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Abstract

Direct contextual policy search methods learn to improve pol-
icy parameters and simultaneously generalize these parame-
ters to different context or task variables. However, learning
from high-dimensional context variables, such as camera im-
ages, is still a prominent problem in many real-world tasks.
A naive application of unsupervised dimensionality reduction
methods to the context variables, such as principal component
analysis, is insufficient as task-relevant input may be ignored.
In this paper, we propose a contextual policy search method in
the model-based relative entropy stochastic search framework
with integrated dimensionality reduction. We learn a model of
the reward that is locally quadratic in both the policy param-
eters and the context variables. Furthermore, we perform su-
pervised linear dimensionality reduction on the context vari-
ables by nuclear norm regularization. The experimental re-
sults show that the proposed method outperforms naive di-
mensionality reduction via principal component analysis and
a state-of-the-art contextual policy search method.

Introduction

An autonomous agent often requires different policies for
solving tasks with different contexts. For instance, in a ball
hitting task the robot has to adapt his controller according to
the ball position, i.e., the context. Direct policy search ap-
proaches (Baxter and Bartlett 2000; Rosenstein and Barto
2001; Deisenroth, Neumann, and Peters 2013) allow the
agent to learn a separate policy for each context through trial
and error. However, learning optimal policies for many large
contexts, such as in the presence of continuous context vari-
ables, is impracticable. On the other hand, direct contextual
policy search approaches (Kober, Oztop, and Peters 2011;
Neumann 2011; da Silva, Konidaris, and Barto 2012) repre-
sent the contexts by real-valued vectors and are able to learn
a context-dependent distribution over the policy parameters.
Such a distribution can generalize across context values and
therefore the agent is able to adapt to unseen contexts.
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Yet, direct policy search methods (both contextual and
plain) usually require a lot of evaluations of the objective and
may converge prematurely. To alleviate these issues, Abdol-
maleki et al. (2015) recently proposed a stochastic search
framework called model-based relative entropy stochastic
search (MORE). In this framework, the new search distri-
bution can be computed efficiently in a closed form using
a learned model of the objective function. MORE outper-
formed state-of-the-art methods in stochastic optimization
problems and single-context policy search problems, but its
application to contextual policy search has not been explored
yet. One of the contributions in this paper is a novel contex-
tual policy search method in the MORE framework.

However, a naive extension of the original MORE would
still suffer from high-dimensional contexts. Learning from
high-dimensional variables, in fact, is still an important
problem in statistics and machine learning (Bishop 2006).
Nowadays, high-dimensional data (e.g., camera images) can
often be obtained quite easily, but obtaining informative
low-dimensional variables (e.g., objects positions) is non-
trivial and requires prior knowledge and/or human guidance.

In this paper, we propose a method to handle high-
dimensional context variables by learning a low-rank rep-
resentation of the objective function. We show that learning
a low-rank representation corresponds to performing linear
dimensionality reduction on the context variables. Since op-
timization with a rank constraint is generally NP-hard, we
minimize the nuclear norm (also called trace norm), which
is a convex surrogate of the rank function (Recht, Fazel,
and Parrilo 2010). This minimization allows us to learn a
low-rank representation in a fully supervised manner by just
solving a convex optimization problem. We evaluate the pro-
posed method on a synthetic task with known ground truth
and on robotic ball hitting tasks based on camera images.
The evaluation shows that the proposed method with nuclear
norm minimization outperforms the methods that naively
perform principal component analysis to reduce the dimen-
sionality of context variables.
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Contextual Policy Search

In this section, we formulate the direct contextual policy
search problem and briefly discuss existing methods.

Problem Formulation

The direct contextual policy search is formulated as follows.
An agent observes the context variable c ∈ R

dc and draws a
parameter θ ∈ R

dθ from a search distribution p(θ|c). Sub-
sequently, the agent executes a policy with the parameter θ
and observes a scalar reward computed by a reward func-
tion R(θ, c). The goal is to find a search distribution p(θ|c)
maximizing the expected reward∫∫

μ(c)p(θ|c)R(θ, c)dθdc, (1)

where μ(c) denotes the context distribution. We assume that
the reward function R(θ, c) itself is unknown, but the agent
can always access the reward value. We stress that context
variables are fixed during task execution and they are drawn
independently from μ(c). Thus, context variables are differ-
ent from state variables in standard direct policy search.

Related Work

In the basic direct contextual policy search framework, the
agent iteratively collects samples {(θn, cn, R(θn, cn))}Nn=1
using a sampling distribution q(θ|c). Subsequently, it com-
putes a new search distribution p(θ|c) such that the ex-
pected reward increases or is maximized. In literature, dif-
ferent approaches have been used to compute the new search
distribution, e.g., evolutionary strategies (Hansen, Müller,
and Koumoutsakos 2003), expectation-maximization algo-
rithms (Kober, Oztop, and Peters 2011), or information the-
oretic approaches (Deisenroth, Neumann, and Peters 2013).

Most of the existing direct contextual policy search meth-
ods focus on tasks with low-dimensional context variables.
To learn from high-dimensional context variables, usually
the problem of learning a low-dimensional context repre-
sentation is separated from the direct policy search by pre-
processing the context space. However, unsupervised lin-
ear dimensionality reduction techniques are insufficient in
problems where the latent representation contains distrac-
tor dimensions that do not influence the reward. A promi-
nent example is principal component analysis (PCA) (Jol-
liffe 1986), that does not take the supervisory signal into
account and therefore cannot discriminate between rele-
vant and irrelevant latent dimensions. On the other hand,
supervised linear dimensionality reduction techniques re-
quire a suitable response variable. However, manually defin-
ing such variables in nontrivial for many problems. More-
over, they often involve non-convex optimization and suf-
fer from local optima (Fukumizu, Bach, and Jordan 2009;
Suzuki and Sugiyama 2013; Li et al. 2016).

In the last years, non-linear dimensionality reduction
techniques based on deep learning have gained popular-
ity (Bengio 2009). For instance, Watter et al. (2015) pro-
posed a generative deep network to learn low-dimensional
representations of images in order to capture information
about the system transition dynamics and allow optimal con-
trol problems to be solved in low-dimensional spaces. More

recently, Silver et al. (2016) successfully trained a machine
to play a high-level game of go using a deep convolutional
network. Although their work does not directly focus on
dimensionality reduction, deep convolutional networks are
known to be able to extract meaningful data representations.
Thus, the effect of dimensionality reduction is achieved.

However, deep learning approaches generally require
large datasets that are difficult to obtain in real-world scenar-
ios (e.g., robotics). Furthermore, they involve solving non-
convex optimization, which can suffer from local optima.

In this paper, we tackle the issues raised above. First, the
proposed approach integrates supervised linear dimensional-
ity reduction on the context variables by learning a low-rank
representation for the reward model. Second, the problem is
formalized as a convex optimization problem and is there-
fore guaranteed to converge to a global optimum.

Contextual MORE

The original MORE (Abdolmaleki et al. 2015) finds a search
distribution (without context) maximizing the expected re-
ward while upper-bounding the Kullback-Leibler (KL) di-
vergence (Kullback and Leibler 1951) between successive
search distributions and lower-bounding the entropy of the
new search distribution. The KL and the entropy bounds
control the exploration-exploitation trade-off. The key in-
sight of MORE is to learn a reward model to efficiently
compute a new search distribution in closed form. Below,
we propose our method called contextual model-based rela-
tive entropy stochastic search (C-MORE), which is a direct
contextual policy search method in the MORE framework.

Learning the Search Distribution

The goal of C-MORE is to find a search distribution p(θ|c)
that maximizes the expected reward while upper-bounding
the expected KL divergence between p(θ|c) and q(θ|c), and
lower-bounding the expected entropy of p(θ|c). Formally,

max
p

∫∫
μ(c)p(θ|c)R(θ, c)dθdc,

s.t.

∫∫
μ(c)p(θ|c) log p(θ|c)

q(θ|c)dθdc ≤ ε,

−
∫∫

μ(c)p(θ|c) log p(θ|c)dθdc ≥ β,∫∫
μ(c)p(θ|c)dθdc = 1,

where the KL upper-bound ε and the entropy lower-bound β
are parameters specified by the user. The former is fixed for
the whole learning process. The latter is adaptively changed
according to the percentage of the relative difference be-
tween the sampling policy’s expected entropy and the mini-
mal entropy, as described by Abdolmaleki et al. (2015), i.e.,

β = γ(E[H(q)]−H0) +H0,

where E[H(q)] = − ∫∫
μ(c)q(θ|c) log q(θ|c)dθdc is the

sampling policy’s expected entropy and H0 is the minimal
entropy. In the experiments, we set γ = 0.99 and H0 =
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Algorithm 1: C-MORE
Input: Parameters ε and β, initial distribution p(θ|c)

1 for k = 1, . . . ,K do
2 for n = 1, . . . , N do
3 Observe context cn ∼ μ(c)
4 Draw parameter θn ∼ p(θ|cn)
5 Execute task with θn and receive R(θn, cn)

6 Learn the quadratic model R̂(θ, c)
7 Solve argminη>0,ω>0 g(η, ω) using Eq. (6)
8 Set new search distribution p(θ|c) using Eq. (7)

−150. The above optimization problem can be solved by the
method of Lagrange multipliers1. The solution is given by

p(θ|c) = q(θ|c) η
η+ω exp

(
R(θ, c)

η + ω

)
exp

(
−η + ω − γ

η + ω

)
.

The Lagrange multipliers η > 0 and ω > 0 are obtained by
minimizing

g(η, ω) = ηε− ωβ + (η + ω)

∫
μ(c)h(c, η, ω)dc, (2)

where

h(c, η, ω) = log

∫
q(θ|c) η

η+ω exp

(
R(θ, c)

η + ω

)
dθ. (3)

Evaluating h(c, η, ω) is not trivial due to the integration over
q(θ|c) η

η+ω , that cannot be approximated straightforwardly
by sample averages. Below, we describe how to solve this
issue and evaluate the dual function from data.

Dual Function Evaluation via the Quadratic Model

We assume that the reward function R(θ, c) can be approx-
imated by a quadratic model

R̂(θ, c) = θ�Aθ + c�Bc+ 2θ�Dc

+ θ�r1 + c�r2 + r0, (4)

where A ∈ R
dθ×dθ ,B ∈ R

dc×dc ,D ∈ R
dθ×dc , r1 ∈

R
dθ , r2 ∈ R

dc , and r0 ∈ R are the model parameters. Ma-
trices A and B are symmetric. We also assume the sampling
distribution q(θ|c) to be Gaussian of the form

q(θ|c) = N (θ|b+Kc,Q). (5)

Under these assumptions, the dual function in Eq. (2) can be
expressed as

g(η, ω) = ηε− ωβ +
1

2

(
f�F−1f − ηb�Q−1b

+ (η + ω) log |2πF−1(η + ω)| − η log |2πQ|
)

+

∫
μ(c)

(
c�m+

1

2
c�Mc

)
dc, (6)

1All derivations are given in the supplementary material.

where

f = ηQ−1b+ r1,

F = ηQ−1 − 2A,

m = L�F−1f − ηK�Q−1b,

M = L�F−1L− ηK�Q−1K,

L = ηQ−1K + 2D.

Since the context distribution μ(c) is unknown, we approxi-
mate the expectation in Eq. (6) by sample averages. The dual
function can be minimized by standard non-linear optimiza-
tion routines such as IPOPT (Wächter and Biegler 2006).
Finally, using Eq. (4) and Eq. (5) the new search distribution
p(θ|c) is computed in closed form as

p(θ|c) = N
(
θ|F−1f + F−1Lc,F−1(η + ω)

)
. (7)

To ensure that the covariance F−1(η+ω) is positive definite,
the matrix A of the quadratic model is constrained to be
negative definite. C-MORE is summarized in Algorithm 1.

Learning the Quadratic Model

The performance of C-MORE depends on the accuracy of
the quadratic model. For many problems, the reward func-
tion R(θ, c) is not quadratic and the quadratic model is not
suitable to approximate the entire reward function. How-
ever, the reward function is often smooth and it can locally
be approximated by a quadratic model. Therefore, we lo-
cally approximate the reward function by learning a new
quadratic model for each policy update. The quadratic model
can be learned by regression methods such as ridge regres-
sion2 (Bishop 2006). However, ridge regression is prone to
error when the context is high-dimensional. Below, we ad-
dress this issue by firstly showing that performing linear
dimensionality reduction on the context variables yields a
low-rank matrix of parameters. Secondly, we propose a nu-
clear norm minimization approach to learn a low-rank ma-
trix without explicitly performing dimensionality reduction.

Dimensionality Reduction and Low-Rank
Representation

Linear dimensionality reduction learns a low-rank matrix
W and projects the data onto a lower dimensional subspace.
Performing linear dimensionality reduction on the context
variables yields the following quadratic model

R̂(θ, c) = θ�Aθ + c�W�B̃Wc+ 2θ�D̃Wc

+ θ�r1 + c�W�r̃2 + r0, (8)

where W ∈ R
dz×dc denotes a rank-dz matrix with dz <

dc. The model parameters A, B̃, D̃, r1, r̃2 and r0 can be
learned by ridge regression. However, the matrix B =

2After learning the parameters, A is enforced to be negative
definite by truncating its positive eigenvalues. Subsequently, we
re-learn the remainder parameters. An alternative approach is pro-
jected gradient descend, but it is more computationally demanding
and requires step size tuning.
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W�B̃W is low-rank, i.e., rank(B) = dz < dc. Thus,
performing linear dimensionality reduction on the contexts
makes B low-rank. Note that the rank of D = D̃W de-
pends on θ and is problem dependent. Hence, we do not
consider the rank of D for dimensionality reduction.

There are several linear dimensionality reduction meth-
ods that can be applied to learn W . Principal component
analysis (PCA) (Jolliffe 1986) is a common method used
in statistics and machine learning. However, being unsuper-
vised, it does not take the regression targets into account, i.e.,
the reward. Alternative supervised techniques, such as KDR
(Fukumizu, Bach, and Jordan 2009), LSDR (Suzuki and
Sugiyama 2013), and supervised PCA (Li et al. 2016), do
not take the regression model, i.e., the quadratic model, into
account. On the contrary, in projection regression (Friedman
and Stuetzle 1981; Vijayakumar and Schaal 2000) the model
parameters and the projection matrix are learned simulta-
neously. However, applying this approach to the model in
Eq. (8) requires alternately optimizing for the model param-
eters and the projection matrix and is computationally ex-
pensive.

In the original MORE, Bayesian dimensionality reduc-
tion (Gönen 2013) is applied to perform linear supervised
dimensionality reduction on θ, i.e., the algorithm consid-
ers a projection Wθ. The matrix W is sampled from a
prior distribution and the algorithm learns the model param-
eters using weighted average over the sampled W . However,
for high-dimensional W , this approach requires an imprac-
tically large amount of samples W to obtain an accurate
model, leading to computationally expensive updates.

Learning a Low-Rank Matrix with Nuclear Norm
Regularization

The quadratic model in Eq. (4) can be re-written as

R̂(x) = x�Hx,

where the input vector x and the parameter matrix H are
defined as

x =

[
θ
c
1

]
, H =

⎡⎣ A D 0.5r1
D� B 0.5r2
0.5r�1 0.5r�2 r0

⎤⎦ .

Note that H is symmetric since both A and B are symmet-
ric. As discussed in the previous section, we desire B to be
low-rank. Unlike Eq. (8), we do not consider dimensionality
reduction for the linear terms in c, i.e., 2θ�Dc and c�r2.
Instead, we learn H by solving the following convex opti-
mization problem

min
H

[J (H) + λ∗‖B‖∗] ,
s.t. A is negative definite, (9)

where J (H) denotes the differentiable part

J (H) =
1

2N

N∑
n=1

(
x�
nHxn −R(θn, cn)

)2
+

λ

2
‖H‖2F,

where λ > 0 and λ∗ > 0 are regularization parameters. The

Frobenius norm ‖ · ‖F is defined as ‖H‖F =
√
tr(HH�).

The nuclear norm of a matrix ‖ ·‖∗ is defined as the 	1-norm
of its singular values . This optimization problem can be ex-
plained as follows. The term J (H) consists of the mean
squared error and the 	2-regularization term. Thus, minimiz-
ing J (H) corresponds to ridge regression. Minimizing the
nuclear norm ‖B‖∗ shrinks the singular values of B. Thus,
the solution tends to have sparse singular values and to be
low-rank. The negative definite constraint further ensures
that the covariance matrix in Eq. (7) is positive definite.

The convexity of this optimization problem can be veri-
fied by checking the following conditions. First, the convex-
ity of the mean squared error can be proven following Boyd
and Vandenberghe 2004 (page 74). Let g(t) = Ĵ (Z + tV )
be the mean squared error and Z and V are symmetric ma-
trices. Then we have that ∇2g(t) = 1

N

∑
(x�

nV xn)
2 ≥ 0.

Thus, the mean squared error is convex. Since the Frobe-
nius norm is convex, J (H) is convex as well. Second, a
set of negative definite matrices is convex since y�(aX +
(1 − a)Y )y < 0 for any negative definite matrices X and
Y , 0 ≤ a ≤ 1, and any vector y (Boyd and Vanden-
berghe 2004). Third, the nuclear norm is a convex function
(Recht, Fazel, and Parrilo 2010). Note that, since the gradi-
ent ∇J (H) is symmetric, H is guaranteed to be symmetric
as well given that the initial solution is also symmetric.

It is also possible to enforce the matrix H (rather than
B) to be low-rank, implying that both θ and c can be pro-
jected onto a common low-dimensional subspace. However,
this is often not the case, and regularizing by the nuclear
norm of H did not perform well in our experiments. We
may also directly constrain rank(B) = dz in Eq. (9) instead
of performing nuclear norm regularization. However, min-
imization problems with rank constraints are NP-hard. On
the contrary, the nuclear norm is the convex envelop of the
rank function and can be optimized more efficiently (Recht,
Fazel, and Parrilo 2010). For this reason, the nuclear norm
has been a popular surrogate to a low-rank constraint in
many applications, such as matrix completion (Candès and
Tao 2010) and multi-task learning (Pong et al. 2010).

Since the optimization problem in Eq. (9) is convex, any
convex optimization method can be used (Boyd and Van-
denberghe 2004). For our experiments, we use the acceler-
ated proximal gradient descend (APG) (Toh and Yun 2009).
The pseudocode of our implementation of APG for solving
Eq. (9) is given in the supplementary material. Note that
APG requires computing the SVD of the matrix B. Since
computing the exact SVD of a high-dimensional matrix can
be computationally expensive, we approximate it by ran-
domized SVD (Halko, Martinsson, and Tropp 2011).

Experiments

We evaluate the proposed method on three problems. We
start by studying C-MORE behavior in a scenario where we
know the true reward model and the true low-dimensional
context. Subsequently, we focus our attention on two simu-
lated robotic ball hitting tasks. In the first task, a toy 2-DoF
planar robot arm has to hit a ball placed on a plane. In the
second task, a simulated 6-DoF robot arm has to hit a ball
placed in a three-dimensional space. In both cases, the robots
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C-MORE Nuc. Norm C-MORE Ridge+PCA C-MORE Ridge C-MORE LASSO C-MORE Ridge+SuPCA C-REPS PCA
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Figure 1: Average reward for the quadratic cost function
problem. Shaded area denotes standard deviation (results
are averaged over ten trials). Only C-MORE Nuc. Norm
converges within 100 iterations to an almost optimal policy.
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Figure 2: Averaged reward for the 2-DoF hitting task. C-
REPS outperforms C-MORE early on. However, it prema-
turely converges to suboptimal solutions, while C-MORE
continues to improve and soon outperforms C-REPS.

accomplish their task by using raw camera images as context
variables. However, in the latter case we have limited data
and therefore sample efficiency is of primary importance.

The evaluation is performed on three different versions
of C-MORE, according to the model learning approach: us-
ing only ridge regression (C-MORE Ridge), aided by a low-
dimensional context variables learned by PCA (C-MORE
Ridge+PCA) and aided by nuclear norm regularization (C-
MORE Nuc. Norm). We also use C-REPS (Deisenroth, Neu-
mann, and Peters 2013) with PCA as baseline. For the ball
hitting task with 2-DoF robot arm, we additionally eval-
uate C-MORE with model learned by LASSO (C-MORE
LASSO), and ridge regression with low-dimensional con-
text variables learned by supervised PCA (Li et al. 2016)
(C-MORE Ridge+SuPCA). We also tried to preprocess the
context space with an autoencoder. However, the learned
representation performed poorly, possibly due to the limited
amount of data, and therefore this method is not reported.

For each case study, first, the experiments are presented
and then the results are reported and discussed. For ad-
ditional details such as computation time of each method
and sensitivity to the regularization parameters of C-MORE
Nuc. Norm, we refer to the supplementary material.

Quadratic Cost Function Optimization

In the first experiment, we want to study the performance
of the algorithms in a setup where we are able to analyti-
cally compute both the reward and the true low-dimensional
context. To this aim, we define the following problem

R(θ, c) = −(||θ − T 1c̃||2)2, c̃ = ĨT−1
2 c,

T 1 ∈ R
dθ×dc̃ , T 2 ∈ R

dc×dc , Ĩ ∈ R
dc̃×dc , dc̃ < dc,

where Ĩ is a rectangular matrix with ones in its main di-
agonal and zeros otherwise, c̃ is the true low-dimensional
context, and T 1 is to match the dimension of the true con-
text and the parameter θ in order to compute the reward.

This setup is particularly interesting because only a sub-
set of the observed context influences the reward. First, the
observed context c is linearly transformed by T−1

2 . Subse-
quently, thanks to the matrix Ĩ , only the first dc̃ elements
are kept to compose the true context, while the remainder is
treated as noise. Finally, the reward is computed by linearly
transforming the true context by T 1.

We set dc̃ = 3, dθ = 10, dc = 25, while the elements of
T 1,T 2 are chosen uniformly randomly in [0, 1]. The sam-
pling Gaussian distribution is initialized with random mean
and covariance Q = 10, 000I . For learning, we collect
35 new samples and keeps track of the samples collected
during the last 20 iterations to stabilize the policy update.
The evaluation is performed at each iteration over 1,000
contexts. Each context element is drawn from a uniform
random distribution in [−10, 10]. Since we can generate a
large amount of data in this setting, we pre-train PCA using
10,000 random context samples and fixed the dimensional-
ity to dz = 20 (chosen by cross-validation). The learning is
performed for a maximum of 100 iterations. If the KL diver-
gence is lower than 0.1, then the learning is considered to be
converged and the policy is not updated anymore.

As shown in Figure 1, C-MORE Nuc. Norm clearly out-
performs all the competitors, learning an almost optimal pol-
icy and being the only one to converge within the max-
imum number of iterations. It is also the only algorithm
correctly learning the true context dimensionality, as nu-
clear norm successfully regularizes B to have rank three. On
the contrary, PCA does not help C-MORE much and yields
only slightly better results than plain ridge regression. PCA
cannot in fact determine task-relevant dimensions as non-
relevant dimensions have equally-high variance.

Ball Hitting with a 2-DoF Robot Arm

In this task, a simulated planar robot arm (Figure 3) has to
hit a green virtual ball placed on RGB camera images of size
32×24. The observed pixels define the context, for a total of

2636



Figure 3: 2-DoF hitting
task. The robot (blue and
red lines) observes the
context which consists of
a virtual green ball and
the background image.

(a) (b)

Figure 4: The 6-DoF robot as seen from
the camera (Figure 4a, bottom right) and in
simulation (Figure 4b). The goal is to con-
trol the robot to hit the green ball accord-
ing to camera images, resized to 32× 24.
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C-MORE Nuc. Norm
C-MORE Ridge+PCA

Figure 5: 6-DoF hitting task results (aver-
aged over three trials). Nuclear norm regu-
larization outperforms PCA, both in terms of
reward and accuracy.

2304 context variables. The ball is randomly and uniformly
placed in the robot workspace. Noise drawn from a uniform
random distribution in [−30, 30] is added to the context to
simulate different light conditions. The robot controls the
joint accelerations at each time step by a linear-in-parameter
controller with Gaussian basis functions, for a total of 32
parameters θ to be learned. The reward R(θ, c) is the nega-
tive cumulative joint accelerations plus the negative distance
between the end-effector and the ball at the final time step.

For learning, the agent collects 50 samples at each iter-
ation and keeps samples from the last four previous iter-
ations. The evaluation is performed at each iteration over
500 contexts. Pixel values are normalized in [−1, 1]. The
sampling Gaussian distribution is initialized with random
mean and identity covariance. For C-MORE Nuc. Norm,
C-MORE LASSO and C-MORE PCA, we perform 5-fold
cross-validation every 100 policy updates to choose the val-
ues of regularization parameter for nuclear norm, regulariza-
tion parameter for 	1 norm, and dimension dz, respectively.
The decision is based on the mean squared error between the
collected returns and the model-predicted ones. Due to high
computation time of C-MORE SuPCA for high values of
dz, we tried different values of dz ∈ {5, 7, 10} and selected
dz = 10 which gave the best result3. Similarly for C-REPS
PCA, we tried different values of dz ∈ {10, 20, 30, 40} and
selected dz = 10 which gave the best result.

Figure 2 shows the averaged reward against the number of
iterations. Once again, C-MORE aided by nuclear norm reg-
ularization performs the best, achieving the highest average
reward. At the 1000th iteration, the learned controller hits
the ball with 76% accuracy. The rank of its learned matrix
B is approximately 31, which shows that the algorithm suc-
cessfully learns a low-rank model representation. The model
learned by LASSO performs very poorly and it is even out-
performed by plain ridge regression. However, this is un-
surprising since the context variables are highly correlated
and LASSO is known to not work well for such variables.
On the contrary, preprocessing the context space through
PCA still helps C-MORE (the rank of its learned B is ap-
proximately 25), but yields poor results for C-REPS, which
suffers of premature convergence. Lastly, preprocessing the

3SuPCA with dz = 15 took approximately 5 minutes/iteration.

context space through SuPCA does not seem work well. This
may be due to dz, which could be too small for this task.

Ball Hitting with a 6-DoF Robot Arm

Similarly to the previous task, here a 6-DoF robotic arm has
to hit a ball placed on a three-dimensional space, as shown
in Figure 4. The context is once again defined by the vector-
ized pixels of RGB images of size 32×24, for a total of 2304
context variables. Note that Figure 4a shows an image before
we rescale it to size 32×24. However, unlike the 2-DoF task,
the ball is directly recorded by a real camera placed near the
physical robot, and it is not virtually generated on the im-
ages. Furthermore, the robot is controlled by dynamic motor
primitives (Ijspeert, Nakanishi, and Schaal 2002) (DMPs),
which are non-linear dynamical systems. We use one DMP
per joint, with five basis functions per DMP. We also learn
the goal attractor of the DMPs, for a total of 36 parameters
θ to be learned. The reward R(θ, c) is computed as the neg-
ative cumulative joint accelerations and minimum distance
between the end-effector and the ball as well.

The image dataset is collected by taking pictures with the
ball placed at 50 different positions. To increase the number
of data points, we add a uniform random noise in [−30, 30]
to the context to simulate different light conditions. There-
fore, although some samples determine the same ball posi-
tion, they are considered different due to the added noise.
The search distribution is initialized by imitation learning
using 50 demonstration samples. For learning, the agent col-
lects 50 samples at each iteration and always keeps samples
from the last four previous iterations.

We only evaluate C-MORE with nuclear norm and PCA
since they performed well in the previous evaluation. Fig-
ure 5 shows that nuclear norm again outperforms PCA. At
the 500th iteration, the robot hits the ball with 80% accu-
racy. Considering that the robot is not able to hit the ball in
some contexts due to physical constraints and can achieve a
maximum accuracy of 90%, this accuracy is impressive for
the task. The averaged rank of matrix B learned by the nu-
clear norm is approximately 25, which shows that minimiz-
ing the nuclear norm successfully learns a low-rank matrix.
For PCA, the averaged rank of B is approximately 30.
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Conclusion

Learning with high-dimensional context variables is a chal-
lenging and prominent problem in machine learning. In this
paper, we proposed C-MORE, a novel contextual policy
search method with integrated dimensionality reduction. C-
MORE learns a reward model that is locally quadratic in
the policy parameters and the context variables. By enforc-
ing the model representation to be low-rank, we perform
supervised linear dimensionality reduction. Unlike existing
techniques relying on non-convex formulations, the nuclear
norm allows us to learn the low-rank representation by solv-
ing a convex optimization problem, thus guaranteeing con-
vergence to a global optimum. The main disadvantage of
the proposed method is that it demands more computation
time due to the nuclear norm regularization. Although we
did not encounter severe problems in our experiments, for
very large dimensional tasks this issue can be mitigated by
using more efficient optimization techniques, such as active
subspace selection (Hsieh and Olsen 2014).

In this paper, we only focused on linear dimensional-
ity reduction techniques. Recently, non-linear techniques
based on deep network has been showing impressive perfor-
mance (Bengio 2009; Watter et al. 2015). In future work, we
will incorporate deep network into C-MORE, e.g., by using
a deep convolutional network to represent the reward model.
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