
Modeling Skewed Class Distributions
by Reshaping the Concept Space

Kyle D. Feuz
School of Computing

Weber State University

Diane J. Cook
School of Electrical Engineering and Computer Science

Washington State University

Abstract

We introduce an approach to learning from imbalanced class
distributions that does not change the underlying data distri-
bution. The ICC algorithm decomposes majority classes into
smaller sub-classes that create a more balanced class distribu-
tion. In this paper, we explain how ICC can not only address
the class imbalance problem but may also increase the expres-
sive power of the hypothesis space. We validate ICC and an-
alyze alternative decomposition methods on well-known ma-
chine learning datasets as well as new problems in pervasive
computing. Our results indicate that ICC performs as well or
better than existing approaches to handling class imbalance.

Introduction
Skewed class distributions present a challenge in many
different domains. Specifically, most supervised machine
learning algorithms exhibit poor performance when faced
with skewed class distributions. This is referred to as the
class imbalance problem.

Class imbalance often occurs in real-life datasets involv-
ing rare events such as detecting certain medical conditions
(Mazurowski et al. 2008), fraudulent transactions (Bhat-
tacharyya et al. 2011), or providing prompts in context-
aware situations (Feuz et al. 2015). Additionally, class im-
balance occurs on datasets with several classes of all differ-
ent sizes such as location prediction or activity recognition
(Feuz and Cook 2015).

Several approaches have been developed to address class
imbalance including sampling, re-weighting the instances,
applying cost-sensitive learning or developing specialized
learning algorithms. Sampling techniques can be used in
conjunction with any learning algorithm because they only
alter what information is provided to the learning algorithm.
This is convenient for the learning algorithm but can lead to
duplicated information, removal of important information,
or creation of false information. The last three approaches
do not alter the training instances and are not affected by
these problems but instead require altering the learning al-
gorithm itself.

Intra-class clustering (ICC) uses clustering to decompose
a large majority class into smaller sub-classes leading to a

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

more balanced distribution. One benefit of applying ICC is
that it can also help solve other issues that arise in super-
vised machine learning. For example, several researchers
have found that class imbalance is especially problematic
when there exist different sub-clusters within the classes
(Stefanowski 2013). ICC can be used to identify these sub-
clusters and to model them as new distinct classes. Addi-
tionally, by creating more sub-classes, we increase the ex-
pressive power of certain hypothesis spaces. As an exam-
ple, when using a standard support vector machine (SVM(
without employing a specialized kernel, SVMs can only cor-
rectly classify linearly separable classes. By creating sub-
classes through clustering, the likelihood of a class to be lin-
early separable increases with the increase in the number of
decision boundaries. Increasing the expressive power of the
hypothesis space may lead to over-fitting or increased run-
times and does not guarantee better results.

We hypothesize that decomposing the majority class(es)
into smaller sub-classes prior to training a classifier will 1)
lead to improved performance of the learned model by 2)
creating a more balanced class distribution, 3) creating the
potential for more decision boundaries, and 4) finding intrin-
sic sub-class boundaries. We validate this novel approach
using a set of existing machine learning datasets as well
as two new pervasive computing datasets, all with extreme
class imbalance.

Methods
ICC is applied as a pre-processing step prior to learning a
classification model. First, a class or classes are individ-
ually decomposed into sub-classes. The training instances
are assigned new class labels corresponding to their respec-
tive sub-class. For example, a class ci might be decomposed
into three sub-classes ci1, ci2, and ci3 and the correspond-
ing training data is mapped to the new subclass labels. This
training data is then used to build a classification model ac-
cording to the standard supervised machine learning proce-
dure. New instances can now be classified using the trained
classification model. Note that the classifier will predict
class labels using the discovered sub-class labels. However,
these new labels can be converted back into the original class
labels. Figure 1 outlines the entire process.

More formally, we use the following notation throughout
rest of this paper.

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

1891

Figure 1: Overview of the intra-class clustering process

• X = {(x1, y1), (x2, y2)...(xn, yn)}: the set of labeled training
instances

• xi =< a1, a2, am >: the ith training instance consisting of m
attributes

• C = {c1, c2, ...cp}: the set of possible class labels

• yi ∈ C: the class label for the ith training instance

• X ′ = {x′
1, x

′
2, ...x

′
n′}: the set of unlabeled testing instances

• Xci = {(x, y) ∈ X|y = ci}: the set of training instances with
class label ci

• |Xci|: the number of instances in Xci

In traditional supervised machine learning a set of training
instances X is fed to a learning algorithm which learns a
function f : X → C. This function can be applied to the
unlabeled testing instances to predict label y′i for instance
x′i.

In intra-class clustering, C is first expanded by decom-
posing one label ca into sub-labels Sca = {ca1, ...cak}.
This leads to an expanded set of class labels, C ′ =
{c1, ...ca−1, ca1, ...cak, ca+1, ...cp}. ICC also generates a
function g : Xca → Sca which maps training instances with
the original label ca to a new sub-label drawn from Sca. ICC
creates this mapping by clustering the instances of Xca into
sub-classes ca1 through cak. The training instances X are
updated to Xh = {(x, h(y))|(x, y) ∈ X} which essentially
replaces the label y with the appropriate sub-class label.

h(y) =

{
g(y) if y = ca
y if y �= ca

(1)

While the goal of the original classifier was to learn a
function f : X → C, now the classifier learns a mapping
to an expanded set of class labels, or f : X → C ′. For
applications requiring only the original set of labels C, the
sub-labels need to be converted back to their parent class
using function e, where

e(f(x)) =

{
ca if f(x) ∈ Sca

f(x) if f(x) /∈ Sca
(2)

Before applying intra-class clustering we need to 1) de-
cide which labels will be decomposed, 2) determine how
many clusters or sub-classes will be formed, and 3) select
the clustering algorithm to use. We consider three different
ways of selecting labels to decompose: ICC One, ICC Maj,
and ICC All. ICC One builds on the principal that the

largest majority class is the one causing the most imbal-
ance. ICC One, therefore, selects the class with the greatest
proportion number of training instances to divide into sub-
classes. Using this method we let ca = argmaxci∈C |Xci|.

In multiclass learning problems, there may be more than
one majority class that needs to be decomposed to obtain a
more uniform class distribution. For these cases, ICC Maj
selects a set of the largest classes. We now update the previ-
ous equations and formulations. Let

I =

{
ci ∈ C| |Xci|

1
p

∑p
j=1 |Xcj |

> 1.5

}
(3)

be the set of class labels which have more instances than 1.5
times the average class size. Let C ′ = (C − c) ∪ Sc for all
c ∈ I be the set of new class labels including sub-labels. Let
gi : Xci → Sci be the functions mapping instances of class
label ci to sub-labels Sci. Equation 1 is re-written as

h(y) =

{
gi(y) if y ∈ I

y else y /∈ I
(4)

Equation 2 is re-written as

e(f(x)) =

{
ci if ∃ci ∈ I|f(x) ∈ Sci

f(x) if �ci ∈ I|f(x) ∈ Sci
(5)

Using these updated equations we can apply ICC as outlined
previously.

In addition to creating more balanced sub-classes, ICC
can also be used for identifying intrinsic sub-classes. These
sub-classes may be present in either the majority classes or
the minority classes. Therefore, ICC All creates sub-classes
for all of the class labels. Using the same formulation as
ICC Maj, let I = C for ICC All. ICC All decomposes all
of the original classes regardless of which class labels are
majority classes and which class labels are minority classes.

Additionally, we have three different techniques for de-
termining the number of clusters. The first technique,
ICC Avg, seeks to achieve a more balanced class distribu-
tion by calculating the number of clusters needed to decom-
pose the class into sub-classes of average size. The number
of sub-classes created is calculated as the size of the class
divided by the average class size (see Eq. 6).

NumOfClusters = [
|Xci|

1
p

∑p
j=1 |Xcj |

] (6)

1892

The second technique, ICC Fix, uses a fixed number of
clusters per class. This can be useful when a domain expert
has knowledge about the classes and knows that each class is
really composed of x sub-classes. This can also be useful for
our third hypothesis when the goal is to create more decision
boundaries for the learning algorithm.

The third technique, ICC X (where X changes based on
the clustering algorithm), addresses our fourth hypothesis
when the classes contain an unknown number of intrinsic
sub-classes. In this case, we can use a clustering algorithm
which does not require that the number of clusters be spec-
ified a priori. Instead, the clustering algorithm itself deter-
mines how many clusters to create from the training data
itself.

ICC can be used with virtually any clustering algorithm.
However, some clustering algorithms make more sense than
others for a given problem. If the decomposition goal is to
achieve a more balanced class distribution, then a cluster-
ing algorithm for which the number of clusters can be set
implicitly should be used. Furthermore, a clustering algo-
rithm which seeks to achieve clusters of equal size will lead
to a more balanced class distribution. If on the other hand,
the goal is to decompose a class into an unknown number of
intrinsic sub-classes, then it makes sense to choose a cluster-
ing algorithm which determines the number of clusters auto-
matically. We evaluate ICC using three different clustering
algorithms: k-means++ (Arthur and Vassilvitskii 2007), Ex-
pectation Maximization Clustering, and CascadeSimpleK-
Means (Caliński and Harabasz 1974). k-means++ must be
given the number of clusters while EM clustering and Cas-
cadeSimpleKMeans can both determine the number of clus-
ters algorithmically. Our source code and binary jar files are
available1as Weka add-on packages.

Metrics
Because there are multiple considerations when learning
from imbalanced class distribution, we evaluate ICC several
alternate metrics. Accuracy is a commonly-used metric for
classification. However, it can be misleading in the face of
skewed class distributions because a classifier that is opti-
mized for this metric will always select the majority class
and not effectively learn the smaller classes. The F1-score
is sometimes used in these situations because it represents
a trade-off between Recall and Precision. Precision, Recall
and F1-Scores are calculated on a per class basis.

When evaluating multi-class problems we need to aver-
age the scores from each class into one overall score. The
averaging can be performed over all of the instances (mi-
cro F1-Score) or over all of the classes (macro F1-Score, see
Equation 7), depending on how the values are weighted. The
micro F1-Score considers each instance of equal importance
so classes with more instances are weighted more heavily.
The macro F1-Score considers each class of equal impor-
tance so all classes are weighted the same regardless of the
number of instances per class. In our experiments we con-
sider the accuracy score as well as the macro F1-score.

1http://icarus.cs.weber.edu/ kfeuz/weka/

Table 1: Statistics and characteristics of the datasets
of Maj. Min. KL-

Dataset classes Class % Class % Div.

abalone 9 39.5 0.2 1.06
car 4 70 3.8 0.79

ecoli 8 40.5 2.3 0.63
glass 6 35.5 4.2 0.41

haberman 2 73.5 26.5 0.17
letters-bin 2 80.6 19.4 0.29

letters-cons 6 80.6 3.8 1.43
letters-vwls 22 19.4 3.6 0.21

nursery 5 33.3 0.06 0.6
yeast4 2 97 3 0.81
yeast6 2 96.6 3.4 0.78

yeast 10 31.2 0.4 0.83

al 16 23 0.2 0.49
al-location 10 40 0.06 1.17
prompting 2 96.3 3.7 0.77

macro F1 =
1

p

p∑
i=1

2Recalli ∗ Precisioni

Recalli + Precisioni
(7)

In addition to measuring the performance of the classi-
fier, we also need to measure how balanced the datasets
are both before and after applying the ICC technique. KL-
Divergence is a measure of the divergence between two
probability distributions (see Equation 8). We use KL-
Divergence to measure how balanced a dataset is by com-
paring the observed class distribution, P , to a perfectly bal-
anced class distribution (i.e., the uniform class distribution),
Q.

KLDivergence(P ||Q) =

p∑
i=1

P (i)log
P (i)

Q(i)
(8)

Datasets
We evaluate ICC using fifteen different datasets. Twelve
of the datasets come from the UC-Irvine Machine learning
repository (Lichman 2013) and exhibit varying amounts of
class imbalance. We merged several classes into one for a
few of the datasets to create classification problems with
known intrinsic sub-classes. Three of the datasets represent
pervasive computing challenges generated by the CASAS
project. Class distribution statistics for each dataset are
listed in Table 1.

The CASAS datasets center around activity-aware appli-
cations. The prompting dataset consists of data gathered in a
smart home with 128 volunteer participants, aged 50+, who
are healthy older adults or individuals with mild cognitive
impairment (Das et al. 2016). The smart home is a two-story
apartment equipped with sensors that monitor motion, door
open/shut status, and usage of water, burner, and specific
items throughout the apartment. Clinically-trained psychol-
ogists watch over a web camera as the participants perform

1893

8 different activities. We view automated prompting as a
supervised learning problem in which each activity step is
mapped to a “Prompt” or “No-prompt” class label.

The al and al-loc datasets have been gathered from 99 vol-
unteers who downloaded and ran our activity learner (AL)
mobile application. AL runs on IOS and Android platforms
and is publicly available2for the community to download
and use. AL collects 5 seconds of sensor data at specified
intervals and the users are prompted for ground truth labels.

Results
We have designed several experiments that address the orig-
inal hypotheses. The first experiment is designed to deter-
mine whether ICC is an effective technique to improve clas-
sifier performance. We apply ICC in conjunction with four
different classification algorithms: Naı̈ve Bayes, J48 Deci-
sion Tree, Support Vector Machines One-vs-All (LibLIN-
EAR) (Fan et al. 2008) and Support Vector Machines One-
vs-One (LibSVM) (Chang and Lin 2011).

We also compare ICC against three other class imbalance
techniques: SMOTE, Resample, and Balance. SMOTE uses
nearby instances from the minority class to artificially gen-
erate new minority class instances (Chawla et al. 2002). We
run SMOTE on every instance of the smallest class, effec-
tively doubling the size of the minority class. SMOTEBoost
combines the SMOTE sampling technique qith a boosting
algorithm (Chawla et al. 2003). Resample samples with re-
placement instances from the dataset to produce a balanced
class distribution (Hall et al. 2009). Balance assigns weights
to each instance so that the total weight for each class is
balanced (Hall et al. 2009). These weights only affect clas-
sifiers which are able to account for instance weighting.

ICC itself can be run with different configurations. We
show the results of choosing the number of clusters based
on the average class size (ICC Avg), fixing the number of
clusters to a constant k = 15 (ICC Fix), and choosing the
number of clusters algorithmically on a per class basis using
CascadeSimpleKMeans (ICC CSK) or Expectation Maxi-
mization (ICC EM). We also consider applying ICC to all
(All) of the classes or only to the majority (Maj) classes
(i.e., those classes with more instances than average). We
run 10 iterations of 3-fold cross validation for each dataset
to determine which results are significant.

Table 2 shows the number of statistically significant dif-
ferences in accuracy and macro F1-scores when compared
to not applying any class imbalance technique. Entries with
the highest number of significant improvements and the low-
est number of significant performance decreases for a given
classifier are indicated with bold font.

In general, the ICC techniques significantly improve clas-
sifier performance as often or more often than any of the
four comparison algorithms, SMOTE, SMOTEBoost, Re-
sample, or Balance. Only when the J48 classifier is used
does SMOTEBoost consistently outperform the ICC tech-
niques. The ICC techniques offer the most improvement
when matched with the Naı̈ve Bayes learning algorithm.

2http://casas.wsu.edu/tools/

They also frequently improve the performance of the Lib-
SVM classifier. Only a few of the datasets show improve-
ment when ICC is combined with the LibLINEAR classi-
fier and none of the datasets show significant improvement
when combined with the J48 classifier unless SMOTEBoost
is also applied. When we consider applying ICC to all of
the classes as opposed to only applying ICC to the majority
classes, there is no clear difference. All of these results sup-
port the first hypothesis that ICC is an effective technique to
improve classifier performance on datasets with imbalanced
class distributions.

The next experiment explicitly considers the relationship
between classifier performance and class distribution. We
calculate Pearson’s correlation coefficient to measure the
linear relationship between each performance metric and the
KL-Divergence of the data. Our second hypothesis stated
that improved class balance should lead to improved classi-
fication results so we expect a negative correlation between
the performance measure and the KL-Divergence. Table 3
lists the number of datasets exhibiting a negative correlation.
The number of datasets for which the correlations were sig-
nificant (p < 0.05) is shown in parentheses. In most cases,
more than 33% of the datasets showed the expected nega-
tive correlation with KL-Divergence. These results support
our second hypothesis that creating a more balanced class
distribution leads to improved classifier performance.

The next experiment analyzes the effect of choosing a
fixed number of sub-classes k to create. Ten iterations of
3-fold cross validation using ICC Fix All is run on all of the
datasets. k is fixed at values of 2, 3, 5, 10 and 15. In most
cases, increasing k leads to further improvement in the accu-
racy. On some datasets, like haberman, increasing k causes
the accuracy to decrease. On other datasets, like glass, in-
creasing k improves the accuracy up to a point and then the
accuracy decreases again. These results support our third
hypothesis, increasing the number of decision boundaries
typically leads to an increase in classification performance
but eventually may lead to over-fitting and subsequent de-
crease in performance.

Another way of considering our third hypothesis is to ex-
amine the correlation between the total number of classes
and classification accuracy. As before, we calculate the
Pearson’s Correlation Coefficient between the total number
of classes and classification accuracy. As shown in Figure 3,
approximately half of the datasets exhibit a positive correla-
tion between the number of classes and the classification ac-
curacy when LibSVM or Naı̈ve Bayes is used. In both cases,
4 of the correlations are statistically significant (p < 0.05).

Further support for our third hypothesis is found when
comparing LibLINEAR and LibSVM. LibLINEAR and
LibSVM are both configured as linear SVMs and as such
have highly constrained hypothesis spaces. The major dif-
ference between LibLINEAR and LibSVM is that LibLIN-
EAR addresses the multi-class problem with a one-vs-all ap-
proach. Each time a class is added, one new decision bound-
ary is thus created. LibSVM, on the other hand, uses a one-
vs-one approach to the multi-class problem. In this case,
adding a new class actually creates k new decision bound-
aries, one for each of the previous classes and the new class.

1894

Table 2: Number of datasets (out of 15) with statistically significant (p = 0.05) better (>) and worse (<) performance (accuracy
and f-score) when compared to not using any class imbalance technique.

NB LibLINEAR J48 LibSVM

Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

> < > < > < > < > < > < > < > <
SMOTE 2 3 3 1 0 0 2 0 0 0 0 0 2 0 5 0

SMOTEBoost 2 5 3 5 2 4 4 3 7 1 7 0 0 4 0 2
Resample 0 10 2 6 0 7 3 0 0 11 1 6 0 7 8 1

Balance 0 11 2 6 0 0 0 0 0 10 1 3 0 0 0 0
ICC Avg Maj 6 1 4 1 0 2 1 2 0 3 0 2 2 2 3 0
ICC Fix Maj 8 1 4 2 0 5 3 2 0 5 0 3 6 3 5 0
ICC Fix All 7 4 5 3 0 4 4 5 0 6 0 6 4 4 3 4

ICC CSK Maj 6 2 4 2 0 2 2 2 0 3 0 2 2 2 3 0
ICC CSK All 4 3 3 2 0 4 2 3 0 4 0 3 2 3 2 2
ICC EM Maj 9 0 6 1 1 1 3 0 0 5 0 4 7 1 5 0
ICC EM All 9 0 8 1 2 0 5 1 0 4 0 4 5 2 7 1

Table 3: Number of datasets exhibiting a linear correlation
between the accuracy (Acc) or macro f-score (F), the KL-
Divergence (kl), and number of created sub-classes (#sub).
#sub generates positive correlations while kl generates neg-
ative correlations. Correlations which are statistically sig-
nificant are indicated by ().

Acc/ent Acc/kl F/ent F/kl Acc/#sub

NB 12(7) 12(8) 8(1) 8(4) 8(4)
Linear 8(2) 9(5) 13(3) 10(7) 5(4)

J48 2(1) 9(3) 7(2) 11(5) 1(0)
SVM 8(3) 8(6) 12(5) 10(6) 7(4)

LibSVM is more likely to be improved by using ICC and less
likely to see a drop in performance. This supports our third
hypothesis that creating more decision boundaries leads to
improved performance.

The performance of ICC EM and ICC CSK also sup-
port our fourth hypothesis that finding intrinsic sub-classes
will lead to improved performance. ICC EM almost always
shows the best performance. This is the only technique that
improves accuracy for LibLINEAR and it consistently im-
proves performance on more datasets than any other tech-
nique. Similarly, in several cases, ICC CSK also leads to
improve performance. ICC EM and ICC CSK work by find-
ing intrinsic sub-classes, providing evidence for our fourth
hypothesis that doing so leads to improved performance.

Although ICC EM and ICC CSK find intrinsic sub-
classes, we suspect that representing such sub-classes will
also lead to more balanced datasets. Using KL-Divergence
we measure how close to uniform the class distribution is.
We measure the KL-Divergence of the dataset before and
after each ICC technique is applied and calculate the av-
erage change in divergence. A negative change in KL-
Divergence (shown in Table 4) indicates a more balanced
dataset. When applied only to the majority classes, both
ICC EM and ICC CSK almost always lead to more bal-

Table 4: Average change in KL-divergence after creating the
sub-classes. A negative change in KL-Divergence indicates
the class distribution is closer to normal.

ICC CSK ICC EM
Maj All Maj All

abalone -0.73 -0.23 -0.63 -0.54
al -0.22 0.03 -0.01 0.5

al-location -0.43 0.41 -0.1 0.32
car -0.35 0.04 -0.4 -0.25

ecoli -0.22 0.6 -0.19 -0.09
glass -0.12 0.98 -0.15 -0.13

haberman 0 0.03 0 0.1
letters-bin -0.21 0.01 0.13 -0.09

letters-cons -0.58 0.43 -1.27 -0.85
letters-vwls -0.13 0.15 -0.05 0.18

nursery -0.27 -0.02 0.28 0.36
prompting -0.31 0.14 -0.45 -0.05

yeast4 -0.34 0.6 0.18 0.42
yeast6 -0.3 0.27 0.22 0.49
yeast -0.39 0.58 -0.05 0.16

anced datasets. When applied to all of the classes, ICC EM
and ICC CSK will occasionally lead to a more balanced
dataset.

The final set of experiments looks for dataset character-
istics that lead to strong ICC performance, or conversely,
for characteristics of the datasets which lead to ICC doing
poorly. Only two of the tested datasets, yeast and ecoli
never showed significant improvement for any of the ICC
approaches. Two other datasets, haberman and prompting,
only showed significant improvement on the LibSVM and
NaiveBayes algorithms, respectively. The letter-recognition
datasets showed significant improvement the most consis-
tently.

In addition to considering which datasets show signif-
icant improvement we also look at the best improvement

1895

Table 5: Best average F1-score for each dataset.
NB SVM Linear

abalone 0.06 0.00 0.03
al 0.05 0.06 0.00

al-location 0.23 0.06 0.01
car 0.23 0.05 0.16

ecoli 0.00 0.07 0.00
glass 0.16 0.13 0.03

haberman 0.02 0.13 0.11
letters-bin 0.18 0.42 0.27

letters-cons 0.27 0.35 0.19
letters-vow 0.28 0.16 0.16

nursery 0.19 0.07 0.21
prompting 0.01 0.07 0.04

yeast 0.00 0.02 0.00
yeast4 0.01 0.22 0.15
yeast6 0.01 0.05 0.12

shown using any ICC technique on all of the datasets.
Table 5 shows the results. Across the board, the yeast
dataset shows the least amount of improvement. For dif-
ferent learning algorithms, the abalone, ecoli, and haber-
man datasets also show little improvement. One shared
characteristic of these datasets is that they are unlikely to
contain intrinsic sub-classes. On the other hand, datasets
with known sub-classes (letters-binary, letters-consonants,
letters-vowels, yeast4, yeast6) tend to show good perfor-
mance improvements when ICC is applied. Datasets with
suspected sub-classes (al, al-location, prompting) also ap-
pear to be more likely to show performance improvements
when ICC is applied.

To examine these theories more closely we also gener-
ate several synthetic datasets with certain known properties.
We generate datasets with either 2 or 5 different classes us-
ing scikit-learn (Pedregosa et al. 2011) based on the algo-
rithm of Guyon (Guyon 2003). Within these classes data
is generated from either 1, 2, or 4 clusters. For the 2-class
datasets the distribution of the class labels is set to 50/50,
80/20 or 95/5; for the 5-class datasets we set the distribu-
tion to 20/20/20/20/20, 10/10/20/20/40 or 5/5/20/30/40 in
the five class datasets. Each dataset has six different real-
valued attributes. The clusters are normally distributed and
centered on the vertices of a plane. Each class is randomly
assigned an equal number of clusters. While all of the details
are not listed here, the biggest improvements in F1-score oc-
cur on the most imbalanced datasets. Furthermore, datasets
with only 1 cluster per class tend to show less improvement
than the other datasets.

Related Work
Intra-class clustering is related to several other techniques
and domains. These can be divided into three general
categories: sampling, cost-sensitive learning, and learning
algorithm-specific methods. Sampling techniques include
both undersampling the majority class(Liu, Wu, and Zhou
2009; Galar et al. 2012; Seiffert et al. 2010) and oversam-

pling the minority class (Chawla et al. 2002).
SMOTE is one common technique which over-samples

the minority class by artificially generating new minority
samples. The samples are generated by finding the cen-
troid of several nearest neighbors all of which belong to the
minority class. SMOTE-boost extends SMOTE by adding
a boosting algorithm which gives more emphasis to points
that were mis-classified in an earlier iteration (Chawla et al.
2003). RUSBoost is one recent technique which randomly
undersamples the majority class (Seiffert et al. 2010). RUS-
Boost also combines the under-sampling with a boosting al-
gorithm to further improve performance. RaCOG applies
undersampling to the majority class and oversampling the
minority class while more closely adhering to the original
distribution (Das, Krishnan, and Cook 2015).

All of these sampling techniques either discard potentially
valuable information through under-sampling the majority
class or generate potentially misleading information through
oversampling the minority class. One of the benefits of intra-
class clustering is that no information is discarded and no
new instances are artificially generated.

Cost-sensitive learning also shares the same benefit of
intra-class clustering in that the training set remains un-
changed. One major drawback of cost-sensitive learning,
however, is the need to determine the cost-matrix (Ling and
Sheng 2011). Determining the true costs of mis-classifying
an instance can be difficult, time-consuming and even im-
possible in some cases.

Learning algorithm-specific techniques also benefit, in
many cases, from not changing the training set data (Joshi,
Kumar, and Agarwal 2001; Wu and Chang 2003). However,
they are not generalizable to other learning algorithms and
are less applicable as a general class imbalance technique.

Decomposing classes through clustering has also been ap-
plied to improving the classification results of high bias clas-
sifiers like Naive Bayes (Vilalta, Achari, and Eick 2003).
Their technique is similar to ours but is not applied to class
imbalance. Instead it focuses solely on the benefits of adding
sub-classes to high bias classifiers.

Conclusion
Skewed class distributions represent a significant challenge
for traditional supervised machine learning algorithms. Al-
though many techniques have been developed to address this
problem, they all contain drawbacks that affect the training
data distribution or prevent general use of the method. We
have introduced a new set of techniques, intra-class cluster-
ing, which can be applied to any existing classifier and avoid
these problems.

We hypothesized that ICC could improve classification
performance through class balancing and that it could in-
troduce decision boundaries that represent intrinsic sub-
classes. Our experimental results support this hypothesis
and show that ICC is effective on many different real-world
datasets. Using synthetic data, we have explored differ-
ent characteristic of datasets which may affect the perfor-
mance of intra-class clustering. Preliminary results indicate
that ICC performs best on datasets containing intrinsic sub-
classes and on datasets with skewed class distributions. In

1896

the future we plan to generate more synthetic datasets which
we can use to draw statistically significant conclusions about
which properties of a dataset affect the performance of ICC.

We have shown that using intra-class clustering to decom-
pose the majority class(es) into smaller sub-classes prior to
training a classifier does indeed lead to improved perfor-
mance of the learned model. We have also shown that ICC
can lead to a more balanced class distribution, find intrinsic
sub-class boundaries, and improve performance by introduc-
ing more decision boundaries. Although all of the variations
of the ICC algoritms can lead to improved performance we
observed the ICC EM ALL technique to be the most con-
sistent. If computational time is prohibitive, we recommend
the ICC FIX ALL technique which is faster, possibly at the
expense of stronger results.

References
Arthur, D., and Vassilvitskii, S. 2007. k-means++: The
advantages of careful seeding. In Proceedings of the Eigh-
teenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, 1027–1035. Society for Industrial and Applied
Mathematics.
Bhattacharyya, S.; Jha, S.; Tharakunnel, K.; and Westland,
J. C. 2011. Data mining for credit card fraud: A comparative
study. Decision Support Systems 50(3):602–613.
Caliński, T., and Harabasz, J. 1974. A dendrite method for
cluster analysis. Communications in Statistics-theory and
Methods 3(1):1–27.
Chang, C.-C., and Lin, C.-J. 2011. LIBSVM: A library for
support vector machines. ACM Transactions on Intelligent
Systems and Technology 2:27:1–27:27.
Chawla, N. V.; Bowyer, K. W.; Hall, L. O.; and Kegelmeyer,
W. P. 2002. Smote: synthetic minority over-sampling tech-
nique. Journal of AJournal of Artificial Research 16:321–
357.
Chawla, N. V.; Lazarevic, A.; Hall, L. O.; and Bowyer,
K. W. 2003. Smoteboost: Improving prediction of the mi-
nority class in boosting. In European Conference on Prin-
ciples of Data Mining and Knowledge Discovery, 107–119.
Springer.
Das, B.; Cook, D.; Krishnan, N.; and Schmitter-Edgecombe,
M. 2016. One-class classification-based real-time activity
error detection in smart homes. IEEE Journal of Selected
Topics in Signal Processing 10(5):914–923.
Das, B.; Krishnan, N. C.; and Cook, D. J. 2015. Racog
and wracog: Two probabilistic oversampling techniques.
IEEE Transactions on Knowledge and Data Engineering
27(1):222–234.
Fan, R.-E.; Chang, K.-W.; Hsieh, C.-J.; Wang, X.-R.; and
Lin, C.-J. 2008. LIBLINEAR: A library for large linear clas-
sification. Journal of Machine Learning Research 9:1871–
1874.
Feuz, K. D., and Cook, D. J. 2015. Transfer learning across
feature-rich heterogeneous feature spaces via feature-space
remapping (fsr). ACM Transactions on Intelligent Systems
and Technology (TIST) 6(1):3.

Feuz, K. D.; Cook, D. J.; Rosasco, C.; Robertson, K.; and
Schmitter-Edgecombe, M. 2015. Automated detection of
activity transitions for prompting. IEEE Transactions on
Human-Machine Systems 45(5):575–585.
Galar, M.; Fernandez, A.; Barrenechea, E.; Bustince, H.;
and Herrera, F. 2012. A review on ensembles for the
class imbalance problem: Bagging-, boosting-, and hybrid-
based approaches. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews) 42(4):463–
484.
Guyon, I. 2003. Design of experiments of the nips 2003
variable selection benchmark. In NIPS 2003 Workshop on
Feature Extraction and Feature Selection.
Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann,
P.; and Witten, I. H. 2009. The weka data mining soft-
ware: an update. ACM SIGKDD Explorations Newsletter
11(1):10–18.
Joshi, M. V.; Kumar, V.; and Agarwal, R. C. 2001. Evalu-
ating boosting algorithms to classify rare classes: Compari-
son and improvements. In Data Mining, 2001. ICDM 2001,
Proceedings IEEE International Conference on, 257–264.
IEEE.
Lichman, M. 2013. UCI machine learning repository.
Ling, C. X., and Sheng, V. S. 2011. Cost-sensitive learning.
In Encyclopedia of Machine Learning. Springer. 231–235.
Liu, X. Y.; Wu, J.; and Zhou, Z. H. 2009. Exploratory
undersampling for class-imbalance learning. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B (Cybernet-
ics) 39(2):539–550.
Mazurowski, M. A.; Habas, P. A.; Zurada, J. M.; Lo, J. Y.;
Baker, J. A.; and Tourassi, G. D. 2008. Training neural net-
work classifiers for medical decision making: The effects of
imbalanced datasets on classification performance. Neural
networks 21(2):427–436.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.;
Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-
learn: Machine learning in Python. Journal of Machine
Learning Research 12:2825–2830.
Seiffert, C.; Khoshgoftaar, T. M.; Hulse, J. V.; and Napoli-
tano, A. 2010. Rusboost: A hybrid approach to alleviating
class imbalance. IEEE Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans 40(1):185–197.
Stefanowski, J. 2013. Overlapping, rare examples and class
decomposition in learning classifiers from imbalanced data.
In Emerging Paradigms in Machine Learning. Springer.
277–306.
Vilalta, R.; Achari, M.-K.; and Eick, C. F. 2003. Class
decomposition via clustering: a new framework for low-
variance classifiers. In Data Mining, 2003. ICDM 2003.
Third IEEE International Conference on, 673–676. IEEE.
Wu, G., and Chang, E. Y. 2003. Class-boundary alignment
for imbalanced dataset learning. In ICML 2003 Workshop
on Learning from Imbalanced Data Sets II, Washington, DC,
49–56.

1897

