
Addressing Imbalance in Multi-Label
Classification Using Structured Hellinger Forests

Zachary A. Daniels, Dimitris N. Metaxas
Department of Computer Science

Rutgers, The State University of New Jersey
zad7@cs.rutgers.edu, dnm@cs.rutgers.edu

Abstract

The multi-label classification problem involves finding a
model that maps a set of input features to more than one
output label. Class imbalance is a serious issue in multi-
label classification. We introduce an extension of structured
forests, a type of random forest used for structured prediction,
called Sparse Oblique Structured Hellinger Forests (SOSHF).
We explore using structured forests in the general multi-label
setting and propose a new imbalance-aware formulation by
altering how the splitting functions are learned in two ways.
First, we account for cost-sensitivity when converting the
multi-label problem to a single-label problem at each node
in the tree. Second, we introduce a new objective function for
determining oblique splits based on the Hellinger distance, a
splitting criterion that has been shown to be robust to class im-
balance. We empirically validate our method on a number of
benchmarks against standard and state-of-the-art multi-label
classification algorithms with improved results.

Multi-label classification is an important unsolved problem
in artificial intelligence encountered often in a wide range
of domains including tag prediction for images and audio,
multiple object recognition in images, predicting gene ex-
pression, and classifying documents into predetermined top-
ics. Binary multi-label classification is a special case that in-
volves finding a model that maps a set of input features X ∈
R1×m to more than one binary output label Y ∈ {0, 1}1×n.

Class imbalance is a common and challenging problem
in multi-label classification. We can view imbalance from
two perspectives: imbalance between labels (i.e. label 1’s
positive class appears ten times more frequently than label
2’s) and imbalance within labels (i.e. label 1 has ten times
more positive examples than negative examples). Imbalance
is well-studied for single label classification; however, tra-
ditional methods for correcting imbalance such as under-
and oversampling do not easily generalize to the multi-label
domain due to imbalance between labels. Imbalance is typ-
ically addressed by using specialized imbalance-aware al-
gorithms or by incorporating cost-sensitivity into existing
methods.

We propose a new algorithm for addressing imbalance
in binary multi-label classification based on the structured
decision forest model (Dollár and Zitnick 2013), a random

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

forest model for structured prediction problems. Structured
prediction involves predicting multiple labels by exploiting
some structure between labels, e.g. detecting semantic edges
(represented as a grid of pixels) in images. Learning multi-
label classifiers can be challenging because of the exponen-
tially large label space when considering all possible label
combinations. To make learning such classifiers tractable,
we assume that labels are correlated with one another: a.) for
multiple object recognition, we can exploit co-occurrence
relationships between objects, b.) for gene prediction, we
can make use of the fact that specific genes often activate
(or deactivate) at the same time as other genes, and c.) for
document classification, we can utilize topic context, e.g. ar-
ticles about sports might be more closely related to articles
about entertainment than world politics. These correlations
represent a special ‘structure’. Structured forests effectively
learn how to identify and utilize these correlations.

Our model, Sparse Oblique Structured Hellinger Forests
(SOSHF), extends structured forests by explicitly address-
ing imbalanced data. First, we incorporate cost-sensitivity
into the clustering step, and second, we learn splits using
a criterion based on the Hellinger distance which has been
shown experimentally and theoretically to be more robust to
class imbalance than standard criteria such as information
gain (Cieslak et al. 2012). We found that SOSHF signifi-
cantly outperforms simple baseline structured forest models
as well as state-of-the-art multi-label methods in terms of
well-accepted metrics on benchmark datasets across a wide
span of domains.

The paper is organized as follows. First, we offer a brief
overview of existing multi-label classification algorithms
and structured forests. Then, we discuss the technical details
of our proposed work. Finally, we empirically evaluate our
method against a number of existing methods on benchmark
datasets and discuss some of the strengths and weaknesses
of our model.

Related Work

Multi-label classification is an area of active research.
Tsoumakas et al. divide the set of algorithms for multi-label
classification into two sets: those that transform the prob-
lem and those that adapt existing algorithms (Tsoumakas,
Katakis, and Vlahavas 2009). We first discuss multi-label
classification algorithms that transform the problem. Bi-

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

1826

nary relevance methods are perhaps the simplest transfor-
mation. These methods assume independence between la-
bels, and learn disjoint models for each label. “Ranking by
pairwise comparison” methods consider every pair of labels
(Hüllermeier et al. 2008). Binary classifiers learn how to dis-
tinguish which of two labels is present in every pair of dis-
joint labels, and the output of all the classifiers are combined
to predict a full set of labels for a given instance. Classifier
chains learn classifiers for single labels sequentially, mak-
ing use of the predictions of classifiers that exist earlier in
the chain (Read et al. 2009). Label powerset methods treat
every set of labels present in the training data as its own la-
bel, and a single-label classifier is constructed to distinguish
between these powersets. There are a number of algorithms
that extend the aforementioned label transformations such
as (Fürnkranz et al. 2008) and (Tsoumakas and Vlahavas
2007).

Alternatively, one can adapt existing algorithms to the
multi-label domain. ML-kNN is an extension of the k-
nearest neighbor algorithm (Zhang and Zhou 2007). Clare
and King adapt C4.5 decision trees to multi-label classifi-
cation (Clare and King 2001). BP-MLL modifies the back-
propogation algorithm used in neural networks (Zhang and
Zhou 2006). Logistic regression is adapted in the IBLR algo-
rithm (Cheng and Hüllermeier 2009). Elisseeff and Weston
propose a kernel method for large margin multi-label learn-
ing (Elisseeff and Weston 2001). Many other single-label al-
gorithms have been adapted to work with multiple labels. A
more extensive overview of the field can be found in several
survey papers: (Tsoumakas, Katakis, and Vlahavas 2009),
(de Carvalho and Freitas 2009), (Madjarov et al. 2012), and
(Zhang and Zhou 2014).

Imbalance in multi-label classification has been a topic of
recent interest in the AI community. Some have proposed
methods based on extending sampling methods (Charte et
al. 2015a) (Charte et al. 2015b) while others have proposed
new imbalance-aware algorithms (Zhang, Li, and Liu 2015)
(Wu, Lyu, and Ghanem 2016).

Structured Forests
Decision trees (Quinlan 1986) are a popular family of ma-
chine learning algorithms learned by recursively partition-
ing a set of training instances based on some splitting crite-
rion. A function is learned at every node for deciding how
to partition the remaining training examples. Once the tree
is learned, a new instance can be classified by traversing it
using the learned splitting functions, and when a leaf node
is reached, the majority label of the training instances that
belong to that node is assigned to the new instance. Ran-
dom forests arise from ensembling multiple decision trees
learned from different subsets of training instances and/or
features (Breiman 2001). A more complete overview of de-
cision trees and random forests can be found in (Criminisi,
Shotton, and Konukoglu 2012).

Structured (decision) forests are random forests used for
structured prediction (Dollár and Zitnick 2013). The training
and test procedure for structured forests and traditional ran-
dom forests are identical except for how the splitting func-
tions are learned. Traditional decision trees learn a splitting

function at each node that optimizes some criterion based on
a set of input features and a single output label. The “cor-
rect” form of the objective function to optimize becomes
less clear when more than one label exists, especially when
the labels exhibit some special structure. Instead of trying
to come up with new, specialized splitting criteria to handle
these complex problems, Dollár and Zitnick proposed learn-
ing a transformation (as simple as k-means clustering) at
each node during training that maps the multiple, structured
labels to a single label. Following this step, some standard,
single label-based splitting criterion is optimized. After the
structure and parameters of the tree are learned, the transfor-
mations are discarded, and the test stage remains unchanged.
Structured trees can be bagged to form forests.

Proposed Work: Sparse Oblique Structured

Hellinger Forests (SOSHF)

Sparse Oblique Structured Hellinger Forests (SOSHF) ex-
tend structured forests to be able to handle imbalanced data
better. Structured forests and SOSHF mostly differ in how
the splitting function is learned. Recall that we have two
types of label imbalance: between-label and within-label
imbalance. We modify the clustering step by incorporating
cost-sensitivity to account for both within- and between-
label class imbalance. The clustering step transforms the
problem into a standard binary single-label problem. Some-
times this step results in clusters of unequal size, so we ex-
amine the use of Hellinger distance, which has been shown
to be robust to within-label class imbalance in single-label
problems, to find better splits (Cieslak et al. 2012).

Step 1: Cost-Sensitive Clustering

Standard structured forests do not have a mechanism in
place for dealing with imbalanced data; however, it is easy
to extend structured forests to handle class imbalance. We
introduce a cost-sensitive clustering step. We need to inves-
tigate two sources of imbalance. The first source is global
imbalance over all training examples. The second source
is unique to tree-based classifiers: local imbalance over the
training examples at a node. Instead of directly clustering on
the label-space, we can weigh each label by a correspond-
ing cost determined by it’s inverse document frequency at
the global and local levels and then perform (weighted) k-
means clustering. In our experiments, we use the weighing
scheme in Eq. 1 where Ng is the total number of training
instances, Nl is the total number of training instances at a
node, ngi is the number of positive instances of label i, nli

is the number of positive instances of label i present at the
node during training, and β ∈ [0, 1] is the mixing coeffi-
cient which adjusts the balance between the importance of
global and local imbalance. Empirically, we found β = 0.5
to work well, but in future models, we could attempt to learn
this parameter. The weighing scheme helps correct for both
the within- and between-label imbalance. It increases the im-
portance of the minority class for each label which helps to
reduce the impact of within-label imbalance. It also gives
a cost for each label compared to the others that is scale-
appropriate, so more importance is given to labels with sig-

1827

nificant imbalance problems during the clustering step, ad-
justing for between-label imbalance.

IDF (i) = β ∗ log (1+
Ng
ngi

)

maxj log (1+
Ng
ngj

)
+ (1− β) ∗ log (1+

Nl
nli

)

maxj log (1+
Nl
nlj

)
(1)

Step 2: The Sparse Hellinger Loss

When using k-means clustering, we often get clusters of dif-
ferent sizes. We’ve traded the problem of imbalance over
the original multi-label space for imbalance over the trans-
formed, single-label space. Luckily, it is conceptually much
easier to fix imbalance in this case. We propose using a split-
ting criterion that is well-suited for imbalanced data. Cieslak
et al. showed that standard splitting criteria such as informa-
tion gain are often ill-suited for imbalanced data and instead
proposed using Hellinger distance, a measure of separation
between two probability distributions (Cieslak et al. 2012).
One way of formulating the Hellinger distance for classifica-
tion problems is to look at the true positive rate tpr and false
positive rate fpr of some set of label assignments. Hellinger
distance can be computed as:

dH(tpr, fpr) =
√

(
√
tpr −√

fpr)2 + (
√
1− tpr −√

1− fpr)2 (2)

Note that if the fpr is higher than the tpr, we can flip the
label assignments, and the distance doesn’t change.

It has been empirically observed that Hellinger distance
decision trees (HDDT) tend to produce deeper trees because
they more finely partition the data (i.e. splits are less bal-
anced). To account for this, we use oblique trees which learn
non-axis-parallel but still linear splits of the feature space
at each node (Heath, Kasif, and Salzberg 1993). Because
oblique trees are more expressive in how they partition the
space, they are generally shallower than their axis-parallel
counterparts, and we get the additional benefit that they gen-
erally perform better.

We need to maximize the Hellinger distance while ad-
justing a set of weights that produce hard assignments us-
ing a linear separating hyperplane. We will use a first-order,
gradient-based method to perform the optimization, requir-
ing a differentiable (with respect to the weight vector) form
of the Hellinger distance and a differentiable approximation
of the hard assignment step. Montillo et al. showed how to
make information gain differentiable (Montillo et al. 2013).
We construct a similar differentiable loss function that ap-
proximately maximizes the squared Hellinger distance. Our
approach is similar to performing logistic regression at each
node with alternative objective and sigmoid functions.

To simplify the math, we map the labels {0,1} to {-1,1}.
Let N represent the number instances used in learning the
hyperplane and P represent the number of input variables
(features) and a bias term. α is a constant parameter for
the sharpness of the sigmoid; �w ∈ RP×1 is the set of
weights for the linear hyperplane with the bias term ap-
pended; X ∈ RN×P is the set of features for all instances
used in learning the hyperplane where the last column is all
ones; �y ∈ {−1, 1}N×1 is the true cluster assignment for all
instances used in learning the hyperplane; and [yi = c] is
an indicator function. We use a sigmoid-shaped function φ

which will produce a value between 0 and 1 to approximate
the hard assignment:

�φ(α, �w,X) =
tanh(α ∗X �w) + 1

2
(3)

∇�φ(α, �w,X) =
α ∗XT sech2(α ∗X �w)

2
(4)

As the value of α increases, more importance is placed on
correcting cases that are closer to the hyperplane. In our ex-
periments, we start with a small α(= 0.1) and increase it
to 1.5 times its current value after every ten iterations of the
optimization procedure until α = 4.

We can then approximate the values of tpr, fpr, 1− tpr,
and 1− fpr where φi is shorthand for φ(α, �w, �xi):

t̃pr =
∑N

i=1([yi=1]∗φi)∑N
i=1[yi=1]

, f̃pr =
∑N

i=1([yi=−1]∗φi)∑N
i=1[yi=−1]

,

˜1− tpr =
∑N

i=1([yi=1]∗(1−φi))∑N
i=1[yi=1]

, ˜1− fpr =
∑N

i=1([yi=−1]∗(1−φi))∑N
i=1[yi=−1]

(5)

Plugging these values into Equation 2, we get a differen-
tiable approximation of the Hellinger distance. We call the
negative of the square of this differentiable Hellinger dis-
tance, the Hellinger loss:

L(α, �w,X, �y) = −d̃2H(α, �w,X, �y) (6)

∇L(α, �w,X, �y) = (

√
f̃pr −

√
t̃pr)

∗
(

∇�φ(α,�w,Xi:yi=1)

(
∑N

i=1[yi=1])∗
√

t̃pr
− ∇�φ(α,�w,Xi:yi=−1)

(
∑N

i=1[yi=−1])∗
√

f̃pr

)
+(

√
˜1− fpr −

√
˜1− tpr)

∗
(
− ∇�φ(α,�w,Xi:yi=1)

(
∑N

i=1[yi=1])∗
√

˜1−tpr
+

∇�φ(α,�w,Xi:yi=−1)

(
∑N

i=1[yi=−1])∗
√

˜1−fpr

)
(7)

Recall that we’re learning oblique decision trees where
each split is parameterized by a set of weights with poten-
tially large dimensionality. As such, oblique decision trees
can be prone to overfitting, especially at deeper nodes in the
tree where there are few training examples remaining, but
the dimension of the feature space might be large. We add a
penalty function (regularizer) that encourages the weights to
be sparse based on a smooth approximation of the �1-norm
of the weights (Schmidt, Fung, and Rosales 2007):

Φ(�w, η) = 1
η [log (1 + exp (−η ∗ �w))− log (1 + exp (η ∗ �w))] (8)

Higher values of η result in better approximations of the �1-
norm. We use η = 1000000.

Our complete optimization problem becomes:

min
�w

L(α, �w,X, �y) + γ ∗ Φ(�w, η) (9)

where γ is a parameter that controls the tradeoff between the
loss and penalty functions. This function is entirely differen-
tiable, so standard gradient-based solvers can be used to find
a local minimum. Determining a good value of γ is tricky,

1828

especially due to the difference in scale between the loss and
penalty functions. In our experiments, we use a heuristic to
determine a good scale for gamma. We solve the optimiza-
tion in two stages. We begin by initializing the weights to be
the solution of the least squares problem: X �w = �y. In the
first stage, we ignore the penalty function, minimizing −d̃2H
only. This means we’ve found a separating hyperplane that
probably overfits the data, but it also gives us a guess at the
scale of the loss near local optimality. Now, we can solve for
gamma:

γ = ρ ∗ d̃2H(α, �w,X, �yclus)

||�w||1 (10)

ρ is parameter that weighs the importance of sparsity against
separability, e.g. ρ = 0.5 means finding sparse weights is
about half as important as finding a good separating hy-
perplane. ρ is a much more interpretable parameter than γ
and easier to tune. We use the heuristic: ρ = min(log(1 +

|features|
|instances node|), 0.4) which adjusts sparsity by considering
the ratio between the number of features and training in-
stances at a node. We then solve the complete optimization
problem using γ.

To solve the optimization, we use ADAM with a learn-
ing rate of 0.05 and the suggested parameters (Kingma and
Ba 2015). ADAM is a stochastic optimization method that
adaptively adjusts the learning rate, usually leading to fast,
stable convergence to a good local minimum. For large
problems, if the number of training instances at a node
is large, we can process it in mini-batches without suffer-
ing too much of a performance hit. We use batch sizes of
min(1000,number of training instances at node), and the data
is randomly shuffled every time we pass through the entire
set of training instances at a node.

At test time, given a new instance �x, we traverse the tree
by checking �x�w ≥ 0 at each node. If no child exists, we re-
cover the predicted labels at the last reachable node node.�̂y.

Ensembling Procedure and Label Assignment

In our experiments, we incorporate three sources of random-
ness. For each tree we randomly sample 75% of the features,
training instances, and labels without replacement. We use
the following rule: if a label is used in learning a tree, we
weigh that tree’s prediction for that label five times higher
than for trees where the label is not used in the training pro-
cedure. Every tree predicts all labels simultaneously. We use
the forest to estimate the likelihood that an instance belongs
to the positive class for each label. We select thresholds for
making hard assignments by maximizing the f-measure of
the predictions of the out-of-bag training instances for each
label.

Experiments and Results

We conduct experiments over ten datasets drawn from a
wide range of domains: CAL500 (Turnbull et al. 2008),
Emotions (Trohidis et al. 2008), Medical (Pestian et al.
2007), the Enron Corpus (Klimt and Yang 2004), Scenes
(Boutell et al. 2004), Yeast (Elisseeff and Weston 2001),

Corel5k (Duygulu et al. 2002), RCV1 Subsets 1 and 2
(Lewis et al. 2004), TMC2007 (Srivastava and Zane-Ulman
2005), and Mediamill (Snoek et al. 2006). All datasets are
provided by the MULAN project (Tsoumakas et al. 2011).
We use the pre-extracted features from each dataset. Statis-
tics about the datasets appear in Table 1. Definitions for the
label density (LD) and proportion of distinct labels (PDL)
can be found in (Tsoumakas, Katakis, and Vlahavas 2009).

We compare with fourteen algorithms. We follow an ex-
perimental procedure similar to (Zhang, Li, and Liu 2015).
For each dataset, we evenly and randomly split the dataset
into training and test sets. We repeat this process eight times
per dataset to ensure our results are not strongly influenced
by a single split. For datasets with numeric features, we stan-
dardize the columns by subtracting the mean and dividing by
the standard deviation of the training instances. We remove
nominal features which occur in less than one percent of the
data. We also remove rare features from the RCV1 dataset
by only keeping features that are non-zero in more than one
percent of the data. We remove labels with an imbalance ra-
tio (IR = |majority class|

|minority class|) greater than 50 as in (Zhang, Li,
and Liu 2015).

We use the the macro-f-measure and macro-AUC for eval-
uation. These involve averaging the f-measure and AUC
values over all labels. For both measures, we perform two
tests of significance. First, we consider the methodology of
Demsăr: applying the Friedman test followed by the mean-
ranks posthoc test with Bonferroni correction (Demšar
2006). Benavoli recently raised some concerns with this
methodology: significance can vary depending on the subset
of algorithms selected for comparison purposes (Benavoli,
Corani, and Mangili 2015). We also follow and report the
results of Benavoli’s suggested methodology: applying the
Friedman test followed by the Wilcoxon signed rank test
with Bonferroni correction. For both tests, we use a p-value
of 0.05 and also compute the mean rank across all datasets.

Algorithms for Comparison

Binary Relevance (BR) Methods We experiment with
two popular models for classification: linear support vector
machines (SVM) and random forest (RF) with a cross en-
tropy splitting criterion. We correct for imbalance by under-
sampling the majority class, oversampling the minority class
using ADASYN (He et al. 2008) (an extension of SMOTE
(Chawla et al. 2002)), and using imbalance-aware learning.
To perform imbalance-aware learning with SVMs, observa-
tion weights are penalized according to the probability of
seeing the observation’s class. For random forests, we adjust
the threshold for hard assignment from the predicted class
probabilities based on maximizing the f-measure of the out-
of-bag instances. When using random forest, we train a sin-
gle forest for each label.

Higher-Order Methods and Structured Decision Forests
We compare against a number of higher-order multi-label
classifiers. We use the MULAN library implementations
of all algorithms with default parameters unless otherwise
noted and C4.5 decision trees as base learners (Tsoumakas et
al. 2011). We compare with Multi-Label k-Nearest Neighbor

1829

Dataset Domain |Instances| |Features| |Labels| Type LD PDL Min IR Max IR Mean IR
CAL500 Audio 502 68 124 Num 0.20 1.00 1.04 24.10 8.45
Emotions Audio 593 72 6 Num 0.31 0.05 1.25 3.01 2.32
Medical BioNLP 978 237 14 Nom 0.08 0.04 2.68 43.45 19.94
Enron Text 1702 999 24 Nom 0.13 0.32 1.01 43.79 16.15
Scene Images 2407 294 6 Num 0.18 0.01 3.52 5.61 4.66
Yeast Bioinfo 2417 103 13 Num 0.32 0.08 1.33 12.58 4.25

Corel5k Text 5000 499 44 Nom 0.05 0.21 3.46 49.00 29.40
RCV1: Subset1 Text 6000 1475 43 Num 0.06 0.10 3.34 49.42 25.53
RCV1: Subset2 Text 6000 1456 39 Num 0.06 0.08 3.22 47.78 26.37

TMC2007 Text/Sci 28596 278 15 Nom 0.14 0.02 1.45 34.26 13.58
Mediamill Video 43907 120 29 Num 0.14 0.08 1.75 44.74 16.44

Table 1: Characteristics of the datasets used in our experiments. (Nom = Nominal, Num = Numeric)

(ML-KNN) (Zhang and Zhou 2007), Instance-Based Learn-
ing by Logistic Regression (IBLR), Ensembles of Classi-
fier Chains (ECC) (Read et al. 2009) with an ensemble size
of 50, Calibrated Label Ranking (CLR) (Fürnkranz et al.
2008), Random k-Labelsets (RAkEL) (Tsoumakas and Vla-
havas 2007), Hierarchy Of Multilabel classifiERs (HOMER)
(Tsoumakas, Katakis, and Vlahavas 2009) using balanced
clustering with four clusters, and CrOss-COupling Aggrega-
tion (COCOA) (Zhang, Li, and Liu 2015) with 10 couplings
and 50 models per ensemble (except for experiments involv-
ing TMC2007 and Mediamill where we use 10 models per
ensemble for computational feasibility).

We also compare with baseline structured forests. (SF) is
a structured forest without oblique splits, no IDF-weighing
before performing k-means clustering, and information gain
is used as the splitting criteria. (SF-LR) learns splits us-
ing logistic regression. (SF-LR-CS) adds cost sensitive
(IDF-weighing) clustering. (SF-H) uses the sparse (oblique)
Hellinger loss introduced in this paper. (SF-H-CS) uses the
sparse Hellinger loss with cost-sensitive clustering. We try
to remain as consistent as possible across all forest-based
models. We always require tree leaves to have at least three
training examples. When building a tree, we always sample
75% of the instances and features without replacement. We
perform no pruning. We always use 50 trees in an ensem-
ble (for 50×numLabels total trees for the binary relevance
methods and 50 trees for the structured forests).

Results and Analysis

We present the results of our experiments in Table 2. Struc-
tured forests using the sparse Hellinger loss significantly
outperform all of the tested algorithms besides COCOA and
binary relevance forests in both the macro-f-measure and
macro-AUC. SOSHF have the highest mean rank in terms of
both macro-f-measure and macro-AUC. Our results suggest
our method works well in general and is competitive with
state-of-the-art models and binary relevance forests com-
posed of a significantly larger number of trees.

We see some interesting trends when examining how
structured forests behave with different modifications. Our
base model is a standard structured forest with univariate
splits based on information gain. We start by examining
oblique structured forests with splits learned using logis-
tic regression. In some cases, the macro-AUC and macro-
f-measure increase notably (e.g. Med, Yeast, TMC, and Me-

dia). In other cases, performance decreases. One explana-
tion for this mixed behavior is that it is much easier to
overfit oblique trees when there are not enough initial train-
ing points or too many features. Also, we have not yet ac-
counted for imbalance, and logistic regression might overly
favor the majority class in some cases. When we add cost-
sensitivity to the clustering stage, we see SF-LR-CS outper-
forms SF-LR in seven of the datasets for both metrics but
still underperforms the baseline in about half the datasets.
This suggests that cost-sensitive clustering might be help-
ful for oblique structured forests. It also suggests that lo-
gistic regression might not be a good splitting function in
this setting. Next, we consider using the sparse Hellinger
loss. We see SF-H substantially outperforms SF, SF-LR, and
SF-LR-CS in the majority of cases. This suggests that the
Hellinger loss might be more applicable for our problem
and that sparse regularization plays an important role in pre-
venting overfitting. Adding cost-sensitive clustering to SF-
H, performance improves in eight cases for f-measure and
five cases for AUC, occasionally substantially. When perfor-
mance worsens, it usually isn’t by a significant amount. This
suggests cost sensitive clustering might be helpful when us-
ing the sparse Hellinger loss, but isn’t as useful as when its
used with more imbalance-sensitive splitting criteria such as
logistic regression. This is slightly surprising given that cost-
sensitive clustering and the Hellinger loss were designed to
overcome different types of imbalance.

Computational Complexity and Scalability

Some concerns may arise about the computational expense
of learning SOSHF. A pessimistic bound on the compu-
tational complexity of training a SOSHF is O(i1ln

2t +
m2n2t + i2bmnt) where n = (number of training in-
stances), m = (number of features), l = (number of la-
bels), t = (number of trees), b = (batch size for the min-
imizing the Hellinger loss), i1 = (maximum number of it-
erations of Lloyd’s algorithm), and i2 = (maximum num-
ber of iterations to perform for the optimization procedure).
O(i1ln

2t) relates to Lloyd’s algorithm for k-means cluster-
ing, O(m2n2t) to the least squares problem, and O(i2bmnt)
to the minimization problem.

The asymptotic runtime of training a SOSHF is a bit mis-
leading. We have fast, highly optimized libraries for approx-
imating Lloyd’s algorithm and computing the least squares
solution. The most expensive components can be solved iter-

1830

CAL Emot Med Enron Scene Yeast Corel RCV1 RCV2 TMC* Media* Summary
svm-cost 0.261 0.632 0.765 0.354 0.633 0.473 0.216 0.356 0.345 0.584 0.352 (8.5)��
svm-down 0.275 0.602 0.617 0.265 0.569 0.460 0.122 0.350 0.313 0.514 0.333 (12.5)��
svm-adasyn 0.259 0.618 0.755 0.347 0.630 0.466 0.208 0.355 0.343 0.563 0.343 (9.9)��
rf-cost 0.306 0.656 0.795 0.411 0.754 0.520 0.211 0.449 0.432 0.702 0.484 (3.2)� �
rf-down 0.285 0.650 0.705 0.264 0.628 0.484 0.129 0.323 0.295 0.547 0.337 (11.5)��
rf-adasyn 0.226 0.651 0.801 0.343 0.740 0.479 0.081 0.329 0.305 0.648 0.478 (7.9)��
ml-knn 0.073 0.592 0.507 0.152 0.722 0.386 0.030 0.118 0.105 0.483 0.244 (16.9)��
iblr 0.228 0.629 0.558 0.219 0.728 0.408 0.055 0.195 0.198 0.504 0.276 (14.5)��
ecc 0.094 0.633 0.781 0.296 0.729 0.402 0.051 0.244 0.230 0.617 0.247 (12.5)��
clr 0.083 0.593 0.768 0.290 0.633 0.408 0.048 0.233 0.233 0.610 0.265 (14.2)��
rakel 0.191 0.613 0.766 0.307 0.692 0.428 0.087 0.309 0.298 0.623 0.374 (11.4)��
homer 0.254 0.575 0.764 0.332 0.595 0.443 0.146 0.317 0.305 0.589 0.320 (12.1)��
cocoa 0.228 0.660 0.777 0.389 0.743 0.479 0.200 0.390 0.376 0.656 0.454 (5.6)��
sf 0.308 0.660 0.454 0.324 0.644 0.481 0.202 0.364 0.323 0.587 0.343 (8.3)��
sf-lr 0.301 0.659 0.685 0.252 0.690 0.501 0.172 0.260 0.242 0.704 0.445 (9.4)��
sf-lr-cs 0.301 0.653 0.727 0.247 0.694 0.505 0.198 0.319 0.301 0.719 0.405 (8.5)��
sf-h 0.305 0.682 0.775 0.375 0.763 0.521 0.231 0.476 0.453 0.727 0.496 (2.5)� �
sf-h-cs 0.306 0.684 0.792 0.379 0.758 0.524 0.246 0.472 0.452 0.731 0.505 (1.8)� �

CAL Emot Med Enron Scene Yeast Corel RCV1 RCV2 TMC* Media* Summary
svm-cost 0.534 0.800 0.962 0.726 0.872 0.659 0.707 0.838 0.835 0.914 0.817 (10.5)��
svm-down 0.533 0.774 0.967 0.705 0.864 0.642 0.689 0.897 0.889 0.905 0.798 (11.4)��
svm-adasyn 0.532 0.793 0.959 0.721 0.868 0.653 0.700 0.837 0.834 0.907 0.813 (12.2)��
rf-cost 0.552 0.838 0.963 0.779 0.939 0.703 0.728 0.899 0.892 0.932 0.835 (5.1)��
rf-down 0.552 0.824 0.966 0.700 0.911 0.693 0.673 0.890 0.878 0.924 0.814 (9.0)��
rf-adasyn 0.541 0.832 0.962 0.767 0.933 0.693 0.725 0.894 0.885 0.928 0.838 (7.2)��
ml-knn 0.515 0.812 0.913 0.654 0.926 0.684 0.587 0.664 0.671 0.855 0.767 (14.8)��
iblr 0.508 0.833 0.921 0.686 0.935 0.698 0.650 0.789 0.792 0.881 0.801 (12.4)��
ecc 0.557 0.843 0.938 0.736 0.943 0.706 0.604 0.870 0.861 0.882 0.802 (8.5)��
clr 0.562 0.794 0.965 0.759 0.896 0.651 0.739 0.898 0.891 0.905 0.805 (8.4)��
rakel 0.529 0.798 0.900 0.679 0.894 0.640 0.550 0.738 0.726 0.850 0.736 (16.0)��
homer 0.515 0.706 0.930 0.645 0.811 0.593 0.590 0.707 0.707 0.800 0.641 (17.0)��
cocoa 0.560 0.839 0.969 0.787 0.941 0.717 0.732 0.911 0.905 0.928 0.842 (3.4)� �
sf 0.559 0.835 0.916 0.736 0.901 0.643 0.741 0.880 0.860 0.901 0.755 (10.2)��
sf-lr 0.549 0.835 0.960 0.655 0.909 0.683 0.685 0.797 0.785 0.938 0.828 (10.5)��
sf-lr-cs 0.556 0.830 0.961 0.643 0.909 0.684 0.704 0.833 0.815 0.942 0.789 (10.6)��
sf-h 0.569 0.848 0.976 0.771 0.943 0.708 0.736 0.922 0.912 0.945 0.857 (2.2)� �
sf-h-cs 0.572 0.848 0.977 0.776 0.943 0.706 0.746 0.921 0.910 0.946 0.855 (1.6)� �

Table 2: The top table reports the macro-f-measure of classifiers on benchmark datasets. The bottom table reports the macro-
AUC of classifiers on benchmark datasets. Parentheses denote the mean rank. � denotes SF-H-CS is statistically superior
at p = 0.05 and � denotes no significant difference according to the Friedman test with the mean-ranks posthoc test with
Bonferroni correction. � denotes SF-H-CS is statistically superior at p = 0.05 and � denotes no significant difference according
to the Friedman test with the Wilcoxon signed-rank posthoc test with Bonferroni correction. *COCOA run with ensemble size
of 10 due to computational limitations

atively using online or mini-batch algorithms making them
more efficient to compute and scalable to large problems.
Oblique trees tend to partition the space efficiently, signif-
icantly reducing tree depth. At every split, we operate on
fewer training samples, so learning splits becomes faster as
depth increases. If we’re willing to trade a small amount of
predictive power, we can achieve better scalability by reduc-
ing batchsizes, limiting the maximum number of iterations,
and/or adjusting learning rates. We can also learn the clus-
ter centers and initial weights using small samples drawn
from the training instances at each node or construct forests
based on smaller sampling rates (e.g. use 65% of the train-
ing data/features/labels for each tree instead 75%). Finally,
SOSHF are trivially easy to parallelize.

On smaller datasets, the SOSHF model tends to be slower
than the other methods tested, but trains within a reasonable

amount of time. On large datasets and datasets with a large
number of labels, we’ve observed that training SOSHF can
be faster than training some of the more complex models like
COCOA; however, this is likely partially due to differences
in implementation (e.g. programming language, paralleliza-
tion, etc.). In general, we see a trend of trading improved
performance for increased computational cost.

Acknowledgements

This material is based upon work supported by the National
Science Foundation Graduate Research Fellowship under
Grant No. DGE-1433187.

References

Benavoli, A.; Corani, G.; and Mangili, F. 2015. Should we really
use post-hoc tests based on mean-ranks. JMLR.

1831

Boutell, M. R.; Luo, J.; Shen, X.; and Brown, C. M. 2004. Learning
multi-label scene classification. Pattern Recognition 37(9):1757–
1771.
Breiman, L. 2001. Random forests. Machine Learning 45(1):5–32.
Charte, F.; Rivera, A. J.; del Jesus, M. J.; and Herrera, F. 2015a.
Addressing imbalance in multilabel classification: Measures and
random resampling algorithms. Neurocomputing 163:3–16.
Charte, F.; Rivera, A. J.; del Jesus, M. J.; and Herrera, F. 2015b.
Mlsmote: approaching imbalanced multilabel learning through
synthetic instance generation. KBS 89:385–397.
Chawla, N. V.; Bowyer, K. W.; Hall, L. O.; and Kegelmeyer, W. P.
2002. Smote: synthetic minority over-sampling technique. JAIR
16:321–357.
Cheng, W., and Hüllermeier, E. 2009. Combining instance-based
learning and logistic regression for multilabel classification. Ma-
chine Learning 76(2-3):211–225.
Cieslak, D. A.; Hoens, T. R.; Chawla, N. V.; and Kegelmeyer,
W. P. 2012. Hellinger distance decision trees are robust and skew-
insensitive. Data Mining and Knowledge Discovery 24(1):136–
158.
Clare, A., and King, R. D. 2001. Knowledge discovery in multi-
label phenotype data. In PKDD, 42–53. Springer.
Criminisi, A.; Shotton, J.; and Konukoglu, E. 2012. Decision
forests: A unified framework for classification, regression, density
estimation, manifold learning and semi-supervised learning. Foun-
dations and Trends in Computer Graphics and Vision 7(2–3):81–
227.
de Carvalho, A. C., and Freitas, A. A. 2009. A tutorial on multi-
label classification techniques. In Foundations of Computational
Intelligence Volume 5. Springer. 177–195.
Demšar, J. 2006. Statistical comparisons of classifiers over multi-
ple data sets. JMLR 7(Jan):1–30.
Dollár, P., and Zitnick, C. L. 2013. Structured forests for fast edge
detection. In ICCV, 1841–1848.
Duygulu, P.; Barnard, K.; de Freitas, J. F.; and Forsyth, D. A. 2002.
Object recognition as machine translation: Learning a lexicon for a
fixed image vocabulary. In ECCV, 97–112. Springer.
Elisseeff, A., and Weston, J. 2001. A kernel method for multi-
labelled classification. In NIPS, 681–687.
Fürnkranz, J.; Hüllermeier, E.; Mencı́a, E. L.; and Brinker, K. 2008.
Multilabel classification via calibrated label ranking. Machine
Learning 73(2):133–153.
He, H.; Bai, Y.; Garcia, E. A.; and Li, S. 2008. Adasyn: Adaptive
synthetic sampling approach for imbalanced learning. In IJCNN,
1322–1328. IEEE.
Heath, D.; Kasif, S.; and Salzberg, S. 1993. Induction of oblique
decision trees. In IJCAI, 1002–1007.
Hüllermeier, E.; Fürnkranz, J.; Cheng, W.; and Brinker, K. 2008.
Label ranking by learning pairwise preferences. Artificial Intelli-
gence 172(16):1897–1916.
Kingma, D., and Ba, J. 2015. Adam: A method for stochastic
optimization. In ICLR.
Klimt, B., and Yang, Y. 2004. Introducing the enron corpus. In
CEAS.
Lewis, D. D.; Yang, Y.; Rose, T. G.; and Li, F. 2004. Rcv1: A
new benchmark collection for text categorization research. JMLR
5(Apr):361–397.
Madjarov, G.; Kocev, D.; Gjorgjevikj, D.; and Džeroski, S. 2012.
An extensive experimental comparison of methods for multi-label
learning. Pattern Recognition 45(9):3084–3104.

Montillo, A.; Tu, J.; Shotton, J.; Winn, J.; Iglesias, J.; Metaxas, D.;
and Criminisi, A. 2013. Entanglement and differentiable informa-
tion gain maximization. In Decision Forests for Computer Vision
and Medical Image Analysis. Springer. 273–293.
Pestian, J. P.; Brew, C.; Matykiewicz, P.; Hovermale, D. J.; John-
son, N.; Cohen, K. B.; and Duch, W. 2007. A shared task involv-
ing multi-label classification of clinical free text. In Workshop on
BioNLP, 97–104. Association for Computational Linguistics.
Quinlan, J. R. 1986. Induction of decision trees. Machine Learning
1(1):81–106.
Read, J.; Pfahringer, B.; Holmes, G.; and Frank, E. 2009. Classifier
chains for multi-label classification. In ECML-PKDD, 254–269.
Springer.
Schmidt, M.; Fung, G.; and Rosales, R. 2007. Fast optimization
methods for l1 regularization: A comparative study and two new
approaches. In ECML, 286–297. Springer.
Snoek, C. G.; Worring, M.; Van Gemert, J. C.; Geusebroek, J.-M.;
and Smeulders, A. W. 2006. The challenge problem for automated
detection of 101 semantic concepts in multimedia. In ACMMM,
421–430. ACM.
Srivastava, A., and Zane-Ulman, B. 2005. Discovering recurring
anomalies in text reports regarding complex space systems. In
IEEE Aerospace Conference, 37.
Trohidis, K.; Tsoumakas, G.; Kalliris, G.; and Vlahavas, I. P. 2008.
Multi-label classification of music into emotions. In ISMIR, vol-
ume 8, 325–330.
Tsoumakas, G., and Vlahavas, I. 2007. Random k-labelsets: An
ensemble method for multilabel classification. In ECML, 406–417.
Springer.
Tsoumakas, G.; Spyromitros-Xioufis, E.; Vilcek, J.; and Vlahavas,
I. 2011. Mulan: A java library for multi-label learning. JMLR
12(Jul):2411–2414.
Tsoumakas, G.; Katakis, I.; and Vlahavas, I. 2009. Mining multi-
label data. In Data Mining and Knowledge Discovery Handbook.
Springer. 667–685.
Turnbull, D.; Barrington, L.; Torres, D.; and Lanckriet, G. 2008.
Semantic annotation and retrieval of music and sound effects.
IEEE Transactions on Audio, Speech, and Language Processing
16(2):467–476.
Wu, B.; Lyu, S.; and Ghanem, B. 2016. Constrained submodular
minimization for missing labels and class imbalance in multi-label
learning. AAAI.
Zhang, M.-L., and Zhou, Z.-H. 2006. Multilabel neural networks
with applications to functional genomics and text categorization.
IEEE TKDE 18(10):1338–1351.
Zhang, M.-L., and Zhou, Z.-H. 2007. Ml-knn: A lazy learning
approach to multi-label learning. Pattern Recognition 40(7):2038–
2048.
Zhang, M.-L., and Zhou, Z.-H. 2014. A review on multi-label
learning algorithms. IEEE TKDE 26(8):1819–1837.
Zhang, M.-L.; Li, Y.-K.; and Liu, X.-Y. 2015. Towards class-
imbalance aware multi-label learning. In IJCAI, 4041–4047.

1832

