

W (Xi, Yi, s) = max
s′∈S(St−1(Xi))

C(Xi, Yi, s
′)− C (Xi, Yi, s) .

This is equivalent to an importance weighted structured learn-
ing problem, where each state s in S(St−1(Xi)) defines a
pseudo-label for the example Xi with an associated importance(
maxs′∈S(St−1(Xi))

C(Xi, Yi, s
′)− C (Xi, Yi, s)

)
.

Theorem 3 reduces the problem of learning a policy to an
importance weighted structured learning problem. Replace-
ment of the indicators with upper-bounding convex surro-
gate functions results in a convex minimization problem to
learn the policies π1, ..., πT . In particular, use of a hinge-
loss surrogate converts this problem to the commonly used
structural SVM. Experimental results show significant cost
savings by applying this sequential policy.

The training algorithm is presented in Algorithm 1. At
time t = 0, the policy π1 is trained to minimize the imme-
diate loss. Given this policy, the states of examples at time
t = 1 are fixed, and π2 is trained to minimize the immedi-
ate loss given these states. The algorithm continues learning
policies until every feature for every example as been ac-
quired. During test-time, the system sequentially applies the
trained policy functions until the specified budget is reaches,
as shown in Algorithm 2.

Related Work

Multi-class prediction with test-time budget has received
significant attention (see e.g., (Viola and Jones 2001;
Chen et al. 2012; Busa-Fekete, Benbouzid, and Kégl
2012; Karayev, Fritz, and Darrell 2013; Xu et al. 2013;
Trapeznikov and Saligrama 2013; Kusner et al. 2014; Wang
et al. 2014; Wang, Trapeznikov, and Saligrama 2014)). Fun-
damentally, multi-class classification based approaches can-
not be directly applied to structured settings for two rea-
sons: (1) Structured Feature Selection Policy: Unlike multi-
class prediction, in a structured setting, we have many
parts with associated features and costs for each part.

This often requires a coupled adaptive part by part fea-
ture selection policy applied to varying structures; (2)
Structured Inference Costs: In contrast to multi-class predic-
tion, structured prediction requires solving a constrained op-
timization problem in test-time, which is often computation-
ally expensive and must be taken into account.

Strubell et al. (2015) improve the speed of a parser
that operates on search-based structured prediction models,
where joint prediction is decomposed to a sequence of deci-
sions. In such a case, resource-constrained multi-class ap-
proaches can be applied, however this reduction only ap-
plies to search-based models that are fundamentally differ-
ent from the graph-based models we discussed (with differ-
ent types of theoretical guarantees and use cases). Applying
their policy to the case of graphical models requires repeated
inferences, dramatically increasing the computational cost
when inference is slow.2

Similar observations apply to (Weiss, Sapp, and Taskar
2013; Weiss and Taskar 2013)), who present a scheme for
adaptive feature selection assuming the computational costs
of policy execution and inference are negligible. Their ap-
proach uses reinforcement learning, requiring inference at
each step of their policy to estimate rewards. For complex
tasks, repeatedly performing inference can negate any com-
putational gains induced by adaptive feature selection (see
Fig. 3 in (Weiss and Taskar 2013)).

He et al. (2013) use imitation learning to adaptively se-
lect features for dependency parsing. Their approach can be
viewed as an approximation of Eqn. (5) with a parsimo-
nious search. Although their policy avoids performing in-
ference to estimate reward, multiple inferences are required
for each instance due to the design of action space. Over-
head is avoided by exploiting the specific inference structure
(maximal spanning tree over fully connected graph), and it
is unclear if it can be generalized.

Methods to increase the speed of inference (predicting
the given part responses) have been proposed (Weiss and
Taskar 2010; Shi, Steinhardt, and Liang 2015). These ap-
proaches can be incorporated into our approach to further
reduce computational cost and therefore are complementary.
More focused research has improved the speed of individ-
ual algorithms such as object detection using deformable
parts models (Felzenszwalb et al. 2010; Zhu et al. 2014)
and dependency parsing (He, Daumé III, and Eisner 2013;
Strubell et al. 2015). These methods are specialized, failing
to generalize to varying graph size and/or structures and re-
lying on problem-specific and algorithm-specific properties.

Adaptive features approaches have been designed to
improve accuracy, including easy-first decoding strate-
gies (Goldberg and Elhadad 2010; Stoyanov and Eisner
2012), however these methods focus on performance as op-
posed to computational cost.

2The equivalent policy of (Strubell et al. 2015) applied to our
inference algorithm is marked as the myopic policy in our exper-
iments. Due to the high cost of repeated inference, the resulting
policy is computationally intensive.
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Figure 2: An example word from the OCR test dataset. Note
that the word is initially incorrectly identified due to degra-
dation in letters ”u” and ”n”. The letter classification accu-
racy increases after the policy acquires the HOG features at
strategic positions.

Experiments

In this section, we demonstrate the effectiveness of the pro-
posed algorithm on two structured prediction tasks in differ-
ent domains: dependency parsing and OCR. We report the
results on both anytime and expected case policies and refer
to the latter one as one-shot policy.

Cost Computation: At a high-level, policies for resource
constrained structured prediction must manage & trade-off
benefits of three resources, namely, feature acquisition costs,
intermediate inference costs, and policy overhead costs that
decides between feature acquisition and inference. Some
methods as described earlier account for feature costs but
not inference and overhead costs. Other methods incorpo-
rate inference into their policy (meta-features) for selecting
new features but do not account for the resulting policy over-
head. Our approach poses policy optimization as a structured
learning problem and jointly optimizes these resources.

Comparisons to Existing Methods: We compare our sys-
tem to the Q-learning approach in (Weiss and Taskar 2013)
and two baselines: a uniform policy and a myopic policy.
The uniform policy takes random part level actions. The uni-
form policy will help us show that the performance of our
policy does not come from removing redundant features,
but clever allocation of them among samples. As a second
baseline, we adapt the myopic policy used by (Trapeznikov
and Saligrama 2013) to the structured prediction case. The
myopic policy runs the structured predictor initially on all
cheap features, then looks at the total confidence of the clas-
sifier normalized by the sample size (e.g. sentence length).
If the confidence is below a threshold, it chooses to ac-
quire expensive features for all positions. Finally, we com-
pare against the Q-learning method proposed by (Weiss and
Taskar 2013). This method requires global features for struc-
tures with varying size. From now on we will refer to fea-
tures that require access to more than one part as complex
features and part level features as simple features. In their
case, they use confidence feedback from the structured pre-
dictor which induces additional inference overhead for the
policy. In addition to this, it is not straightforward to apply
this approach to do part by part feature selection on struc-
tures with varying sizes.

Policy Overhead: Recall that policy evaluation must be
factored into test-time costs. Since our policy solves a struc-
tured inference problem this can be high when rich features
and structure are used. Our approach allows maximum flex-
ibility in terms of designing the best policy overhead ver-

Figure 3: Comparison of our one-shot policy (in red) with
uniform strategy (in black) and (Weiss and Taskar 2013)’s
policy for the OCR dataset. We obtained a top accuracy of
93%, which is not shown in the plots. Although the rate of
accuracy gain is large for the policy that utilizes complex
features, we note that policies that utilize simple features
achieve lower absolute run-time in the low budget region.
This is due to the overhead arising from additional inference
required for complex features.

sus performance trade-off. Experiments show that complex
features indeed benefit the policy, but simple features (e.g.,
w/o transition features) perform better for cases where the
inference time and feature costs are comparable and the ad-
ditional overhead is unwanted. In our OCR and DP experi-
ments, we use simple features and model the policy with a
weighted SVM.

One shot results are obtained by sweeping λ in Equation
1. Anytime results show the average performance if all test
examples terminate at particular budget. We discuss the im-
plementation details in Suppl. Material.
Optical Character Recognition We tested our algorithm
on a sequence-label problem, the OCR dataset (Taskar,
Guestrin, and Koller 2003) composed of 6,877 handwrit-
ten words, where each word is represented as a sequence of
16×8 letter images. We use a linear-chain Markov model,
and similar to the setup in (Weiss, Sapp, and Taskar 2013;
Wang et al. 2014), use raw pixel values and HOG features
with 3×3 cell size as our feature templates. We split the data
such that 90% is used for training and 10% is used for test.

Fig. 3 shows the average letter accuracy vs. total running
time. Note that (Weiss and Taskar 2013) can not operate on
part by part level when the graph structure is varying. We
see that using clever part by part selection has significant ad-
vantage over using uniform feature templates. The one-shot
policy performs better than the any-time policy because it
has more information (the test-time budget) during training
as well as being less constrained (samples can use varying
budgets compared to every sample using the same budget).
Finally, Fig 2 shows the behavior of the policy on an indi-
vidual example for the anytime model, significant gains in
accuracy are made in first several steps by correctly identi-
fying the noisy letters.

The significant speedup for our approach for OCR (and
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Figure 4: Performance of various adaptive policies for vary-
ing budget levels (dependency tree accuracy vs. total execu-
tion time), is compared to a uniform strategy on word and
sentence level, and myopic policy for the 23 section of PTB
dataset.

dependency parsing) can be partially attributed to the fact
that feature acquisition cost is relatively close to inference
costs. Therefore, methods such as (Weiss and Taskar 2013)
that require inference feedback on acquired features can per-
form poorly.
Dependency Parsing We follow the setting in (He, Daumé
III, and Eisner 2013) and conduct experiments on English
Penn Treebank (PTB) corpus (Marcus, Marcinkiewicz, and
Santorini 1993). All algorithms are implemented based on
the graph-based dependency parser (McDonald et al. 2005)
in Illinois-SL library (Chang et al. 2015), where the code
is optimized for speed. Two sets of feature templates are
considered for the parser. 3 The first (ψFull) considers the
part-of-speech (POS) tags and lexicons of xi, xj , and their
surrounding words (see (McDonald et al. 2005)). The other
(ψPOS) only considers the POS features. The policy assigns
one of these two feature templates to each word in the sen-
tence, such that all the directed edges (xi, xj) correspond-
ing to the word xi share the same feature templates. The
first feature template, ψPOS, takes 165 μs per word and the
second feature template, ψFull, takes 275 μs per word to ex-
tract the features and compute edge scores. The decoding
by ChuLiu-Edmonds algorithm is 75 μs per word, support-
ing our hypothesis that feature extraction makes a significant
portion of the total running time yet the inference time is not
negligible. Due to the space limit, we present further details
of the experiment setting in the appendix.

Fig. 4 shows the test performance (unlabeled attachment

3Complex features often contribute to small performance im-
provement. Adding redundant features can easily yield arbitrar-
ily large speedups, and comparing speedups of different systems
with different accuracy levels is not meaningful (see Fig. 3 in (He,
Daumé III, and Eisner 2013)). In addition, greedy-style parser such
as (Strubell et al. 2015) might be faster by nature. On the other
hand, several recently developed neural dependency parsers can
achieve higher accuracy, but are slower (Andor et al. 2016). Dis-
cussing different architectures is outside the scope of this paper.

Figure 5: Distribution of parse-tree depth for words that
use cheap (green) or expensive features (orange) for any-
time policy. Time increases from left to right. Each group of
columns show the distribution of depths from 0(root) to 7.
The policy is concentrated on acquiring features for lower
depth words. A sentence example also shows this effect. It
is easy to identify parents of the adjectives and determiner.
However, additional features(orange) are required for the
root(verb), subject and object.

accuracy) along with inference time. We see that all one-shot
policies perform similarly, and the anytime policy is below
one-shot policy for all budget levels. As discussed in Any-
time Structured Prediction, the anytime policy is more con-
strained in that it has to achieve a fixed budget for all exam-
ples. The naive myopic policy performs worse than uniform
since it has to run inference on samples with low confidence
two times, adding approximately 4.5 seconds of extra time
for the full test dataset. The effect of importance weights for
the greedy policy seems small. We hypothesize that this is
due to the policy functional complexity being the limiting
factor.

When we apply the length dictionary filtering heuristic in
(He, Daumé III, and Eisner 2013; Rush and Petrov 2012),
our parser achieves 89.7% UAS on PTB section 23 with
overall running time merely 7.5 seconds (I/O excluded, 10s
with I/O) and obtains 2.9X total speed-up while losing only
1% UAS compared to the baseline. 4 This significant speed-
up over an efficient implementation is remarkable.

Fig. 4 shows the distribution of depth for the words that
use expensive and cheap features in the ground truth depen-
dency tree. This result is particularly informative, because
any uniform feature selection policy would uniformly dis-
tribute the features among all bins. Hence, the result clearly
shows the advantage of using a part-by-part selection policy.

Conclusion

We presented a novel method for reducing feature acquisi-
tion cost in structured learning while maintaining predic-
tion performance. Our method jointly incorporates feature
costs with prediction error in its objective. We propose two
new formulations for two test-time settings (one-shot and

4This heuristic only works for parsing. Therefore, we exclude it
when presenting Figure 4 as it does not reflect the performance of
policies in general.In contrast, the baseline system in (He, Daumé
III, and Eisner 2013) is slower than us by about three times when
operating at 90% accuracy, Figure 3 in (He, Daumé III, and Eisner
2013) shows that their final system takes about 20s. We acknowl-
edge that (He, Daumé III, and Eisner 2013) use different features,
policy settings, and hardware from ours; therefore these numbers
might not be comparable.
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anytime) and show that both can be reduced to instances
of structured learning problems. Our policy leads to under-
standing the utility of simple and complex features in dif-
ferent regimes (low-budget vs. high-budget) providing the
user with the flexibility to seek the suitable tradeoffs. Our
method can utilize any structured inference algorithm and
available feature choices. Experimentally, we showed signif-
icant speedup for problems that require structured inference,
where both feature acquisition cost and structured inference
cost must both be taken into account.
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classification using sparse decision DAGs. In 29th Interna-
tional Conference on Machine Learning (ICML 2012), 951–
958. Omnipress.
Chang, K.-W.; Upadhyay, S.; Chang, M.-W.; Srikumar, V.;
and Roth, D. 2015. IllinoisSL: A JAVA Library for Struc-
tured Prediction. arXiv preprint arXiv:1509.07179.
Chen, M.; Weinberger, K. Q.; Chapelle, O.; Kedem, D.; and
Xu, Z. 2012. Classifier cascade for minimizing feature eval-
uation cost. In International Conference on Artificial Intel-
ligence and Statistics, 218–226.
Felzenszwalb, P. F.; Girshick, R. B.; McAllester, D.; and Ra-
manan, D. 2010. Object detection with discriminatively
trained part-based models. Pattern Analysis and Machine
Intelligence, IEEE Transactions on 32(9):1627–1645.
Goldberg, Y., and Elhadad, M. 2010. An efficient algo-
rithm for easy-first non-directional dependency parsing. In
Human Language Technologies: The 2010 Annual Confer-
ence of the North American Chapter of the Association for
Computational Linguistics, 742–750. Association for Com-
putational Linguistics.
Grubb, A., and Bagnell, D. 2012. Speedboost: Anytime pre-
diction with uniform near-optimality. In International Con-
ference on Artificial Intelligence and Statistics, 458–466.
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