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Abstract

Recently, there has been an increasing interest in design-
ing distributed convex optimization algorithms under the set-
ting where the data matrix is partitioned on features. Algo-
rithms under this setting sometimes have many advantages
over those under the setting where data is partitioned on sam-
ples, especially when the number of features is huge. There-
fore, it is important to understand the inherent limitations of
these optimization problems. In this paper, with certain re-
strictions on the communication allowed in the procedures,
we develop tight lower bounds on communication rounds
for a broad class of non-incremental algorithms under this
setting. We also provide a lower bound on communication
rounds for a class of (randomized) incremental algorithms.

1 Introduction

In this paper, we consider the following distributed convex
optimization problem over m machines:

min
w∈Rd

f(w; θ).

Each machine knows the form of f but only has some partial
information of θ. In particular, we mainly consider the case
of empirical risk minimization (ERM) problems. Let A ∈
R

n×d be a matrix containing n data samples with d features
and Aj: be the j-th row of the data matrix (corresponding to
the j-th data sample). Then f has the form:

f(w) =
1

n

n∑
j=1

φ(w,Aj:), (1)

where φ is some kind of convex loss.
In the past few years, many distributed optimizations al-

gorithms have been proposed. Many of them are under the
setting where data is partitioned on samples, i.e. each ma-
chine stores a subset of the data matrix A’s rows (Zhang
and Xiao 2015; Zhang, Wainwright, and Duchi 2012; Bal-
can et al. 2012; Boyd et al. 2011; Yang 2013; Lee, Ma, and
Lin 2015; Jaggi et al. 2014; Ma et al. 2015). Meanwhile, as
the dimension d can be enormously large, there has been an
increasing interest in designing algorithms with the setting
where the data is partitioned on features, i.e., each machine
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stores a subset of A’s columns (Richtárik and Takáč 2013;
Mareček, Richtárik, and Takáč 2015; Ma and Takáč 2016;
Necoara and Clipici 2013; Lee and Roth 2015). Compared
with algorithms under the sample partition setting, these al-
gorithms have relatively less communication cost when d is
large. In addition, as there is often no master machine in
these algorithms, they tend to have more balanced workload
on each machine, which is also an important factor affecting
the performance of a distributed algorithm.

As communication is usually the bottleneck of distributed
optimization algorithms, it is important to understand the
fundamental limits of distributed optimization algorithms,
i.e., how much communication an algorithm must need to
reach an ε-approximation of the minimum value. Studying
fundamental communication complexity of the distributed
computing without any assumption is quite hard, letting
alone continuous optimization. As for optimization, one al-
ternative way is to derive lower bounds on communication
rounds. The number of communication rounds is also an im-
portant metric as in many algorithms, faster machines often
need to pause and wait for slower ones before they commu-
nicate, which can be a huge waste of time. Recently, putting
some restrictions on communication allowed in each itera-
tion, Arjevani and Shamir (2015) developed lower bounds
on communication rounds for a class of distributed opti-
mization algorithms under the sample partition setting, and
these lower bounds can be matched by some existing algo-
rithms. However, optimization problems under the feature
partition setting are still not well understood.

Considering the increasing interest and importance of de-
signing distributed optimization algorithms under the fea-
ture partition setting, in our paper, we develop tight lower
bounds on communication rounds for a broad class of dis-
tributed optimization algorithms under this setting. Our re-
sults can provide deeper understanding and insights for de-
signing optimization algorithms under this setting. To de-
fine the class of algorithms, we put some constraints on the
form and amount of communication in each round, while
keeping restrictions mild and applying to many distributed
algorithms. We summarize our contributions as follows:

• For the class of smooth and λ-strongly convex functions
with condition number κ, we develop a tight lower bound
of Ω

(√
κ log(λ‖w

∗−w0‖
ε )

)
, which can be matched by a

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

1812



straightforward distributed version of accelerated gradient
decent (Nesterov 2013) and also DISCO-F for quadratics
(Ma and Takáč 2016), an variant of DISCO (Zhang and
Xiao 2015) under the feature partition setting.

• For the class of smooth and (non-strongly) convex func-
tions with Lipschitz smooth parameter L, we develop a

tight lower bound of Ω
(√

L
ε ‖w∗ − w0‖

)
, which is also

matched by the distributed accelerated gradient decent.
• By slightly modifying the definitions of the algorithms,

we define a class of incremental/stochastic algorithms un-
der the feature partition setting and develop a lower bound
of Ω

(
(
√
nκ+ n) log(‖w

∗−w0‖λ
ε )

)
for λ-strongly convex

functions with condition number κ.
Related Work The most revelant work should be (Arjevani
and Shamir 2015), which studied lower bounds under the
sample partition setting, and provided tight lower bounds on
communication rounds for convex smooth optimization after
putting some mild restrictions. More recently, Lee, Ma, and
Lin (2015) provided a lower bound for another class of al-
gorithms under that setting. Both these work as well as ours
are based on some techniques used in non-distributed opti-
mization lower bound analysis (Nesterov 2013; Lan 2015).

2 Notations and Preliminaries

We use ‖ · ‖ as Euclidean norm throughout the paper. For
a vector w ∈ R

d, we denote w(i) as the i-th coordinate
of the vector w ∈ R

d. We let the coordinate index set
[d] be partitioned into m disjoint sets S1,S2, . . . ,Sm with∑m

i=1 di = d and Sj = {k ∈ [d]
∣∣∑

i<j di < k ≤ ∑
i≤j di}

for j = 1, 2, . . . ,m. For a vector w ∈ R
d, denote w[j] as

a vector in R
dj which equals to the segment of w on coor-

dinates Sj . For a set of vectors V ⊆ R
d, we define V [j] =

{v[j]∣∣v ∈ V} ⊆ R
dj . Then we define f ′

j(x) :=
∂f(w)
∂w[j]

∣∣∣
w=x

and f ′′
ij(x) :=

∂2f(w)
∂w[i]∂w[j]

∣∣∣
w=x

.
Through the whole paper, we use partition-on-sample

and partition-on-feature to describe distributed algorithms
or communication lower bounds under the settings where
data is partitioned on samples and features respectively.

Then we list several preliminaries:
1. Lipschitz continuity. A function h is called Lipschitz

continuous with constant L if

∀x, y ∈ dom h ‖h(x)− h(y)‖ ≤ L‖x− y‖.
2. Lipschitz smooth and strongly convex. A function h is

called L-smooth and λ-strongly convex if

λ

2
‖x− y‖2 ≤ h(y)− h(x)− (x− y)T∇h(y) ≤ L

2
‖x− y‖2

3. Communication operations. Here we list some common
MapReduce types of communication operations (Dean
and Ghemawat 2008) in an abstract level:

(a) One-to-all broadcast. One-to-all broadcast is an oper-
ation that one machine sends identical data to all other
machines.

(b) All-to-all broadcast. All-to-all broadcast is an opera-
tion that each machines performs a one-to-all broadcast
simultaneously.

(c) Reduce. Consider the setting where each processor has
p units of data, Reduce is an operation that combines
the data items piece-wise (using some associative op-
erator, such as addition or min), and make the result
available at a target machine. For example, if each ma-
chine owns an R

d vector, then computing the average
of the vectors needs a Reduce operation of an R

d vec-
tor.

(d) ReduceAll. A ReduceAll operation can be viewed as
a combination of a Reduce operation and a one-to-all
broadcast operation.

3 Definitions and Framework

In this section we first describe a family of distributed opti-
mization algorithms using m machines, and then modify it
to get a family of incremental algorithms. At the beginning,
the feature coordinates are partitioned into m sets and each
machine owns the data columns corresponding to its coor-
dinate set. We model the algorithms as iterative processes
in multiple rounds and each round consists of a computation
phase followed by a communication phase. For each ma-
chine we define a feasible set and during the computation
phase, each machine can do some “cheap” communication
and add some vectors to it. During the communication phase
each machine can broadcast some limited number of points
to all other machines. We also assume the communication
operations are the common operations like broadcast, Re-
duce and ReduceAll.

3.1 Non-incremental Algorithm Family

Here we define the non-incremental algorithm class in a for-
mal way:

Definition 1 (partition-on-feature distributed optimization
algorithm family Fλ,L ). We say an algorithm A for solv-
ing (1) with m machines belongs to the family Fλ,L of dis-
tributed optimization algorithms for minimizing L-smooth
and λ-strongly convex functions (λ = 0 for non-strongly-
convex functions) with the form (1) if the data is partitioned
as follows:

• Let the coordinate index set [d] be partitioned into m dis-
joint sets S1,S2, . . . ,Sm with

∑m
i=1 di = d and Sj =

{k ∈ [d]
∣∣∑

j<i di < k ≤ ∑
j≤i di} for j = 1, 2, . . . ,m.

The data matrix A ∈ R
n×d is partitioned column-wise as

A = [A1, . . . , Am], where Aj consists of columns i ∈ Sj .
Each machine j stores Aj .

and the machines do the following operations in each round:

1. For each machine j, define a feasible set of vectors Wj ⊆
R

dj initialized to be W(0)
j = {0}. Denote W(k)

j as ma-
chine j’s feasible set Wj in the k-th round.

2. Assumption on feasible sets. In the k-th round, initially
W(k)

j = W(k−1)
j . Then for a constant number of times,
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each machine j can add any wj to W(k)
j if wj satisfies

wj ∈ span
{
uj , f

′
j(u), (f

′′
jj(u) +D)vj , f

′′
ji(u)vi

∣∣∣
uT = [u1

T , . . . , um
T ], uj ∈ W(k)

j , vj ∈ W(k)
j ,

ui ∈ W(k−1)
i , vi ∈ W(k−1)

i , i �= j, D is diagonal
}
.

(2)

3. Computation phase. Machines do local computations
and can perform no more than some constant times of Re-
duce/ReduceAll operations of an R

n vector or constant
during the computation phase.

4. Communication phase. At the end of each round, each
machine j can simultaneously broadcast no more than
constant number of Rdj vectors.

5. The final output after R rounds is wT = [wT
1 , . . . , w

T
m]

satisfies wj ∈ W(R)
j .

We have several remarks on the defined class of algo-
rithms:

• As described above, during the iterations to find w∗, ma-
chine j can only do updates on coordinates Sj . This
restriction is natural because machine j does not have
much information about function f on other coordinates.
Actually, almost all existing partition-on-feature algo-
rithms satisfy this restriction (Richtárik and Takáč 2013;
Mareček, Richtárik, and Takáč 2015; Ma and Takáč 2016;
Necoara and Clipici 2013; Lee and Roth 2015).

• Similar to (Arjevani and Shamir 2015), we use Wj to de-
fine the restriction on the updates. This is not an explicit
part of algorithms and machines do not necessarily need
to store it, nor do they need to evaluate the points every
time they add to the feasible sets. Although in most al-
gorithms belonging to this family, each machine broad-
casts the points it has added to the feasible set and store
what other machines have broadcast in the communica-
tion phase (a simple example is the straightforward dis-
tributed implementation of gradient decent), we choose
not to define feasible sets as physical sets that machines
need to store to keep our results general.

• The assumption on the updates is mild and it applies to
many partition-on-feature algorithms. It allows machines
to perform preconditioning using local second order in-
formation or use partial gradient to update. It also al-
lows to compute and utilize global second order infor-
mation, since the span we define includes the f ′′

ji(u)vi
term. Besides, we emphasize that putting such struc-
tural assumptions is necessary. Even if we could develop
some assumption-free communication lower bounds, they
might be too weak and have a large gap with upper
bounds provided by existing algorithms, thus becoming
less meaningful and cannot provide deeper understanding
or insights for designing algorithms.

• During the computation phase, we assume each local ma-
chines can perform unbounded amount of computation
and only limited amount of communication. Note that

this part of communication is a must in many partition-
on-feature algorithms, usually due to the need of comput-
ing partial gradients f ′

j(w). However, for some common
loss functions φ, such as (regularized) squared loss, lo-
gistic loss and squared hinge loss, computing f ′

j(w) for
all j ∈ [m] in total only needs a ReduceAll operation
of an R

n vector (Richtárik and Takáč 2013). In some
gradient (or partial gradient) based algorithms (Richtárik
and Takáč 2013; Mareček, Richtárik, and Takáč 2015),
communication to compute partial gradients are the only
need of communication in the computation phase. Be-
sides, some algorithms like DISCO-F (Ma and Takáč
2016) need to compute (∇f(w)u)[j]. For loss functions
like squared loss, logistic loss and squared hinge loss, it
only requires the same amount of communication as com-
puting partial gradients, i.e. a ReduceAll operation of an
R

n vector (Ma and Takáč 2016).

• Here we summarize the total communication allowed in
each round. We use Õ to denote asymptotic bounds hid-
ing constants and factors logarithmic in the required ac-
curacy of the solution. During the computation phase,
each machine can do constant times of ReduceAll oper-
ations of Õ(n) bits. During the communication phase,
each machine j can broadcast Õ(dj) bits, this can be
viewed as performing constant times of ReduceAll opera-
tion of an R

d vector. Therefore, the total communication
allowed in each round is no more than ReduceAll oper-
ations of Õ(n + d) bits. The amount of communication
allowed in our partition-on-feature algorithm class is rel-
atively small, compared with the partition-on-sample al-
gorithm class described in (Arjevani and Shamir 2015),
which allows Õ(md) bits of one-to-all broadcast in each
round. This is due to the partition-on-feature algorithms’
advantage on communication cost.

• We also emphasize that the communication allowed in the
entire round is moderate. On one hand, if we only allow
too little communication then the information exchange
between machines is not enough to perform efficient opti-
mization. As a result, hardly no practical distributed algo-
rithm could satisfy the requirement, which will diminish
the generality of our results. On the other hand, if we al-
low too much communication in each round, our assump-
tion on the feasible sets can be too strong. For example
if we allow enough communication for all machines to
broadcast their entire local data, then the machines only
need one communication round to find out a solution up
to any accuracy ε.

• Our assumption that Wj is initialized as {0} is merely
for convenience and we just need to shift the function via
f̄(w) = f(w + w0) for another starting point w0.

3.2 Incremental Algorithm Family

To define the class of incremental/stochastic algorithms
Iλ,L under the feature partition setting, we slightly modify
the definition of Fλ,L by replacing assumption on feasible
set (2) with the following while keeping the rest unchanged:
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Assumption on feasible sets for Iλ,L. In the k-th round,
initially W(k)

j = W(k−1)
j . Next for a constant number of

times, each machine j chooses g(w) := φ(w,Al:) for some
(possibly random) l and adds any wj to W(k)

j if wj satisfies

wj ∈ span
{
uj , g

′
j(u), (g

′′
jj(u) +D)vj , g

′′
ji(u)vi

∣∣∣
uT = [u1

T , . . . , um
T ], uj ∈ W(k)

j , vj ∈ W(k)
j ,

ui ∈ W(k−1)
i , vi ∈ W(k−1)

i , i �= j, D is diagonal
}
. (3)

4 Main Results

In this section, we present our main theorems followed by
some discussions on their implications.

First, we present a lower bound on communication rounds
for algorithms in Fλ,L:
Theorem 2. For any number m of machines, any constants
λ, L, ε > 0, and any distributed optimization algorithm
A ∈ Fλ,L, there exists a λ-strongly convex and L-smooth
function f(w) with condition number κ := L

λ over Rd such
that if w∗ = argminw∈Rd f(w), then the number of com-
munication rounds to obtain ŵ satisfying f(ŵ)−f(w∗) ≤ ε
is at least

Ω

(√
κ log

(‖w∗‖λ
ε

))
(4)

for sufficiently large d.
Similarly, we have a lower bound for algorithms in F0,L

for minimizing smooth convex functions:
Theorem 3. For any number m of machines, any constants
L > 0, ε > 0, and any distributed optimization algo-
rithm A ∈ F0,L, there exists a L-smooth convex function
f(w) over R

d such that if w∗ = argminw∈Rd f(w), then
the number of communication rounds to obtain ŵ satisfying
f(ŵ)− f(w∗) ≤ ε is at least

Ω

(√
L

ε
‖w∗‖

)
(5)

for sufficiently large d.
Then we contrast our lower bound for smooth strongly

convex functions with some existing algorithms and the up-
per bounds provided by their convergence rate. The com-
parisons indicate that our lower bounds are tight. For some
common loss functions, this can be matched by a straightfor-
ward distributed implementation of accelerated gradient de-
cent (Nesterov 2013) and it is easy to verify that it satisfies
our definition: let all machines compute their own partial
gradients and aggregate to form a gradient. This straight-
forward distributed version of accelerated gradient decent
achieves a round complexity of O

(√
κ log(‖w

∗−w0‖λ
ε )

)
,

which matches our lower bound exactly. Similarly, our
lower bound on smooth (non-strongly) convex functions can
also be matched by the distributed accelerated gradient de-
cent.

Recall that our definition of the algorithm class includes
some types of distributed second order algorithms, for ex-
ample DISCO-F (Ma and Takáč 2016). The number of

communication rounds DISCO-F needs to minimize general
quadratic functions is O

(√
κ log(‖w

∗−w0‖
ε )

)
, which also

matches our bound with respect to κ and ε. This indicates
that distributed second order algorithms may not achieve a
faster convergence rate than first order ones if only linear
communication is allowed.

Next we present a lower bound on communication rounds
for algorithms in Iλ,L:

Theorem 4. For any number m of machines, any constants
λ, L, ε > 0, and any distributed optimization algorithm A ∈
Iλ,L, there exists a λ-strongly convex and L-smooth func-
tion f(w) with condition number κ := L

λ over Rd such that
if w∗ = argminw∈Rd f(w), then the number of communi-
cation rounds to obtain ŵ satisfying E [f(ŵ)− f(w∗)] ≤ ε
is at least

Ω

((√
nκ+ n

)
log

(‖w∗‖λ
ε

))
(6)

for sufficiently large d.

5 Proof of Main Results

In this section, we provide proofs of Theorem 2 and The-
orem 4. The proof framework of these theorems are based
on (Nesterov 2013). As Theorem 3 can be obtained by re-
placing (Nesterov 2013, Lemma 2.1.3) with Corollary 6 (see
below) in the proof of (Nesterov 2013, Theorem 2.1.6), we
will not discuss it here for simplicity.

5.1 Proof of Theorem 2

The idea is to construct a “hard” function so that all algo-
rithms in the class we defined could not optimize well in
a small number of rounds: in each round only one of the
machines can do a constant steps of “progress” while other
machines stay “trapped” (see Lemma 5).

Without loss of generality, we assume that in every round,
each machine only add one vector to its feasible set and the
bound does not change asymptotically.

First, we construct the following function like (Lan 2015)

f(w) =
λ(κ− 1)

4

[1
2
wTAw − 〈e1, w〉

]
+

λ

2
‖w‖2, (7)

where A is a tridiagonal matrix in R
d×d with the form

A =

⎡
⎢⎢⎢⎢⎢⎣

2 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0
0 −1 2 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · −1 2 −1

0 0 0 · · · 0 −1
√
κ+3√
κ+1

⎤
⎥⎥⎥⎥⎥⎦ .

It is easy to verify that f(w) is λ-strongly convex with con-
dition number κ.

After K rounds of iteration, let Et,d := {x ∈ R
d
∣∣x(i) =

0, t + 1 ≤ i ≤ d} and W(K) := {[wT
1 , . . . , w

T
m]

T ∣∣wj ∈
W(K)

j , j = 1, . . . ,m}.
Then we have the following lemma:
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Lemma 5. If W(K) ⊆ EK,d for some K ≤ d − 1, then we
have W(K+1) ⊆ EK+1,d.

Proof. First we recall the assumption on Wj’s in (2):

wj ∈ span
{
uj , f

′
j(u), (f

′′
jj(u) +D)vj , f

′′
ji(u)vi

∣∣∣
uT = [u1

T , . . . , um
T ], uj ∈ W(k)

j , vj ∈ W(k)
j ,

ui ∈ W(k−1)
i , vi ∈ W(k−1)

i , i �= j, D is diagonal
}
.

We just need to prove that for any vector u, v ∈ W(K) ⊆
EK,d,

uj , f
′
j(u), (f

′′
jj(u) +D)vj , f

′′
ji(u)vi ∈ E [j]

K+1,d

For convenience of the proof, we partition A as follow

A =

[
A11 A12 A13

A21 A22 A23

A31 A32 A33

]
, (8)

where A11 ∈ R
a×a, A22 ∈ R

b×b, A33 ∈ R
c×c and

a =
∑

i<j di, b = dj , c =
∑

i>j di . Let x1 =

[uT
1 , u

T
2 , . . . , u

T
j−1]

T , x2 = uj , and x3 = [uT
j+1, . . . , u

T
m]T .

Then we obtain

f ′j(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
λ(κ−1)

2
A22 + λI

]
x2+

λ(κ−1)
2

(A21x1 +A23x3) j �= 1

[
λ(κ−1)

2
A22 + λI

]
x2+

λ(κ−1)
2

(A21x1 +A23x3)− λ(κ−1)
4

e
[1]
1 j = 1

and

f ′′
jj(u) =

λ(κ− 1)

4
A22 + λI.

As f ′′
jj(u) +D is a tridiagonal matrix, we have

(f ′′
jj(u) +D)vj ∈ E [j]

K+1,d. (9)

Using the fact that

A21 =

⎡
⎢⎣

0 · · · 0 −1
0 · · · 0 0
· · · · · · · · · · · ·
0 · · · 0 0

⎤
⎥⎦A23 =

⎡
⎢⎣

0 0 · · · 0
· · · · · · · · · · · ·
0 0 · · · 0
−1 0 · · · 0

⎤
⎥⎦ ,

we can rewrite f ′
j as

f ′
j(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
λ(κ−1)

2 A22 + λI
]
x2+

λ(κ−1)
2 [x1(a), 0, . . . , 0, x3(1)]

T , j �= 1[
λ(κ−1)

2 A22 + λI
]
x2+

λ(κ−1)
2 [ 12 , 0, . . . , 0, x3(1)]

T . j = 1

As λ(κ−1)
2 A22 + λI is a tridiagonal matrix, then[λ(κ− 1)

2
A22 + λI

]
x2 ∈ E [j]

K+1,d.

We can also obtain the following by some simple discussions
on different cases:

[
1

2
, 0, . . . , 0, x3(1)]

T , [x1(a), 0, . . . , 0, x3(1)]
T ∈ E [j]

K+1,d

Therefore, we conclude that

f ′
j(w) ∈ E [j]

K+1,d. (10)

Besides, note that

f ′′
ji(u)vi =

⎧⎨
⎩
[0, . . . , 0,−vi(1)]

T i = j + 1

[−vi(di), 0, . . . , 0]
T i = j − 1

[0, 0, . . . , 0]T otherwise

Similarly, using some simple discussions on different cases
we obtain

f ′′
ji(u)vi ∈ E [j]

K+1,d (11)

Hence when W(K) ⊆ EK,d, combining (9) (10) and (11)
we have for all u ∈ WT and j

uj , f
′
j(u), (f

′′
jj(u) +D)vj , f

′′
ji(u)vi ∈ E [j]

K+1,d.

which implies the newly added wj satisfies

wj ∈ E [j]
K+1,d

Therefore, we prove that W(K+1) ⊆ EK+1,d.

Applying Lemma 5 recursively we can get the following
corollary:

Corollary 6. After K ≤ d rounds, we have W(K) ⊆ EK,d.

With Corollary 6, we now proceed to finish the proof of
Theorem 2. First, we can find w∗ by the first order optimal-
ity condition

f ′(w∗) =
(λ(κ− 1)

4
A+ λI

)
w∗ − λ(κ− 1)

4
= 0,

which implies (
A+

4

κ− 1
I
)
w∗ = e1.

The coordinate form of above equation is

2
κ+ 1

κ− 1
w∗(1)− w∗(2) = 1,

w∗(k + 1)− 2
κ+ 1

κ− 1
w∗(k) + w∗(k − 1) = 0,

2 ≤ k ≤ d− 2,

−x∗(d− 1) +

(
4

κ− 1
+

√
κ+ 3√
κ+ 1

)
x∗(d) = 0,

and let q be the smallest root of the following equation

q2 − 2κ+ 2

κ− 1
q + 1 = 0,

that is q =
√
κ−1√
κ+1

. Then w∗ satisfies w∗(i) = qi for 1 ≤ i ≤
d. Hence,

‖w∗‖2 =

d∑
i=1

[w∗(i)]2 =

d∑
i=1

q2i =
q2(1− q2d)

1− q2
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Let w(k) be any point in W(k) after k rounds iterations
(k ≤ d), applying Corollary 6 we have

‖w(k) − w∗‖2 ≥
d∑

i=k+1

[w∗(i)]2 =
d∑

i=k+1

q2i

=
q2(k+1)[1− q2(d−k+2)]

1− q2

=
1− q2(d−k+2)

1− q2d
q2k‖w∗‖2

≥ 1− q4

1− q2d
q2k‖w∗‖2

≥ 1− q

1
q2k‖w∗‖2

Combing the above inequality and the optimal condition of
strongly-convex function, we obtain

f(w(k))− f(w∗) ≥ λ

2
‖w(k) − w∗‖2

≥ λ(1− q)

2
q2k‖w∗‖2

=
λ

2

2√
κ+ 1

(√
κ− 1√
κ+ 1

)2k

‖w∗‖2

≥ λ√
κ+ 1

exp

(
− 4k√

κ+ 1

)
‖w∗‖2.

Thus if f(w(k))− f(w∗) ≤ ε, then we have

k ≥
√
κ− 1

4
log

(
λ‖w∗‖2

(
√
κ+ 1)ε

)

= Ω

(√
κ log

(
λ‖w∗‖

ε

))
,

which completes the proof.

5.2 Proof of Theorem 4

With a slight abuse of notation, we construct the following
separable strongly convex function:

f(w) :=
1

m

m∑
j=1

φj(wj), (12)

where wT = [wT
1 , . . . , w

T
m] and φj(wj) is also a separable

strongly convex function with form of

φj(wj) =

n
m∑
i=1

[
λ(κ− 1)

4

(
1

2
wT

j,iAj,iwj,i − 〈e1, wj,i〉
)

+
λ

2
‖wj,i‖2

]
, (13)

where wT
j = [wT

j,1, . . . , w
T
j,n] and Aj,i is a tridiagonal ma-

trix in R
dj×dj given by

Aj,i =

⎡
⎢⎢⎢⎢⎢⎣

2 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0
0 −1 2 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · −1 2 −1

0 0 0 · · · 0 −1
√
κ+3√
κ+1

⎤
⎥⎥⎥⎥⎥⎦
.

It is simple to veriy that f is a λ-strongly convex func-
tion with condition number κ. Note that f is a quadratic
function with its coefficient matrix being a block diagonal
matrix, in which each block matrix is tridiagonal. As f is
separable, the setting here can be viewed as each machine
j has all information (all data samples in all coordinates) of
f ’s component φj , and all machines simultaneously do non-
distributed incremental opitmizaion over their local data. To
get the lower bound, note that in “clever” algorithms, ma-
chine j only chooses data samples among the ones corre-
sponding to φj in each round, then we have

E[‖w(k) − w∗‖2]

≥ E

⎡
⎣ m∑
j=1

‖w(k)
j − w∗

j ‖2
⎤
⎦

≥
m∑
j=1

[
1

2
exp

(
− 4k

√
κ

n(
√
κ+ 1)2 − 4

√
κ

)
‖w∗

j ‖2
]

=
1

2
exp

(
− 4k

√
κ

n(
√
κ+ 1)2 − 4

√
κ

)
‖w∗‖2.

The second inequality is according to (Lan 2015, Theorem
3) and Corollary 6.

Finally by (Lan 2015, Corollary 3), we get if
E
[
f(w(k))− f(w∗)

] ≤ ε, then

k ≥ Ω

((√
nκ+ n

)
log

(‖w∗‖λ
ε

))
, (14)

for sufficiently large d.

6 Conclusion

In this paper we have defined two classes of distributed op-
timization algorithms under the setting where data is par-
titioned on features: one is a family of non-incremental
algorithms and the other is incremental. We have pre-
sented tight lower bounds on communication rounds for
non-incremental class of algorithms. We have also provided
one lower bound for incremental class of algorithms but
whether it is tight remains open.

The tightness informs that one should break our defini-
tion when trying to design optimization algorithms with less
communication rounds than existing algorithms. We also
emphasize that our lower bounds are important as they can
provide deeper understanding on the limits of some ideas
or techniques used in distributed optimization algorithms,
which may provide some insights for designing better algo-
rithms.

To the best of our knowledge, this is the first work to
study communication lower bounds for distributed optimiza-
tion algorithms under the setting where data is partitioned on
features.
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Ma, C., and Takáč, M. 2016. Distributed inexact damped
newton method: Data partitioning and load-balancing. arXiv
preprint arXiv:1603.05191.
Ma, C.; Smith, V.; Jaggi, M.; Jordan, M. I.; Richtárik, P.;
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