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Abstract

We present a novel extension of Thompson Sampling for
stochastic sequential decision problems with graph feedback,
even when the graph structure itself is unknown and/or chang-
ing. We provide theoretical guarantees on the Bayesian regret
of the algorithm, linking its performance to the underlying
properties of the graph. Thompson Sampling has the advantage
of being applicable without the need to construct complicated
upper confidence bounds for different problems. We illustrate
its performance through extensive experimental results on real
and simulated networks with graph feedback. More specifi-
cally, we tested our algorithms on power law, planted partitions
and Erdős–Rényi graphs, as well as on graphs derived from
Facebook and Flixster data. These all show that our algorithms
clearly outperform related methods that employ upper confi-
dence bounds, even if the latter use more information about
the graph.

1 Introduction

Sequential decision making problems under uncertainty ap-
pear in most modern applications, such as automated exper-
imental design, recommendation systems and optimisation.
The common structure of these applications that, at each
time step t, the decision-making agent is faced with a choice.
After each decision, it obtains some problem-dependent feed-
back (Cesa-Bianchi and Lugosi 2006). For the so-called ban-
dit problem, the choices are between different arms, and
the feedback consists of a single scalar reward obtained by
the arm at time t. For the prediction (or full-information)
problem, it obtains the reward of the chosen arm, but also
observes the rewards of all other choices at time t. In both
cases, the problem is to maximise the total reward obtained
over time. However, dealing with specific types of feedback
may require specialised algorithms. In this paper, we show
that the Thompson sampling algorithm can be applied suc-
cessfully to a range of sequential decision problems, whose
feedback structure is characterised by a graph.

Our algorithm is an extension of Thompson sampling,
introduced in (Thompson 1933). Although easy to imple-
ment and effective in practice, it remained unpopular un-
til relatively recently. Interest grew after empirical studies
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(Scott 2010; Chapelle and Li 2011) demonstrated perfor-
mance exceeding state of the art. This has prompted a surge
of interest in Thompson sampling, with the first theoreti-
cal results (Agrawal and Goyal 2012) and industrial adop-
tion (Scott 2015) appearing only recently. However, there are
still only a few theoretical results and many of these are in
the simplest settings. However, it is easy to implement and
effective under very many different settings with complex
feedback structures, and there is thus great need to extend the
theoretical results to these wider settings.

Russo and Roy argue that Thompson sampling is a very
effective and versatile strategy for different information struc-
tures. Their paper focuses on specific examples: the two ex-
treme cases of no and full information mentioned above and
the case of linear bandits and combinatorial feedback.

Here we consider the case where the feedback is defined
through a graph (Caron et al. 2012; Alon et al. 2015). More
specifically, the arms (choices) are vertices of a (potentially
changing) graph and when an arm is chosen, we see the
reward of that arm as well as its neighbours. On one hand,
it is a clean model for theoretical and experimental analysis
and on the other hand, it also corresponds to realistic settings
in social networks, for example in advertisement settings (c.f.
(Caron et al. 2012)).

We provide a problem-independent1 regret bound that is
parametrized by the clique cover number of the graph and
naturally generalizes the two extreme cases of zero and full
information. We present two variants of Thompson sampling,
that are both very easy to implement and computationally
efficient. The first is straightforward Thompson sampling,
and so draws an arm according to its probability of being the
best, but also uses the graph feedback to update the posterior
distribution. The second one can be seen as sampling cliques
in the graph according to their probability of containing the
best arm, and then choosing the empirically best arm in that
clique. Neither algorithm requires knowledge of the complete
graph.

Almost all previous algorithms require the full structure
of the feedback graph in order to operate. Some require the
entire graph for performing their updates only at the end of
round (e.g. (Alon et al. 2015)) Others actually need the de-
scription of the graph at the beginning of the round to make

1In the sense that it does not depend on the reward structure.
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their decision and almost none of the algorithms previously
proposed in the literature is able to provide non-trivial re-
gret guarantees without the feedback graphs being disclosed.
However, Cohen, Hazan, and Koren (2016) argue that the
assumption that the entire observation system is revealed
to the learner on each round, even if only after making her
prediction, is rather unnatural. In principle, the learner need
not be even aware of the fact that there is a graph under-
lying the feedback model; the feedback graph is merely a
technical notion for us to specify a set of observations for
each of the possible arms. Ideally, the only signal we would
like the agent to receive following each round is the set of
observations that corresponds to the arm she has taken on that
round (in addition to the obtained reward). Our algorithms
work in this setup - they do not need the whole graph to be
disclosed either when selecting the arm or when updating
beliefs - only the local neighborhood is needed. Furthermore,
the underlying graph is allowed to change arbitrarily at each
step. The detailed proofs of all our main results are available
in the full version of this paper.

2 Setting

2.1 The stochastic bandit model

The stochastic K-armed bandit problem is a well known
sequential decision problem involving an agent sequentially
choosing among a set of K arms V = {1 . . .K}. At each
round t, the agent plays an arm At ∈ V and receives a reward
rt = R(Yt,At

), where Yt,At
: Ω → Y is a random variable

defined on some probability space (P,Ω,Σ) and R : Y → R
is a reward function.

Each arm i has mean reward μi(P ) = EP R(Yt,i). Our
goal is to maximize its expected cumulative reward after T
rounds. An equivalent notion is to minimize the expected
regret against an oracle which knows P . More formally, the
expected regret Eπ

P L of an agent policy π for a bandit prob-
lem P is defined as:

E
π
P L = Tμ∗(P )− E

π
P

T∑
t=1

rAt
, (2.1)

where μ∗(P ) = maxi∈V μi(P ) is the mean of the opti-
mal arm and π(At|ht) is the policy of the agent, defining
a probability distribution on the next arm At given the history
ht = 〈A1:t−1, r1:t−1〉 of previous arms and rewards.

The main challenge in this model is that the agent does
not know P , and it only observes the reward of the arm it
played. As a consequence, the agent must trade-off exploita-
tion (taking the apparently best arm) with exploration (trying
out other arms to assess their quality).

The Bayesian setting offers a natural way to model this
uncertainty, by assuming that the underlying probability law
P is in some set P = {Pθ | θ ∈ Θ } parametrised by θ, over
which we define a prior probability distribution P. In that
case, we can define the Bayesian regret:

E
π L =

∫
Θ

E
π
Pθ
(L) dP(θ). (2.2)

A policy with small Bayesian regret may not be uniformly
good in all P . Since in the Bayesian setting we frequently

need to discuss posterior probabilities and expectations, we
also introduce the notation Et f � E(f | ht) and Pt(·) �
P(· | ht) for expectations and probabilities conditioned on
the current history.

2.2 The graph feedback model

In this model, we assume the existence of an undirected graph
G = (V, E) with vertices corresponding to arms. By taking
an arm a ∈ V , we not only receive the reward of the arm we
played, but we also observe the rewards of all neighbouring
arms N a = { a′ ∈ V | (a, a′) ∈ E }. More precisely, at each
time-step t we observe Yt,a′ for all a′ ∈ NAt , while our
reward is still rt = R(Yt,At).

If the graph is empty, then the setting is equivalent to the
bandit problem. If the graph is fully connected, then it is
equivalent to the prediction (i.e. full information) problem.
However, many practical graphs, such as those derived from
social networks, have an intermediate connectivity. In such
cases, the amount of information that we can obtain by pick-
ing an arm can be characterised by graph properties, such as
the clique cover number:
Definition 2.1 (Clique cover number). A clique covering C
of a graph G is a partition of all its vertices into sets S ∈ C
such that the sub-graph formed by each S is a clique i.e. all
vertices in S are connected to each other in G. The smallest
number of cliques into which the nodes of G can be parti-
tioned is called the clique cover number. We denote by C(G)
the minimum clique cover and χ(G) its size, omitting G
when clear from the context.

The domination number is another useful similar notion
for the amount of information that we can obtain.
Definition 2.2 (Domination number). A dominating set in
a graph G = (V, E) is a subset U ⊆ V such that for every
vertex u ∈ V , either u ∈ U or (u, v) ∈ E for some v ∈
U . The smallest size of a dominating set in G is called the
domination number of G and denoted γ(G).

3 Related work and our contribution

Optimal policies for the stochastic multi-armed bandit prob-
lem were first characterised by (Lai and Robbins 1985), while
index-based optimal policies for general non-parametric prob-
lems were given by (Burnetas and Katehakis 1997). Later
(Auer, Cesa-Bianchi, and Fischer 2002a) proved finite-time
regret bounds for a number of UCB (Upper Confidence
Bound) index policies, while (Garivier and Cappé 2011)
proved finite-time bounds for index policies similar to those
of (Burnetas and Katehakis 1997), with problem-dependent
bounds O(K lnT ). Recently, a number of policies based on
sampling from the posterior distribution (i.e. Thompson sam-
pling(Thompson 1933)) were analysed in both the frequen-
tist (Agrawal and Goyal 2012) and Bayesian setting (Russo
and Roy 2016) and shown to obtain the same order of re-
gret bound for the stochastic case. For the adversarial bandit
problem the bounds are of order O(

√
KT ). The analysis for

the full information case generally results in O(ln(K)
√
T )

bounds on the regret (Cesa-Bianchi and Lugosi 2006), i.e.
with a much lower dependence on the number of arms.
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Intermediate cases between full information and bandit
feedback can be obtained through graph feedback, introduced
in (Mannor and Shamir 2011), which is the focus of this paper.
In particular, (Caron et al. 2012) and (Alon et al. 2015) anal-
ysed graph feedback problems with stochastic and adversarial
reward sequences respectively. Specifically, Caron et al. anal-
ysed variants of Upper Confidence Bound policies, for which
they obtained O(χ(G) lnT ) problem-dependent bounds. In
more recent work, (Cohen, Hazan, and Koren 2016) also
introduced algorithms for graphs where the structure is never
fully revealed showing that (unlike the bandit setting) there is
a large gap in the regret between the adversarial and stochas-
tic cases. In particular, they show that in the adversarial set-
ting one cannot do any better than ignore all additional feed-
back, while they provide an action-elimination algorithm for
the stochastic setting. Finally, (Buccapatnam, Eryilmaz, and
Shroff 2014) obtain a problem-dependent bound of the form
O(γ∗(G) log T +Kδ) where γ∗ is the linear programming
relaxation to γ and δ is the minimum degree of G.

Contributions. In this paper, we provide much simpler
strategies based on Thompson sampling, with a matching
regret bound. Unlike previous work, these are also applicable
to graphs whose structure is unknown or changing over time.
More specifically:
1. We extend (Russo and Roy 2016) to graph-structured

feedback, and obtain a problem-independent bound of

O(
√

1
2χ(G)T ).

2. Using planted partition models, we verify the bound’s
dependence on the clique cover.

3. We provide experiments on data drawn from two types
of random graphs: Erdős–Rényi graphs and power law
graphs, showing that our algorithms clearly outperform
UCB and its variations (Caron et al. 2012).

4. Finally, we measured the performance on graphs esti-
mated from the data used in (Caron et al. 2012). Once
again, Thompson sampling clearly outperforms UCB and
its variants.

4 Algorithms and analysis
We consider two algorithms based on Thompson sampling.
The first uses standard Thompson sampling to select arms.
As this also reveals the rewards of neighbouring arms, the
posterior is conditioned on those as well. The second algo-
rithm uses Thompson sampling to select an arm, and then
chooses the empirically best arm within that arm’s clique.

4.1 The TS-N policy

The TS-N policy is an adaptation of Thompson Sampling for
graph-structured feedback. Thompson Sampling maintains
a distribution over the problem parameters. At each step, it
selects an arm according to the probability of its mean being
the largest. It then observes a set of rewards which it uses to
update its probability distribution over the parameters.

For the case where each arm has an independent parameter
defining its reward distribution, we can update the distribu-
tion of all arms observed separately. A particularly simple

case is when all the reward are generated from Bernoulli dis-
tributions. Then we can simply use a Beta prior for each arm,
illustrated by the TS-N policy in Algorithm 1. We note that
the algorithm trivially extends to other priors and families.

Algorithm 1 TS-N (Bernoulli case)
For each arm i, set Si = 1 and Fi = 1
for all round t = 1, · · · , T do

For each arm i, sample θi from the Beta distribution
Beta(Si, Fi)
Play arm At = argmaxi∈V θi
for all k ∈ NAt

do
r̂k = Bernoulli(rk)
If r̂k = 1 the Sk = Sk + 1, else Fk = Fk + 1

end for
end for

4.2 The TS-MaxN policy

The TS-N policy does not fully exploit the graphical structure.
For example, as noted by (Caron et al. 2012), instead of doing
exploration on arm i we could explore an apparently better
neighbour, which would give us the same information. More
precisely, instead of picking arm i, we pick the arm j ∈ Ni

with the best empirical mean. The intuition behind it is that,
if we take any arm inNi, we are going to observe anyway the
reward of i. So it is always better to exploit the best arm inNi.
The resulting policy, TS-MaxN is summarized in Algorithm
2. Although our theoretical results do not apply to this policy,
it can have better performance as it uses more information.

Algorithm 2 TS-MaxN

For each arm i, set Si = 1 and Fi = 1
Let x̄i be the empirical mean of arm i
for all round t = 1, · · · , T do

For each arm i, sample θi from the Beta distribution
Beta(Si, Fi)
Let j = argmaxi∈V θi
Play arm At = argmaxk∈Nj

x̄k

for all k ∈ NAt do
r̂k = Bernoulli(rk)
If r̂k = 1 the Sk = Sk + 1, else Fk = Fk + 1

end for
end for

4.3 Analysis of TS-N policy

Russo and van Roy introduced an elegant approach to the
analysis of Thompson sampling. They define the information
ratio as a key quantity for analysing information structures:

Γt :=
Et [R(Yt,A∗)−R(Yt,At

)]
2

It(A∗, (At, Yt,At))
, (4.1)

where Et and It denote expectation and mutual information
respectively, conditioned on the history of arms and observa-
tions until time t. They show that it follows very generally
that

2662



Proposition 4.1. If Γt ≤ Γ almost surely for all 1 ≤ t ≤ T ,
then, EL(T, πTS) ≤√

ΓH(α1)T .
Here H denotes entropy. Thus to analyse the performance

of Thompson sampling on a specific problem, one may focus
on bounding the information ratio (4.1). For the (independent)
K-armed bandit case, they show that Γt ≤ K/2, while for
full-information (K experts) case, they show that Γt ≤ 1/2.
We now give a simple but useful extension of their results
which is intermediate between these cases.
Proposition 4.2. Let ≡ be an equivalence relation defined
on the arms with a denoting the equivalence class of a.
Let Yt,a = (a, Zt,a) for sequence of random variables
Zt,a : Ω → Z . Then Γt ≤ 1

2 |K/≡ |, half the number of
equivalence classes.

This is a direct generalisation of propositions 3 and 4 in
(Russo and Roy 2016), to which it reduces when the equiva-
lence relation is trivial (bandit case) or full (expert case).

We can now use Proposition 4.2 to analyse graph structured
arms:
Lemma 4.1. Let G = (V, E) be a graph with V correspond-
ing to the arms and suppose that when an arm a is played,
we observe the rewards R(Yt,a′) for all a′ ∈ N(a) i.e we
observe the rewards corresponding to both a and all its neigh-
bours. Let C be a clique cover of G i.e. a partition of V into
cliques. Then Γt ≤ 1

2 |C|.
Applying Proposition 4.1 and Lemma 4.1, we get a per-

formance guarantee for Thompson sampling with graph-
structured feedback:
Theorem 4.3. For Thompson sampling with feedback from

the graph G, we have E
πTS L ≤

√
1
2χ(G)H(α1)T , where

χ(G) is the clique cover number of G.
Remark 4.1. The bandit and expert cases are special cases cor-
responding to the empty graph and the complete graph respec-
tively since χ(G) = K for the empty graph and χ(G) = 1
for the complete graph.
Remark 4.2 (Planted Partition Models). The planted partition
models or stochastic block models graphs G(n, k, p, q) are
defined as follows (McSherry 2001; Condon and Karp 2001):
first a fixed partition of the n vertices into k parts is chosen,
then an edge between two vertices within the same class ex-
ists with probability p and that between vertices in different
classes exists with probability q, independently with p > q.
If p = 1, then with high probability, the clique cover number
of the resulting graph is k (corresponding to the planted k
cliques). Thus for this class of graphs, the regret grows as
O(
√
k) as per Theorem 4.3. This is explored in Section 5.

When p 
= 1 but large, the planted partition graph is consid-
ered a good model of the structure of network communities.

If the underlying graph changes at each time step, then we
also have the bound for the same algorithm:
Corollary 4.1. Suppose the underlying graph at time t ≥ 1
is Gt, then:

E
πTS L ≤

√
1

2
max

t
χ(Gt)H(α1)T

Proof. The information ratio at time t is bounded by
χ(Gt) ≤ maxt χ(Gt).

5 Experiments
We compared our proposed algorithms in terms of the actual
expected regret against a number of other algorithms that can
take advantage of the graph structure. Our comparison was
performed over both synthetic graphs and networks derived
from real-world data.2

5.1 Algorithms and hyperparameters.

In all our experiments, we tested against the UCB-MaxN and
UCB-N algorithms, introduced in (Caron et al. 2012). These
are the analogues of our algorithms, using upper confidence
bounds instead of Thompson sampling.

ε-greedy-D and ε-greedy-LP. For the real-world net-
works, we also evaluated our algorithms against a variant
of ε-greedy-LP from (Buccapatnam, Eryilmaz, and Shroff
2014). This is based on a linear program formulation for
finding a lower bound γ(G) on the size of the minimum
dominating set. We observe first that their analysis holds for
any fixed dominating set D and the bound so obtained is
O(|D|lnT ). In particular, we may use a simple greedy algo-
rithm to compute a near–optimal dominating set D′ such that
|D′|≤ γ(G) logΔ, where Δ is the maximum degree of the
graph. 3 Using such a near optimal dominating set in place
of the LP relaxation and choosing arms from it uniformly at
random, we obtain a variant of the original algorithm, which
we call ε-greedy-D, which is much more computationally
efficient, and which enjoys a similar regret bound:
Theorem 5.1. The regret of ε-greedy-D is at most
O(γ(G) lnΔ lnT ), where Δ is the maximum degree of the
graph.
ε-greedy-D and ε-greedy-LP have the hyper-parameters

c and d, which control the amount of exploration. We found
that its performance is highly sensitive to their choice. In our
experiments, we find the optimal values for these parameters
by performing a separate grid search for each problem, and
only reporting the best results. Since there is no obvious way
to tune these parameters online, this leads to a favourable
bias in our results for this algorithm. 4

As Thompson sampling is a Bayesian algorithm, we can
view the prior distribution as a hyper-parameter. In our ex-
periments, we always set that to a Beta(1,1) prior for all
rewards.

5.2 General experimental setup.

For all of our experiments, we performed 210 independent
trials and reported the median-of-means estimator5 of the

2Our source code and data sets will be made available on an
open hosting website.

3No polynomial time algorithm can guarantee a better approxi-
mation unless P=NP, (Ruan et al. 2004)

4A similar observation was made in (Auer, Cesa-Bianchi, and
Fischer 2002b), which noted that an optimally tuned ε-greedy per-
forms almost always best, but its performance can degrade signifi-
cantly when the parameters are changed. Although (Buccapatnam,
Eryilmaz, and Shroff 2014) suggests a method for selecting these
parameters, we find that using it leads to a near-linear regret.

5Used heavily in the streaming literature (Alon, Matias, and
Szegedy 1996)
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Figure 1: Relative regret in the planted partition setting as the
number of groups increases.

cumulative regret. It partitions the trials into a0 equal groups
and return the median of the sample means of each group. We
set the number of groups to a0 = 14, so that the confidence
interval holds with probability at least 0.955.

We also reported the deviation of each algorithm using the
Gini’s Mean Difference (GMD hereafter) (Gini and Pearson
1912). GMD computes the deviation as

∑N
j=1(2j − N −

1)x(j) with x(j) the j-th order statistics of the sample (that
is x(1) ≤ x(2) ≤ . . . ≤ x(N)). As shown in (Yitzhaki and
others 2003; David 1968) the GMD provides a superior ap-
proximation of the true deviation than the standard one. To
account for the fact that the cumulative regret of our algo-
rithms might not follow a symmetric distribution, we com-
puted the GMD separately for the values above and below
the median-of-means.

5.3 Simulated graphs

In our synthetic problems, unless otherwise stated, the re-
wards are drawn from a Bernoulli distribution whose mean is
generated uniformly randomly in [0.45, 0.55] except for the
optimal arm whose mean is generated randomly in [0.55, 0.6].
The number of nodes in the graph is 500. We tested with a
sparse graph of 2500 edges and also with a dense graph of
62625 edges.

Erdős–Rényi graphs In our first experiment, we generate
the graph randomly using the Erdős–Rényi model. Figure 2e
and 2f respectively show the result in the sparse and dense
graph.

Our first observation here is that all policies take advantage
of a large number of edges as their cumulative regret is better
by using the dense graph (Figure 2f) rather than the sparse
one (Figure 2e). This confirms the theoretical result as a
dense graph will have a smaller clique cover number than a
sparse one.

The policy TS-MaxN outperforms all other in both the
sparse and dense graph model. However, the performance of
TS-N is very close to that of TS-MaxN in the near complete
graph. This is explained by the fact that in a near complete
graph we have many cliques. It is revealing to see that TS-N
outperforms both the UCB-N and UCB-MaxN policies.

Power Law graph Such graphs are commonly used to
generate static scale-free networks (Goh, Kahng, and Kim
2001). In this experiment, we generated a non-growing ran-
dom graph with expected power-law degree distribution.

show the results respectively for the dense and sparse graph
Figure 2d and 2c show the results respectively for the dense
and sparse graph. Again, the policy TS-MaxN clearly outper-
forms all other. In the sparse graph model, TS-N is beaten by
UCB-MaxN at the beginning of the rounds ( t ≤ 100000),
but catches and ended up beating UCB-MaxN.

Planted Partition Model The aim of the experiment on
this model is to check the dependency on the number of
cliques for each policy. Figure 1 shows the results where on
the x-axis we have the parameter k of the planted partition
graph (which is almost equal to the number of cliques) on a
graph with 1024 nodes. On the y-axis we have the relative
regret of each policy, i.e. the ratio between the regret of each
policy with the regret of the best policy when there are two
groups, for ease of comparison. As we can see, all methods’
regret scales similarly. Thus, the theoretical bounds appear to
hold in practice, and to be somewhat pessimistic. For a larger
number of nodes, we would expect the plots to flatten later.

5.4 Social networks datasets

Our experiments on real world datasets follow the methodol-
ogy described in (Caron et al. 2012). We first infer a graph
from data, and then define a reward function for movie recom-
mendation from user ratings. Missing ratings are predicted us-
ing matrix factorization. This enables us to generate rewards
from the graph. We explain the datasets, reward function and
graph inference in the full version.

Results Figure 2a shows the results for the Facebook graph
and Figure 2b for the Flixster graph. Once again, the Thomp-
son sampling strategies dominate all other strategies for the
Facebook and they are matched by the optimised ε-greedy-D
policy in the Flixster graph. We notice that in this setting the
gap between the UCB policies and the rest is much larger, as
is the overall regret of all policies. This can be attributed to
the larger size of these graphs.

6 Conclusion

We have presented the first Thompson sampling algorithms
for sequential decision problems with graph feedback, where
we not only observe the reward of the arm we select, but
also those of the neighbouring arms in the graph. Thus, the
graph feedback allows us the flexibility to model different
types of feedback information, from bandit feedback to ex-
pert feedback. Since the structure of the graph need not be
known in advance, our algorithms are directly applicable
to problems with changing and/or unknown topology. Our
analysis leverages the information-theoretic construction of
(Russo and Roy 2016), by bounding the expected information
gain in terms of fundamental graph properties. Although our
problem-independent bound of is not directly comparable to
(Caron et al. 2012), we believe that a problem-independent
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(e) Erdős–Rényi sparse
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(f) Erdős–Rényi Dense

Figure 2: Regret and error bar on simulated (sparse and dense) and real social network graphs

version of the latter should be O(
√
χ lnT ), in which case our

results would represent an improvement of O(
√
χ).

In practice, our two variants always outperform UCB-N,
UCB-MaxN, which also use graph feedback but rely on upper
confidence bounds. We are also favourably compared against
ε-greedy-D, even when we tune the parameters of the latter
post hoc.

It would be interesting to extend our techniques to other
types of feedback. For example, the Bayesian foundations
of Thompson sampling render our algorithms applicable to
arbitrary dependencies between arms. In future work, we will
analytically and experimentally consider such problems and
related applications. Finally, an open question is the existence
of information-theoretic lower bounds in settings with partial
feedback.
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